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Abstract
In this paper, we study a class of fractional q-difference equations with
nonhomogeneous boundary conditions. By applying the classical tools from
functional analysis, sufficient conditions for the existence of single and multiple
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intervals for the nonhomogeneous term. In addition, some examples to illustrate our
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1 Introduction
Fractional differential equations have attracted considerable interest because of its demon-
strated applications in various fields of science and engineering including fluid flow, rhe-
ology, diffusive transport akin to diffusion, electrical networks, probability [, ]. Many
researchers have studied the existence of solutions (or positive solutions) to fractional
boundary value problems; for example, see [–] and the references therein.
The early work on q-difference calculus or quantum calculus dates back to Jackson’s

papers [], basic definitions and properties of quantum calculus can be found in the book
[]. For some recent existence results on q-difference equations, we refer to [–] and
the references therein.
The fractional q-difference calculus had its origin in the works by Al-Salam [] and

Agarwal []. More recently, there seems to be new interest in the study of this subject and
many new developments were made in this theory of fractional q-difference calculus [–
]. Specifically, fractional q-difference equations have attracted the attentions of several
researchers. Some recentwork on the existence theory of fractional q-difference equations
can be found in [, –]. However, the study of boundary value problems for nonlinear
fractional q-difference equations is still in the initial stage and many aspects of this topic
need to be explored.
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By using a fixed-point theorem in a cone, M. El-Shahed and F. Al-Askar [] were con-
cerned with the existence of positive solutions to nonlinear q-difference equation:

⎧⎨
⎩

CDα
qu(t) + a(t)f (u(t)) = ,  < t < ,  < α ≤ ,

u() =D
qu() = , aDqu() + bD

qu() = ,

where a,b≥  and CDα
q is the fractional q-derivatives of the Caputo type.

In [], Graef and Kong investigated the boundary value problem with fractional q-
derivatives

⎧⎨
⎩
(Dα

qu)(t) + f (t,u(t)) = ,  < t < ,n –  < α ≤ n,n ∈N,

(Di
qu)() = , i = , . . . ,n – , bDqu() =

∑m
j= ajDqu(tj) + λ,

where λ ≥  is a parameter, and the uniqueness, existence and nonexistence of positive
solutions are considered in terms of different ranges of λ.
By applying the Banach contraction principle, Krasnoselskii’s fixed-point theorem, and

the Leray-Schauder nonlinear alternative, Ahmad, Ntouyas and Purnaras [] studied the
existence of solution for the following nonlinear fractional q-difference equationwith non-
local boundary conditions:

⎧⎨
⎩
(CDα

qu)(t) = f (t,u(t)),  ≤ t ≤ ,  < α ≤ ,

au() – bDqu() = cu(η), au() + bDqu() = cu(η),

where CDα
q is the fractional q-derivative of the Caputo type, and ai,bi, ci,ηi ∈ R.

Recently, in [], the authors investigate the following singular semipositone integral
boundary value problem for fractional q-derivatives equation:

⎧⎨
⎩
(Dα

qu)(t) + f (t,u(t)) = , t ∈ (, ),  < α ≤ ,

u() = (Dqu)() = , u() = μ
∫ 
 u(s)dqs,

where  < μ < [α]q, Dα
q is the q-derivative of Riemann-Liouville type of order α, f : [, ]×

(, +∞)→ (–∞, +∞) is continuous and semipositone, and may be singular at u = .
Since finding positive solutions of boundary value problems is interest in various fields

of sciences, fractional q-calculus equations has tremendous potential for applications. In
this paper, we will deal with the following nonhomogeneous boundary value problemwith
fractional q-derivatives:

⎧⎨
⎩
(Dα

qu)(t) + f (t,u(t)) = , t ∈ (, ),

u() = (Dqu)() = , γ (Dqu)() + β(D
qu)() = λ,

(.)

where q ∈ (, ),  < α ≤ , γ ≥ , β > , and λ is a parameter, Dα
q is the q-derivative

of Riemann-Liouville type of order α, f : [, ] × R → R is continuous. In the present
work, we gave the corresponding Green’s function of the boundary value problem (.)
and its properties. By using the generalized Banach contraction principle and Krasnosel-
skii’s fixed-point theorem, the uniqueness, existence, and multiplicity of positive solution
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to the BVP (.) are obtained in term of the explicit intervals for the nonhomogeneous
term. Our results are different from those of [, ].

2 Preliminaries on q-calculus and lemmas
For the convenience of the reader, below we cite some definitions and fundamental results
on q-calculus as well as the fractional q-calculus. The presentation here can be found in,
for example, [, , , ].
Let q ∈ (, ) and define

[a]q =
 – qa

 – q
, a ∈ R.

The q-analogue of the power function (a – b)n with n ∈N := {, , , . . .} is

(a – b)() = , (a – b)(n) =
n–∏
k=

(
a – bqk

)
, n ∈N,a,b ∈ R.

More generally, if α ∈ R, then

(a – b)(α) = aα

∞∏
k=

a – bqk

a – bqα+k , a �= . (.)

Clearly, if b = , then a(α) = aα . The q-gamma function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈ R \ {,–,–, . . .},

and satisfies �q(x + ) = [x]q�q(x).
The q-derivative of a function f is defined by

(Dqf )(x) =
f (qx) – f (x)
(q – )x

, (Dqf )() = lim
x→

(Dqf )(x),

and q-derivatives of higher order by

(
D

qf
)
(x) = f (x),

(
Dn

qf
)
(x) =Dq

(
Dn–

q f
)
(x), n ∈N.

The q-integral of a function f defined in the interval [,b] is given by

(Iqf )(x) =
∫ x


f (s)dqs = x( – q)

∞∑
k=

f
(
xqk

)
qk , x ∈ [,b].

If a ∈ [,b] and f is defined in the interval [,b], then its integral from a to b is defined by

∫ b

a
f (s)dqs =

∫ b


f (s)dqs –

∫ a


f (s)dqs.

Similar to that for derivatives, an operator Inq is given by

(
Iq f

)
(x) = f (x),

(
Inq f

)
(x) = Iq

(
In–q f

)
(x), n ∈N.
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The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf )(x) = f (x),

and if f is continuous at x = , then

(IqDqf )(x) = f (x) – f (). (.)

The following formulas will be used later, namely, the integration by parts formula:

∫ x


f (s)(Dqg)(s)dqs =

[
f (s)g(s)

]s=x
s= –

∫ x


(Dqf )(s)g(qs)dqs,

and

[
a(t – s)

](α) = aα(t – s)(α), (.)

tDq(t – s)(α) = [α]q(t – s)(α–), (.)

sDq(t – s)(α) = –[α]q(t – qs)(α–), (.)(
xDq

∫ x


f (x, s)dqs

)
(x) =

∫ x


xDqf (x, s)dqs + f (qx,x), (.)

where tDq denotes the derivative with respect to the variable t.

Definition . Let α ≥  and f be a function defined on [, ]. The fractional q-integral
of Riemann-Liouville type is (Iq f )(x) = f (x) and

(
Iαq f

)
(x) =


�q(α)

∫ x


(x – qs)(α–)f (s)dqs, α > ,x ∈ [, ].

Definition . The fractional q-derivative of the Riemann-Liouville type of order α ≥ 
is defined by (D

qf )(x) = f (x) and

(
Dα

q f
)
(x) =

(
D[α]

q I[α]–α
q f

)
(x), α > ,

where [α] is the smallest integer greater than or equal to α.

Lemma . ([]) Assume that α ≥  and a ≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α).

Lemma . Let α,β ≥  and f be a function defined on [, ]. Then the following formulas
hold:
() (Iβq Iαq f )(x) = (Iα+β

q f )(x),
() (Dα

q Iαq f )(x) = f (x).

Lemma . ([]) Let α >  and n be a positive integer. Then the following equality holds:

(
Iαq D

n
qf

)
(x) =

(
Dn

qI
α
q f

)
(x) –

n–∑
k=

xα–n+k

�q(α + k – n + )
(
Dk

qf
)
().
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Lemma . ([]) Let α ∈ R+, λ ∈ (–,+∞), the following is valid:

Iαq
(
(t – a)(λ)

)
=

�q(λ + )
�q(α + λ + )

(t – a)(α+λ),  < a < t < b.

Particularly, for λ = , a = , using q-integration by parts, we have

(
Iαq 

)
(t) =


�q(α)

∫ t


(t – qs)(α–) dqs =


�q(α)

∫ t



sDq((t – s)(α))
–[α]q

dqs

= –


�q(α + )

∫ t


sDq

(
(t – s)(α)

)
dqs =


�q(α + )

t(α).

Obviously, we have
∫ t
 (t – qs)(α–) dqs = 

[α]q t
(α), and

∫ t


( – qs)(α–) dqs =

∫ t



sDq(( – s)(α))
–[α]q

dqs

= –


[α]q

∫ t


sDq

(
( – s)(α)

)
dqs =


[α]q

[
 – ( – t)(α)

]
.

In order to define the solution for the problem (.), we need the following lemmas.

Lemma . For given y ∈ C[, ], the unique solution of the boundary value problem

(
Dα

qu
)
(t) + y(t) = , t ∈ (, ),  < α ≤ , (.)

subject to the boundary conditions

u() = (Dqu)() = , γ (Dqu)() + β
(
D

qu
)
() = λ, (.)

is given by

u(t) =
∫ 


G(t,qs)y(s)dqs +

λtα–

(γ + [α – ]qβ)[α – ]q
, (.)

where

G(t, s) =

⎧⎨
⎩

γ tα–(–s)(α–)+[α–]qβtα–(–s)(α–)
(γ+[α–]qβ)�q(α) – (t–s)(α–)

�q(α) ,  ≤ s ≤ t ≤ ,
γ tα–(–s)(α–)+[α–]qβtα–(–s)(α–)

(γ+[α–]qβ)�q(α) ,  ≤ t ≤ s≤ .
(.)

Proof Since  < α ≤ , we put n = . In view of Definition . and Lemma ., we see that

(
Dα

qu
)
(t) = –y(t) ⇔ (

Iαq D

qI

–α
q u

)
(t) = –

(
Iαq y

)
(t).

Then it follows from Lemma . that the solution u(t) of (.) and (.) is given by

u(t) = ctα– + ctα– + ctα– –
∫ t



(t – qs)(α–)

�q(α)
y(s)dqs, (.)

for some constants c, c, c ∈ R. From u() = , we have c = .

http://www.boundaryvalueproblems.com/content/2013/1/103
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Differentiating both sides of (.) and with the help of (.) and (.), we obtain,

(Dqu)(t) = [α – ]qctα– + [α – ]qctα– –
∫ t



[α – ]q(t – qs)(α–)

�q(α)
y(s)dqs,

and

(
D

qu
)
(t) = [α – ]q[α – ]qctα– + [α – ]q[α – ]qctα–

–
∫ t



[α – ]q[α – ]q(t – qs)(α–)

�q(α)
y(s)dqs.

Then by the boundary condition (Dqu)() = , we get c = . Using the boundary condition
γ (Dqu)() + β(D

qu)() = λ, we get

c =


γ + [α – ]qβ

×
(

γ

∫ 



( – qs)(α–)

�q(α)
y(s)dqs + β

∫ 



[α – ]q( – qs)(α–)

�q(α)
y(s)dqs +

λ

[α – ]q

)
.

Hence, we have

u(t) =
tα–

γ + [α – ]qβ

(
γ

∫ 



( – qs)(α–)

�q(α)
y(s)dqs

+ β

∫ 



[α – ]q( – qs)(α–)

�q(α)
y(s)dqs +

λ

[α – ]q

)
–

∫ t



(t – qs)(α–)

�q(α)
y(s)dqs

=
∫ 


G(t,qs)y(s)dqs +

λtα–

(γ + [α – ]qβ)[α – ]q
.

This completes the proof of the lemma. �

Lemma . The function G(t, s) defined by (.) satisfies the following conditions:
(i) G(t,qs)≥ , and G(t,qs) ≤ G(,qs) for all  ≤ t, s≤ .
(ii) G(t,qs)≥ tα–G(,qs) for all  ≤ t, s≤ .

Proof We start by defining the following two functions:

g(t, s) =
γ tα–( – s)(α–) + [α – ]qβtα–( – s)(α–)

(γ + [α – ]qβ)�q(α)
,  ≤ t ≤ s ≤ ,

g(t, s) = g(t, s) –
(t – s)(α–)

�q(α)
,  ≤ s ≤ t ≤ .

Obviously, g(t,qs)≥ . Now g(,qs) = , and for t �= 

g(t,qs) =
γ tα–( – qs)(α–) + [α – ]qβtα–( – qs)(α–)

(γ + [α – ]qβ)�q(α)
–
(t – qs)(α–)

�q(α)

=
tα–(γ ( – qs)(α–) + [α – ]qβ( – qs)(α–) – (γ + [α – ]qβ)( – q s

t )
(α–))

(γ + [α – ]qβ)�q(α)

http://www.boundaryvalueproblems.com/content/2013/1/103
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≥ tα–(γ ( – qs)(α–) + [α – ]qβ( – qs)(α–) – (γ + [α – ]qβ)( – qs)(α–))
(γ + [α – ]qβ)�q(α)

=
tα–(γ (( – qs)(α–) – ( – qs)(α–)) + [α – ]qβ(( – qs)(α–) – ( – qs)(α–)))

(γ + [α – ]qβ)�q(α)
≥ .

Therefore, G(t,qs) ≥ .
Moreover, for s ∈ (, ], it follows from (.) and Lemma . that

tDqg(t,qs) =
[α – ]q

(γ + [α – ]qβ)�q(α)
(
γ tα–( – qs)(α–) + [α – ]qβtα–( – qs)(α–)

–
(
γ + [α – ]qβ

)
(t – qs)(α–)

)

≥ [α – ]qtα–

(γ + [α – ]qβ)�q(α)
(
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

–
(
γ + [α – ]qβ

)
( – qs)(α–)

)

=
[α – ]q[α – ]qβtα–

(γ + [α – ]qβ)�q(α)
(
( – qs)(α–) – ( – qs)(α–)

) ≥ ,

which implies that g(t,qs) is an increasing functionwith respect to t. It is clear that g(t,qs)
is increasing in t. Therefore, G(t,qs) is an increasing function of t for all s ∈ (, ], and so
G(t,qs) ≤ G(,qs).
When  ≤ t ≤ qs ≤ , then

G(t,qs) =
γ tα–( – qs)(α–) + [α – ]qβtα–( – qs)(α–)

(γ + [α – ]qβ)�q(α)
≤ G(qs,qs) ≤G(,qs).

Finally, we prove part (ii). When ≤ qs ≤ t ≤ , we have

G(t,qs)
G(,qs)

=
γ tα–( – qs)(α–) + [α – ]qβtα–( – qs)(α–) – (γ + [α – ]qβ)(t – qs)(α–)

γ ( – qs)(α–) + [α – ]qβ( – qs)(α–) – (γ + [α – ]qβ)( – qs)(α–)

≥ γ tα–( – qs)(α–) + [α – ]qβtα–( – qs)(α–) – (γ + [α – ]qβ)tα–( – qs)(α–)

γ ( – qs)(α–) + [α – ]qβ( – qs)(α–) – (γ + [α – ]qβ)( – qs)(α–)

= tα–.

If  ≤ t ≤ qs ≤ , then we have

G(t,qs)
G(,qs)

=
γ tα–( – qs)(α–) + [α – ]qβtα–( – qs)(α–)

γ ( – qs)(α–) + [α – ]qβ( – qs)(α–) – (γ + [α – ]qβ)( – qs)(α–)

≥ tα–[γ ( – qs)(α–) + [α – ]qβ( – qs)(α–) – (γ + [α – ]qβ)( – qs)(α–)]
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–) – (γ + [α – ]qβ)( – qs)(α–)

= tα–,

which implies that part (ii) holds. This completes the proof of the lemma. �

http://www.boundaryvalueproblems.com/content/2013/1/103
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Remark . If we let  < τ < , then

min
t∈[τ ,]

G(t,qs) ≥ τα–G(,qs), for s ∈ [, ].

According to [], we may take τ = qn, n ∈N.

3 Themain results
Let X = C([, ]) be a Banach space endowed with the norm ‖u‖X =max≤t≤ |u(t)|. Define
the cone P ⊂ X by P = {u ∈ X : u(t) ≥ , ≤ t ≤ }.
Define the operator T : P → X as follows:

(Tu)(t) =
∫ 


G(t,qs)f

(
s,u(s)

)
dqs +

λtα–

(γ + [α – ]qβ)[α – ]q
. (.)

Theorem . Assume that f : [, ]× [, +∞) → [, +∞) is continuous and there exists a
nonnegative function h ∈ C[, ] such that

∣∣f (t,u) – f (t, v)
∣∣ ≤ h(t)|u – v|, t ∈ [, ],u, v ∈ [, +∞). (.)

Then the BVP (.) has a unique positive solution for any λ ∈ (, +∞), provided

∫ 


sα–

(
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

)
h(s)dqs <

(γ + [α – ]qβ)�q(α)


. (.)

If, in addition, f (t, ) �≡  on [, ], then the conclusion is true for λ = .

Proof We will show that under the assumptions (.) and (.), Tm is a contraction oper-
ator form sufficiently large.
By the definition of G(t,qs), for u, v ∈ P, we have

∣∣(Tu)(t) – (Tv)(t)
∣∣

≤
∫ 


G(t,qs)

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣dqs

≤
∫ 



tα–(γ ( – qs)(α–) + [α – ]qβ( – qs)(α–))
(γ + [α – ]qβ)�q(α)

h(s)dqs · ‖u – v‖X

=
tα–‖u – v‖X

(γ + [α – ]qβ)�q(α)

∫ 



(
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

)
h(s)dqs

=
	tα–

(γ + [α – ]qβ)�q(α)
‖u – v‖X ,

where 	 =
∫ 
 (γ ( – qs)(α–) + [α – ]qβ( – qs)(α–))h(s)dqs.

Consequently,

∣∣(Tu
)
(t) –

(
Tv

)
(t)

∣∣ ≤
∫ 


G(t,qs)

∣∣f (s, (Tu)(s)) – f
(
s, (Tv)(s)

)∣∣dqs

≤ 	‖u – v‖X
(γ + [α – ]qβ)�q(α)

∫ 


G(t,qs)sα–h(s)dqs

http://www.boundaryvalueproblems.com/content/2013/1/103
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≤ 	tα–‖u – v‖X
(γ + [α – ]qβ)[�q(α)]

∫ 


sα–

(
γ ( – qs)(α–)

+ [α – ]qβ( – qs)(α–)
)
h(s)dqs

=
		tα–

(γ + [α – ]qβ)[�q(α)]
‖u – v‖X ,

where 	 =
∫ 
 s

α–(γ ( – qs)(α–) + [α – ]qβ( – qs)(α–))h(s)dqs.
By introduction, we get

∣∣(Tmu
)
(t) –

(
Tmv

)
(t)

∣∣ ≤ 		
m–
 tα–

(γ + [α – ]qβ)m[�q(α)]m
‖u – v‖X .

From the condition (.), we have

		
m–


(γ + [α – ]qβ)m[�q(α)]m
=

	

	

[
	

(γ + [α – ]qβ)�q(α)

]m

≤ 	

	

(



)m

<


,

form sufficiently large. So, we get

∥∥(
Tmu

)
(t) –

(
Tmv

)
(t)

∥∥
X <




‖u – v‖X .

Hence, it follows from the generalized Banach contraction principle that the BVP (.)
has a unique positive solution for any λ ∈ (, +∞). If λ = , then the condition f (t, ) �≡
 on [, ] and Lemma . imply that u(t) >  in (, ]. This completes the proof of the
theorem. �

Remark . When h(t) ≡ h is a constant, the condition (.) reduces to a Lipschitz con-
dition.

Our next existence results is based on Krasnoselskii’s fixed-point theorem [].

Lemma . (Krasnoselskii’s) Let E be a Banach space, and let P ⊂ E be a cone.Assume
,

 are open subsets of E with θ ∈ 
, 
̄ ⊂ 
 and let T : P∩ (
̄\
) → P be a completely
continuous operator such that, either
() ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂
 and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂
, or
() ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂
 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂
.

Then T has at least one fixed point in P ∩ (
\
).

Define a cone K ⊂ X by

K =
{
u ∈ X : u(t)≥ ,u(t) ≥ tα–‖u‖, t ∈ [, ]

}
.

Obviously, K is a cone of nonnegative functions in X.

http://www.boundaryvalueproblems.com/content/2013/1/103
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Lemma . The operator T : K → K is completely continuous.

Proof Firstly, we prove that T(K) ⊂ K . By (.) and Lemma ., we have

‖Tu‖ = max
≤t≤

{∫ 


G(t,qs)f

(
s,u(s)

)
dqs +

λtα–

(γ + [α – ]qβ)[α – ]q

}

≤
∫ 


G(,qs)f

(
s,u(s)

)
dqs +

λ

(γ + [α – ]qβ)[α – ]q
.

On the other hand,

(Tu)(t) ≥ tα–
(∫ 


G(,qs)f

(
s,u(s)

)
dqs +

λ

(γ + [α – ]qβ)[α – ]q

)
≥ tα–‖Tu‖.

Hence, we have T(K) ⊂ K .
Next, we show that T is uniformly bounded. For fixed r > , consider a bounded subset

Kr of K defined by Kr = {u ∈ K : ‖u‖ ≤ r, r > }, and letM =max≤u≤r |f (t,u)|+ . Then for
u ∈ Kr , we get

∣∣(Tu)(t)∣∣ ≤
∫ 


G(t,qs)

∣∣f (s,u(s))∣∣dqs + |λ|tα–
(γ + [α – ]qβ)[α – ]q

≤ M
∫ 


G(,qs)dqs +

|λ|
(γ + [α – ]qβ)[α – ]q

< +∞,

which implies that T(Kr) is bounded.
Finally, we show that T is equicontinuous. For all ε > , setting

δ =min

{
ε

ω(α – )
,



(
ε

ω

) 
α–

}
,

where

ω =
M(γ + [α – ]qβ) + |λ|�q(α)
(γ + [α – ]qβ)�q(α)[α – ]q

.

For any u ∈ Kr , we can prove that if t, t ∈ [, ] and  < t – t < δ, then

∣∣(Tu)(t) – (Tu)(t)
∣∣ < ε.

In fact, we have

∣∣(Tu)(t) – (Tu)(t)
∣∣

≤
∫ 



∣∣G(t,qs) –G(t,qs)
∣∣f (s,u(s))dqs + |λ|(tα– – tα– )

(γ + [α – ]qβ)[α – ]q

≤ M
∫ 



∣∣G(t,qs) –G(t,qs)
∣∣dqs + |λ|(tα– – tα– )

(γ + [α – ]qβ)[α – ]q

≤ M
(∫ t



∣∣G(t,qs) –G(t,qs)
∣∣dqs +

∫ t

t

∣∣G(t,qs) –G(t,qs)
∣∣dqs
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+
∫ 

t

∣∣G(t,qs) –G(t,qs)
∣∣dqs

)
+

|λ|(tα– – tα– )
(γ + [α – ]qβ)[α – ]q

≤ M
γ + [α – ]qβ

(∫ t



γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

�q(α)
(
tα– – tα–

)
dqs

+
∫ t

t

γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

�q(α)
(
tα– – tα–

)
dqs

+
∫ 

t

γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

�q(α)
(
tα– – tα–

)
dqs

)

+
|λ|(tα– – tα– )

(γ + [α – ]qβ)[α – ]q

=
M(tα– – tα– )

(γ + [α – ]qβ)�q(α)

∫ 



(
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

)
dqs

+
|λ|

(γ + [α – ]qβ)[α – ]q
(
tα– – tα–

)

=
M(γ + [α – ]qβ) + |λ|�q(α)
(γ + [α – ]qβ)�q(α)[α – ]q

(
tα– – tα–

)

= ω
(
tα– – tα–

)
.

If δ ≤ t < t < , then

∣∣(Tu)(t) – (Tu)(t)
∣∣ ≤ ω

(
tα– – tα–

)
< ω(α – )(t – t) < ω(α – )δ ≤ ε.

If  ≤ t < δ, t < δ, then

∣∣(Tu)(t) – (Tu)(t)
∣∣ ≤ ω

(
tα– – tα–

)
< ωtα– < ω(δ)α– ≤ ε.

By means of Arzela-Ascoli theorem, T : K → K is completely continuous.
For the sake of convenience, we introduce the following weight functions:

φ(r) =max
{
f
(
t,u(t)

)
: (t,u) ∈ [, ]× [, r]

}
,

ϕ(r) =min
{
f
(
t,u(t)

)
: (t,u) ∈ [τ , ]× [

τα–r, r
]}
,

and set

l =
(∫ 


G(,qs)dqs

)–

, L =
(

τα–
∫ 

τ

G(,qs)dqs
)–

. �

Theorem . Suppose that there exists two positive numbers ξ < ξ such that one of the
following conditions is satisfied

(H) ϕ(ξ) ≥ ξL, φ(ξ) ≤ l
ξ;

(H) φ(ξ) ≤ l
ξ, ϕ(ξ)≥ ξL.

Then the BVP (.) has at least one positive solution u∗ ∈ K , such that ξ ≤ ‖u∗‖ ≤ ξ for
λ ∈ (, (γ+[α–]qβ)[α–]q ξ]. If, in addition, f (t, ) �≡  on [, ], then the conclusion is true for
λ = .
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Proof Because the proofs are similar, we prove only the case (H). Denote 
ξ = {u ∈ X :
‖u‖ < ξ}. Then for any u ∈ K ∩∂
ξ , we get ‖u‖ = ξ,  ≤ u(t)≤ ξ, ≤ t ≤ , and τα–ξ ≤
minτ≤t≤ tα–‖u‖ ≤ u(t) ≤ ‖u‖ = ξ, τ ≤ t ≤ . By assumption (H), we have

f (t,u) ≥ ϕ(ξ) ≥ ξL, τ ≤ t ≤ .

In view of (.) and Lemma ., we have

‖Tu‖ ≥ min
τ≤t≤

{∫ 


G(t,qs)f

(
s,u(s)

)
dqs +

λtα–

(γ + [α – ]qβ)[α – ]q

}

≥ min
τ≤t≤

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

≥ τα–
∫ 

τ

G(,qs)f
(
s,u(s)

)
dqs

≥ τα–
∫ 

τ

G(,qs)dqs · ξL = ξ = ‖u‖.

On the other hand, define 
ξ = {u ∈ X : ‖u‖ < ξ}. For any t ∈ [, ] and u ∈ K ∩ ∂
ξ ,
we have ‖u‖ = ξ and  ≤ u(t) ≤ ξ,  ≤ t ≤ . Thus,

f (t,u) ≤ φ(ξ) ≤ l

ξ, for  ≤ t ≤ ,  ≤ u≤ ξ.

It follows

‖Tu‖ = max
≤t≤

{∫ 


G(t,qs)f

(
s,u(s)

)
dqs +

λtα–

(γ + [α – ]qβ)[α – ]q

}

≤
∫ 


G(,qs)dqs · l


ξ +

λ

(γ + [α – ]qβ)[α – ]q

≤ l– · l

ξ +

ξ


<

ξ


+

ξ


= ‖u‖.

By Lemma ., the operator T has at least one fixed point u∗ ∈ K ∩ (
ξ \ 
ξ ), and ξ ≤
‖u∗‖ ≤ ξ. Since u∗(t) ≥ tα–‖u∗‖ ≥ ξtα– > ,  < t < , then, the solution u∗ is positive for
λ > . As in the proof of Theorem ., u∗(t) is a positive solution for λ = . This completes
the proof of the theorem. �

Theorem . Suppose that there exists three positive numbers ξ < ξ < ξ such that one of
the following conditions is satisfied

(H) ϕ(ξ) ≥ ξL, φ(ξ) < l
ξ, ϕ(ξ) ≥ ξL;

(H) φ(ξ) ≤ l
ξ, ϕ(ξ) > ξL, φ(ξ)≤ l

ξ.

Then the BVP (.) has at least two positive solutions u∗
 ,u∗

 ∈ K such that ξ ≤ ‖u∗
‖ <

ξ ≤ ‖u∗
‖ ≤ ξ for λ ∈ (, (γ+[α–]qβ)[α–]q ξ]. If, in addition, f (t, ) �≡  on [, ], then the

conclusion is true for λ = .

Proof We prove only the case (H). Since ϕ : [, +∞)→ [, +∞) is continuous and ϕ(ξ) >
ξL, there exist two positive numbers η, η such that ξ < η < ξ < η < ξ and ϕ(η) ≥ ηL,
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ϕ(η) ≥ ηL. Thus, it follows from the assumption (H) that

φ(ξ)≤ l

ξ, ϕ(η) ≥ ηL, and ϕ(η) ≥ ηL, φ(ξ) ≤ l


ξ.

From Theorem ., the operator T has two fixed point u∗
 ∈ K ∩ (
η \ 
ξ ), u∗

 ∈ K ∩
(
ξ \ 
η ) with ξ ≤ ‖u∗

‖ < ξ < ‖u∗
‖ ≤ ξ. Therefore, the BVP (.) has at least two posi-

tive solutions for λ ∈ (, (γ+[α–]qβ)[α–]q ξ]. As in the proof of Theorem ., u∗
 , u∗

 are two
positive solutions for λ = . This completes the proof of the theorem. �

Denote the integer part ofm by [m]. Generally, we have the following theorem.

Theorem . Suppose that there exists m +  positive numbers ξ < ξ < · · · < ξm+ such
that one of the following conditions is satisfied:

(H) ϕ(ξj–) > ξj–L, φ(ξj) < l
ξj, j = , , . . . , [m+

 ];
(H) φ(ξj–) < l

ξj–, ϕ(ξj) > ξjL, j = , , . . . , [m+
 ].

Then the BVP (.) has at least m positive solutions u∗
i ∈ K , i = , , . . . ,m, such that

ξi < ‖u∗
i ‖ < ξi+ for λ ∈ (, (γ+[α–]qβ)[α–]q ξ]. If, in addition, f (t, ) �≡  on [, ], then the

conclusion is true for λ = .

4 Examples
Example . The fractional q-difference boundary value problem

⎧⎨
⎩
D.

.u(t) +
et

(+et ) (tan
– u + t + t sin t + ) = ,  < t < ,

u() = (D.u)() = , .(D.u)() + .(D
.u)() = λ

(.)

has a unique positive solution for any λ ∈ (, +∞).

Proof In this case, α = ., q = ., γ = ., β = ., λ > . Let

f (t,u) =
et

( + et)
(
tan– u + t + t sin t + 

)
, (t,u) ∈ [, ]× (, +∞),

and h(t) = et
(+et ) . It is easy to prove that

∣∣f (t,u) – f (t, v)
∣∣ ≤ h(t)

∣∣tan– u – tan– v
∣∣

≤ h(t)|u – v|, for (t,u), (t, v) ∈ [, ]× [, +∞).

A simple computation showed

(
γ + [α – ]qβ

)
�q(α) =

(
. + [.]. × .

)
�.(.)≈ .,

and

	 =
∫ 


sα–

(
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

) · es

( + es)
dqs

≤ 


∫ 


sα–

(
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

)
dqs

http://www.boundaryvalueproblems.com/content/2013/1/103


Zhao et al. Boundary Value Problems 2013, 2013:103 Page 14 of 16
http://www.boundaryvalueproblems.com/content/2013/1/103

≤ 


∫ 



(
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

)
dqs

≈ .,

which implies that

∫ 


sα–

(
γ ( – qs)(α–) + [α – ]qβ( – qs)(α–)

)
h(s)dqs <

(γ + [α – ]qβ)�q(α)


.

Obviously, for anym ≥ , we have

		
m–


(γ + [α – ]qβ)m[�q(α)]m
≤ .

.× m– < . <


.

Thus, Theorem . implies that the boundary value problem (.) has a unique positive
solution for any λ ∈ (, +∞). �

Example . Consider the following fractional boundary value problem:

⎧⎨
⎩
D.

.u(t) + u(  cos(π t –
π
 ) +


 ) = ,  < t < ,

u() = (D.u)() = , (D.u)() + (D
.u)() = λ,

(.)

where α = ., q = ., γ = , β = . Choosing n = , then τ = qn = ..
By calculation, we get (γ +[α–]qβ)�q(α)≈ .. By Lemma ., Lemma . andwith

the aid of a computer, we obtain that

l =
(∫ 


G(, .s)d.s

)–

≈ .,

and

L =
(
(.)α–

∫ 

.
G(, .s)d.s

)–

≈ ..

Let f (t,u) = u(  cos(π t –
π
 ) +


 ). Take ξ = 

 , ξ = , then (γ+[α–]qβ)[α–]q
 ξ ≈ ., and

f (t,u) satisfies
(i) φ(  ) =max{u(  cos(π t – π

 ) +

 ) : (t,u) ∈ [, ]× [,  ]} = 

 < l
ξ ≈ .;

(ii) ϕ() =min{u(  cos(π t – π
 ) +


 ) : (t,u) ∈ [., ]× [., ]} ≈ . > Lξ ≈

..
So, by Theorem., the problem (.) has one positive solution u∗ such that  ≤ ‖u∗‖X ≤

 for λ ∈ (, .].
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