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1 Introduction
Consider the following Navier-Stokes problem with a parameter:

∂u
∂t

–�εu + (u · ∇)u +∇ϕ = f (x, t), divu = ,x ∈G, t ∈ (,T), (.)

Lkjεu =
mkj∑
i=

εσi

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , (.)

k = , , . . . ,n, j = , ,u(x, ) = a(x), (.)

where

�εu = ε

n∑
k=

∂u
∂xk

, σi =



(
i +


q

)
, q ∈ (,∞),

G =
n∏
k=

(,bk), Gk = (x,x, . . . ,xk–, ,xk+, . . . ,xn),

Gkb = (x,x, . . . ,xk–,bk ,xk+, . . . ,xn), ≤ mkj ≤ ,

αkji, βkji are complex numbers, ε is a small positive parameter,

u =
(
u(x, t),u(x, t), . . . ,un(x, t)

)
, ϕ = ϕ(x, t)
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represent the unknown velocity and pressure, respectively,

f =
(
f(x, t), f(x, t), . . . , fn(x, t)

)

represents a given external force and a denotes the initial velocity. This problem is char-
acterized by nonlocality of boundary conditions and by presence of a small term ε which
corresponds to the inverse of Reynolds number Re very large for the Navier-Stokes equa-
tions. From both the theoretical and computational points of view, singularly perturbed
problems and asymptotic behavior of the Navier-Stokes equations with small viscosity
when the boundary is either characteristic or non-characteristic have been well studied;
see, e.g., [–]. In the present work, we established a uniform time of existence and esti-
mates for solutions of problem (.)-(.). It is clear that for ε = , choosing the boundary
conditions locally andmkj = , problem (.)-(.) is reduced to the classical Navier-Stokes
problem

∂u
∂t

–�u + (u · ∇)u +∇ϕ = f (x, t), divu = ,x ∈ �, t ∈ (,T), (.)

u |∂�= , u(x, ) = a(x).

Note that the existence of weak or strong solutions and regularity properties of classical
Navier-Stokes problems were extensively studied, e.g., in [–, , –]. There is extensive
literature on the solvability of the initial value problem for the Navier-Stokes equation (
see, e.g., [] for further papers cited there ). Hopf [] proved the existence of a global
weak solution of (.) using the Faedo-Galerkin approximation and an energy inequality.
Another approach to problem (.) is to use semigroup theory. Kato and Fujita [, , ]
and Sobolevskii [] transformed equation (.) into an evolution equation in the Hilbert
space L. They proved the existence of a unique global strong solution for any square-
summable initial velocity when n = . On the other hand, when n =  they proved the
existence of a unique local strong solution if the initial velocity has some regularity. Other
contributions in this field have also assumed some regularity of the initial velocity cor-
responding to the Stokes problem; see, for example, Solonnikov [] and Heywood [].
Afterward, Giga and Sohr [] improved this result in two directions. First, they general-
ized the result of Solonnikov for spaces with different exponents in space and time, and the
estimate obtained was global in time. Here, first at all, we consider the nonlocal (bound-
ary value problem) BVP for the following differential operator equation (DOE) with small
parameters:

–�ε u + (A + λ)u = f (x), x ∈G,

Lkjεu =
mkj∑
i=

ε
σi
k

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , (.)

k = , , . . . ,n, j = , ,

where A is a linear operator in a Banach space E, αkji, βkji are complex numbers, εk are
positive and λ is a complex parameter. We show that problem (.) has a unique solution
u ∈ W ,q(G;E(A),E) for f ∈ Wm,q(G;E) and λ ∈ Sψ ,κ with sufficiently large κ > , and the
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following coercive uniform estimate holds:

n∑
k=

m+∑
i=

ε
i

m+
k |λ|– i



∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Lq(G;E)

+ ‖Au‖Lq(G;E) ≤ C‖f ‖Wm,q(G;E), m ≥ ,

with C(q) independent of ε, ε, . . . , εn, λ and f .
Further, we consider the nonlocal BVP for the stationary Stokes system with small pa-

rameters

�εu +∇ϕ = f (x, t), divu = ,x ∈ G, t ∈ (,T),

Lkjεu =
mkj∑
i=

ε
σi
k

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , (.)

k = , , . . . ,n, j = , ,u(x, ) = ,

where

u =
(
u(x, t),u(x, t), . . . ,un(x, t)

)
, f =

(
f(x, t), f(x, t), . . . , fn(x, t)

)
.

Thenwe consider the initial nonlocal BVP for the following nonstationary Stokes equation
with small parameters:

∂u
∂t

–�εu +∇ϕ = f (x, t), divu = ,x ∈ G, t ∈ (,T),

Lkjεu =
mkj∑
i=

ε
σi
k

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , (.)

k = , , . . . ,n, j = , ,u(x, ) = .

Problem (.) can be expressed as the abstract parabolic problem with a parameter

du
dt

+Oε,qu = f (t), u() = , (.)

where Oε,q is a stationary parameter depending on the Stokes operator in a solenoidal
space Lqσ (G;Rn) defined by

D(Oε,q) =W ,q
σ (G,Lkjε) =

{
u ∈W ,q(G),divu = ,Lkjεu = ,k = , , . . . ,n, j = , 

}
,

Oε,qu = –P �ε u.

We prove that the operatorOε,q is positive in Lq(G;Rn) uniformly with respect to param-
eters ε = (ε, ε, . . . , εn) and also is a generator of a holomorphic semigroup. Then, by using
Lp-maximal regularity theorems (see, e.g., [, ]) for abstract parabolic equations (.),
we obtain that for every f ∈ Lp(,T ;Lq(�;Rn)) = B(p,q), p,q ∈ (,∞), there is a unique
solution (u,∇ϕ) of problem (.) and the following uniform estimate holds:

∥∥∥∥∂u
∂t

∥∥∥∥
B(p,q)

+
n∑
k=

∥∥∥∥εk
∂u
∂xk

∥∥∥∥
B(p,q)

+ ‖∇ϕ‖B(p,q) ≤ C‖f ‖B(p,q)
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with C = C(T ,�,p,q) independent of f and ε. Afterwords, by using the above uniform
coercive estimate, we derive local uniform existence and uniform a priori estimates of a
solution of problem (.)-(.).
Modern analysis methods, particularly abstract harmonic analysis, the operator theory,

the interpolation of Banach spaces, the theory of semigroups of linear operators, embed-
ding and trace theorems in vector-valued Sobolev-Lions spaces are the main tools imple-
mented to carry out the analysis.

2 Notations, definitions and background
Let E be a Banach space and Lp(�;E) denotes the space of strongly measurable E-valued
functions that are defined on the measurable subset � ⊂ Rn with the norm

‖f ‖Lp = ‖f ‖Lp(�;E) =
(∫

�

∥∥f (x)∥∥p
E dx

) 
p
,  ≤ p < ∞.

The Banach space E is called a UMD-space if the Hilbert operator

(Hf )(x) = lim
ε→

∫
|x–y|>ε

f (y)
x – y

dy

is bounded in Lp(R,E), p ∈ (,∞) (see, e.g., []). UMD spaces include, e.g., Lp, lp spaces
and Lorentz spaces Lpq, p,q ∈ (,∞).
Let C be the set of complex numbers and

Sψ =
{
λ ∈C, | argλ| ≤ ϕ ∪ {}, ≤ ψ < π

}
,

Sψ ,κ =
{
λ ∈ Sψ , |λ| > κ > 

}
.

A linear operator A is said to be ψ-positive in a Banach space E with bound M >  if
D(A) is dense on E and ‖(A+λI)–‖B(E) ≤ M(+ |λ|)– for any λ ∈ Sψ ,  ≤ ψ < π , where I is
the identity operator in E, B(E) is the space of bounded linear operators in E. It is known
[, §..] that there exist the fractional powers Aθ of a positive operator A. Let E(Aθ )
denote the space D(Aθ ) with the norm

‖u‖E(Aθ ) =
(‖u‖p + ∥∥Aθu

∥∥p) 
p ,  ≤ p < ∞,  < θ < ∞.

Let N denote the set of natural numbers. A set G ⊂ B(E,E) is called R-bounded
(see, e.g., []) if there is a positive constant C such that for all T,T, . . . ,Tm ∈ G and
u,u, . . . ,um ∈ E,m ∈N,

∫
�

∥∥∥∥∥
m∑
j=

rj(y)Tjuj

∥∥∥∥∥
E

dy≤ C
∫

�

∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy,

where {rj} is a sequence of independent symmetric {–, }-valued random variables on �.
The smallest C for which the above estimate holds is called an R-bound of the collection
G and denoted by R(G).
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A set Gh ⊂ B(E,E) is called uniform R-bounded if there is a constant C independent
of h ∈Q such that for all T(h),T(h), . . . ,Tm(h) ∈Gh and u,u, . . . ,um ∈ E,m ∈N,

∫
�

∥∥∥∥∥
m∑
j=

rj(y)Tj(h)uj

∥∥∥∥∥
E

dy ≤ C
∫

�

∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy,

which implies that suph∈Q R(Gh) ≤ C.
The ψ-positive operator A is said to be R-positive in a Banach space E if the set LA =

{ξ (A + ξ )– : ξ ∈ Sψ },  ≤ ψ < π , is R-bounded.
The operator A(t) is said to be ψ-positive in E uniformly in t ∈ σ with bound M >  if

D(A(t)) is independent of t, D(A(t)) is dense in E and ‖(A(t) + λ)–‖ ≤ M( + |λ|)– for all
λ ∈ Sψ ,  ≤ ψ < π , whereM does not depend on t and λ.
Let E and E be two Banach spaces, and let E be continuously and densely embedded

into E. Let � be a measurable set in Rn and m be a positive integer. Let Wm,p(�;E,E)
denote the space consisting of all functions u ∈ Lp(�;E) that have the generalized deriva-
tives ∂mu

∂xmk
∈ Lp(�;E), with the norm

‖u‖Wm,p(�;E,E) = ‖u‖Lp(�;E) +
n∑
k=

∥∥∥∥∂mu
∂xmk

∥∥∥∥
Lp(�;E)

<∞.

For n = , � = (a,b), a,b ∈ N, the space Wm,p(�;E,E) will be denoted by Wm,p(a,b;
E,E).
Sometimes we use one and the same symbol C without distinction in order to denote

positive constants which may differ from each other even in a single context. When we
want to specify the dependence of such a constant on a parameter, say α, we write Cα .

3 Boundary value problems for abstract elliptic equations
In this section, we consider problem (.). We derive the maximal regularity properties of
this problem.
It should be noted that BVPs for DOEs were studied, e.g., in [–] and [, , ,

–]. For references, see [, ]. Let αkj = αkjmk and βkj = βkjmk . First, we prove the
following theorem.

Theorem . Let the following conditions be satisfied:
() E is a UMD space and A is an R-positive operator in E for  ≤ ψ < π ;
() q ∈ (,∞), ηk = (–)mαkβk – (–)mαkβk �= ,  < tk ≤ , k = , , . . . ,n.
Then problem (.) has a unique solution u ∈ W ,q(G;E(A),E) for f ∈ Lq(G;E) and λ ∈

Sψ ,κ with sufficiently large κ > .Moreover, the following coercive uniform estimate holds:

n∑
k=

∑
j=

ε
j

k |λ|– j



∥∥∥∥ ∂ ju
∂xjk

∥∥∥∥
Lq(G;E)

+ ‖Au‖Lq(G;E) ≤ C‖f ‖Lq(G;E) (.)

with C(q) independent of ε, ε, . . . , εn, λ and f .

Proof Let us consider the BVP

–ε
∂u
∂x

– ε
∂u
∂x

+ (A + λ)u(x,x) = f (x,x), Lkjεu = , k, j = , , (.)

http://www.boundaryvalueproblems.com/content/2013/1/107
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where x,x ∈ G = (,b)× (,b), Lkjε are defined by equalities (.)-(.). For the inves-
tigation (.), we consider the following BVP for ordinary DOE:

Lu = –ε
du
dx

+ (A + λ)u(x) = f (x), y ∈ (,b), Ljεu = , (.)

where Lk are boundary conditions of type (.) on (,b). By virtue of [, Theo-
rem .], we obtain that problem (.) has a unique solution u ∈ W ,q(,b;E(A),E) for
f ∈ Lq(,b;E), λ ∈ Sψ ,κ , with sufficiently large κ > , and the following coercive uniform
estimate holds:

∑
j=

ε
j

 |λ|– j


∥∥u(j)∥∥Lq(,b;E)

+ ‖Au‖Lq(,b;E) ≤ C‖f ‖Lq(,b;E). (.)

Since Lq(,b;Lq(,b;E)) = Lq(G;E), problem (.) can be expressed as the following
problem:

–ε
du
dx

+ (Bε + λ)u(x) = f (x), Lkεu = , (.)

where Bε is the differential operator in Lq(,b;E) generated by problem (.), i.e.,

D(Bε ) =W ,q(,b;E(A),E,Lkε), Bεu = –ε
du
dx

+Au(x).

By virtue of [, Theorem ..], F = Lq(,b;E) ∈ UMD provided E ∈ UMD, q ∈ (,∞).
Hence, by virtue of [, Theorem .] and [, Theorem .], the operator Bε is uni-
formly R-positive in F . Then, by applying again [, Theorem .], we get that for f ∈
Lq(,b;F), λ ∈ Sψ ,κ and sufficiently large κ > , problem (.) has a unique solution u ∈
W ,q(,b;D(B),F), and the following coercive uniform estimate holds:

∑
j=

ε
j

 |λ|– j


∥∥u(j)∥∥Lq(,b;F)

+ ‖Bεu‖Lq(,b;F) ≤ C‖f ‖Lq(,b;F). (.)

The estimate (.) implies the uniform estimate

∑
j=

ε
j

 |λ|– j


∥∥u(j)∥∥Lq(,b;F)

≤ C
∥∥B(ε)u∥∥

Lq(,b;F)
. (.)

By using (.) and (.), we obtain that problem (.) has a unique solution u ∈ W ,q(G;
E(A),E) for f ∈ Lq(G;E), λ ∈ Sψ ,κ with sufficiently large κ > , and the coercive uniform
estimate holds

∑
k=

∑
j=

ε
j

k |λ|– j



∥∥∥∥ ∂ ju
∂xjk

∥∥∥∥
Lq(G;E)

+ ‖Au‖Lq(G;E) ≤ C‖f ‖Lq(G;E).

Further, by continuing this process n-times, we obtain the assertion.
From Theorem . we obtain the following. �

http://www.boundaryvalueproblems.com/content/2013/1/107
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Corollary . Let  < εk ≤ , (–)mkαkβk – (–)mkαkβk �= . For f ∈ Lq(G;Rn), q ∈
(,∞) and for λ ∈ Sψ ,κ with sufficiently large κ > , there is a unique solution u of problem
(.) and the following uniform coercive estimate holds:

n∑
k=

∑
i=

|λ|– i
 ε

i

k

∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
q
≤ C‖f ‖q,

with C = C(q) independent of f , εk and λ.

Proof Let us put E = Rn and A = κ >  in Theorem .. It is known that the operator A =
κ >  is R-positive in Rn (see, e.g., []). So, the estimate (.) implies Corollary ..
Consider the differential operator Qε generated by problem (.), i.e.,

D(Qε) =W ,q(G;Lkjε) =
{
u ∈ W ,q(G),Lkjεu = ,k = , , . . . ,n, j = , 

}
,

Qεu = –�ε u +Au.

From Theorem . we obtain the following. �

Result . For λ ∈ Sψ ,κ , there is a resolvent (Qε + λ)– of the operator Qε satisfying the
following uniform estimate:

n∑
k=

∑
i=

|λ|– i
 ε

i

k

∥∥∥∥ ∂ i

∂xik
(Qε + λ)–

∥∥∥∥
B(Lq(G;E))

≤ C.

It is clear that the solution u of problem (.) depends on parameters ε = (ε, ε, . . . , εn),
i.e., u = u(x, ε). In view of Theorem ., we established estimates for the solution of (.)
uniformly in ε, ε, . . . , εn.

4 Regularity properties of solutions for DOEs with parameters
In this section, we show the separability properties of problem (.) in Sobolev spaces
Wm,q(G;E). The main result is the following theorem.

Theorem . Let the following conditions be satisfied:
() E is a UMD space and A is an R-positive operator in E;
() m is a positive integer q ∈ (,∞),  < tk ≤ , and

ηk = (–)mαkβk – (–)mαkβk �= , k = , , . . . ,n.

Then problem (.)-(.) has a unique solution u ∈ W +m,q(G;E(A),E) for f ∈ Wm,q(G;
E), λ ∈ Sψ ,κ , with sufficiently large κ > , and the following coercive uniform estimate
holds:

n∑
k=

m+∑
i=

ε
i

m+
k |λ|– i

m+

∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Wm,q(G;E)

+ ‖Au‖Lq(G;E) ≤ C‖f ‖Wm,q(G;E) (.)

with C = C(q,A) independent of ε, ε, . . . , εn, λ and f .
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Consider first the following nonlocal BVP for an ordinary DOE with a small parameter:

(Lt + λ)u = –tu()(x) + (A + λ)u(x) = f (x), x ∈ (, ),

Lktu =
mk∑
i=

tσi
[
αkiu(i)() + βkiu(i)()

]
= fk , k = , , (.)

where σi = i
 +


p ,mk ∈ {,m+}, αki, βki are complex numbers, t is positive, λ is a complex

parameter and A is a linear operator in E. Let Aλ = A + λI .
To prove the main result, we need the following result in [, Theorem .].

Theorem A Let E be a UMD space, A be a ψ-positive operator in E with bound M,  ≤
ψ < π . Let m be a positive integer,  < p < ∞, and α ∈ ( 

p ,

p +m). Then, for λ ∈ Sϕ , an

operator –A


λ generates a semigroup e–xA



λ which is holomorphic for x > .Moreover, there

exists a positive constant C (depending only on M, ψ , m, α and p) such that for every u ∈
(E,E(Am)) α

m– 
mp ,p

and λ ∈ Sψ ,

∫ ∞



∥∥Aα
λe

–xA


λ u

∥∥p dx≤ C
[‖u‖p(E,E(Am)) α

m – 
mp ,p

+ |λ|αp– 
 ‖u‖pE

]
.

In a similar way as in [, §.., Theorem ], we obtain the following lemma.

Lemma . Let m and j be integer numbers,  ≤ j ≤ m – , θj = pj+
pm ,  < t ≤ , x ∈ [,b].

Then, for u ∈ Wm
p (,b;E,E), the transformation u → u(j)(x) is bounded linear from

Wm
p (,b;E,E) onto (E,E)θj ,p and the following inequality holds:

tθj
∥∥u(j)(x)∥∥(E,E)θj ,p

≤ C
(∥∥tu(m)∥∥

Lp(,b;E)
+ ‖u‖Lp(,b;E)

)
.

Consider at first the homogeneous problem of (.)

(Lt + λ)u = –tu()(x) + (A + λ)u(x) = ,

Lktu =
mk∑
i=

tσi
[
αkiu(i)() + βkiu(i)()

]
= fk , k = , . (.)

Let

Ek =
(
E(A),E

)
θk ,p

.

Lemma . Let A be an R-positive operator in a UMD space E and

 < t ≤ , η = (–)mαβ – (–)mαβ �= .

Then problem (.) has a unique solution u ∈ Wm+,p(, ;E(A),E) for fk ∈ Ek , p ∈ (,∞),
λ ∈ Sψ , and the coercive uniform estimate holds

m+∑
i=

t
i

m+ |λ|– i
m+

∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E) ≤ M
∑

k=

(‖fk‖Ek + |λ|–θk‖fk‖E
)
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/107
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Proof In a similar way as in [, Theorem.], we obtain the representation of the solution
of (.)

u(x) = t–

p

{
e–xt

– 
 A



λ
[
C + d(λ, t)

]
+ e–(–x)t

– 
 A



λ
[
C + d(λ, t)

]}
A–m


λ f

+ t–

p

{
e–xt

– 
 A



λ
[
C + d(λ, t)

]
+ e–(–x)t

– 
 A



λ
[
C + d(λ, t)

]}
A–m


λ f, (.)

where Cij and dij are uniformly bounded operators. Then, in view of positivity of A, we
obtain from (.)

m+∑
i=

t
i

m+ |λ|– i
m+

∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E)

≤ Ct–

p

∑
k=

[m+∑
i=

|λ|μi
∥∥A– (mk–i)


λ

[
e–(–x)t

– 
 A



λ + e–xt

– 
 A



λ
]
fk

∥∥
Lp(,;E)

+
∥∥AA–mk


λ e–xt

– 
 A



λ fk

∥∥
Lp(,;E)

]
≤ Ct–


p , (.)

∑
k=

[m+∑
i=

|λ|– i

∥∥A–(– mmk

(m+) +
i
 )

λ

∥∥∥∥A– mk
m+

λ e–xt
– 
 A



λ fk

∥∥
Lp(,;E)

+
∥∥AA– mk

m+
λ

[
e–xt

– 
 A



λ + e–(–x)t

– 
 A



λ
]
fk

∥∥
Lp(,;E)

]

≤ Ct–

p

∑
k=

[(∫ 



∥∥A– mk
m+

λ

[
e–xt

– 
 A



λ + e–(–x)t

– 
 A



λ
]
fk

∥∥pdx
) 

p

+
(∫ 



∥∥AA– mk
m+

λ

[
e–xt

– 
 A



λ + e–(–x)t

– 
 A



λ
]
fk

∥∥p dx
) 

p
]
. (.)

By changing the variable xt– 
 = y and in view of Theorem A, we obtain

t–

p

(∫ 



∥∥A– mk
m+

λ

[
e–xt

– 
 A



λ + e–(–x)t

– 
 A



λ
]
fk

∥∥p dx
) 

p

≤ M

∑
k=

[‖fk‖Ek + |λ|–θk‖fk‖
]
. (.)

By using the estimate (.), by virtue of Theorem A, we get the uniform estimate

∑
k=

t–

p

(∫ 



∥∥AA– mk
m+

λ

[
e–xt

– 
 A



λ + e–(–x)t

– 
 A



λ
]
fk

∥∥p dx
) 

p

≤ M

∑
k=

[‖fk‖Ek + |λ|–θk‖fk‖
]
. (.)

Then from (.)-(.) we obtain (.). �

Now we can represent a more general result for nonhomogeneous problem (.).
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Theorem . Assume that the following conditions are satisfied:
() E is a UMD space and A is an R-positive operator in E;
() η = (–)mαβ – (–)mαβ �= , θk = mk

m+ +

p , k = , ,  < t ≤ , p ∈ (,∞).

Then the operator u → {(Lt+λ)u,Ltu,Ltu} is an isomorphism fromWm+,p(, ;E(A),E)
onto Wm,p(, ;E) × E × E for λ ∈ Sψ ,κ with large enough κ > . Moreover, the uniform
coercive estimate holds

m+∑
j=

t
j

m+ |λ|– j
m+

∥∥u(j)∥∥Lp(,;E) + ‖Au‖Lp(,;E)

≤ C

[
‖f ‖Wm,p(,;E) +

∑
k=

(‖fk‖Ek + |λ|–θk‖fk‖E
)]

. (.)

Proof The uniqueness of a solution of problem (.) is obtained from Lemma .. Let us
define

f̄ (x) =

⎧⎨
⎩f (x), if x ∈ [, ],

, if x /∈ [, ].

We will show that problem (.) has a solution u ∈ Wm+,p(, ;E(A),E) for f ∈ Wm,p(, ;
E), fk ∈ Ek and u = u +u, where u is the restriction on [, ] of the solution of the equation

(Lt + λ)u = f̄ (x), x ∈ R = (–∞,∞), (.)

and u is a solution of the problem

(Lt + λ)u = , Lktu = fk – Lktu. (.)

A solution of equation (.) is given by

u(x) = F–L–(λ, t, ξ )Ff̄ =

π

∫ ∞

∞
eiξxL–(λ, t, ξ )(Ff̄ )(ξ )dξ ,

where L(λ, t, ξ ) = A + tξ  + λ. It follows from the above expression that

m+∑
j=

t
j

m+ |λ|– j
m+

∥∥u(j)∥∥Lp(R;E) + ‖Au‖Lp(R;E)

=
m+∑
j=

t
j

m+ |λ|– j
m+

∥∥F–ξ jL–(λ, t, ξ )Ff̄
∥∥
Lp(R;E) +

∥∥F–AL–(λ, t, ξ )Ff̄
∥∥
Lp(R;E). (.)

It is sufficient to show that the operator-functions

�tλ(ξ ) = AL–(λ, t, ξ )
(
 + ξm)–,

σtλ(ξ ) =
m+∑
j=

t
j

m+ |λ|– j
m+ ξ jL–(λ, t, ξ )

(
 + ξm)–

http://www.boundaryvalueproblems.com/content/2013/1/107
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are uniform Fourier multipliers in Lp(R;E). Actually, due to the positivity of A, we have

∥∥L–(λ, t, iξ )∥∥ ≤ M
(
 + tξ  + |λ|)–, (.)∥∥�t,λ(ξ )

∥∥ =
∥∥A[

A + λ + tξ ]–∥∥ ≤ C.

It is clear to observe that

ξ
d
dξ

�tλ(ξ ) = –tξ AL–(λ, t, ξ ) =
[
–tξ L–(λ, t, ξ )

]
AL–(λ, t, ξ ).

Due to R-positivity of the operator A, the sets

{
–tξ [A + tξ  + λ

]–}, {
A

[
A + tξ  + λ

]–}, ξ ∈R\{}

are R-bounded. Then, in view of the Kahane contraction principle, from the product prop-
erties of the collection of R-bounded operators (see, e.g., [] Lemma ., Proposition .),
we obtain

R
{
ξ i di

dξ i �tλ(ξ ) : ξ ∈ R\{}
}

≤ C,

R
{
ξ i di

dξ i σtλ(ξ ) : ξ ∈R\{}
}

≤ C, i = , .
(.)

By [, Theorem .] it follows that �t,λ(ξ ) and σtλ(ξ ) are the uniform collection of mul-
tipliers in Lp(R;E). Then in view of (.) we obtain that problem (.) has a solution
u ∈ Wm+,p(R;E(A),E) and the uniform coercive estimate holds

m+∑
j=

t
j

m+ |λ|– j
m+

∥∥u(j)∥∥Lp(R;E) + ‖Au‖Lp(R;E) ≤ C‖f̄ ‖Lp(R;E). (.)

Let u be the restriction of u on (, ). The estimate (.) implies that u ∈ Wm+,p(, ;
E(A),E). By virtue of Lemma ., we get

u(mk )
 (·) ∈ (

E(A);E
)
θk ,p

, k = , .

Hence, Lktu ∈ Ek . Thus, by virtue of Lemma ., problem (.) has a unique solution
u(x) that belongs to the spaceWm+,p(, ;E(A),E) and

m+∑
j=

t
j

m+ |λ|– j
m+

∥∥u(j) ∥∥
Lp(,;E) + ‖Au‖Lp(,;E)

≤ C
∑

k=

[‖fk‖Ek + |λ|–θk‖fk‖E + tθk
∥∥u(mk )


∥∥
C([,];Ek )

+ tθk |λ|–θk‖u‖C([,];E)
]
. (.)

Moreover, from (.) we obtain

m+∑
j=

t
j

m+ |λ|– j
m+

∥∥u(j) ∥∥
Lp(,;E) + ‖Au‖Lp(,;E) ≤ C‖f ‖Wm,p(,;E). (.)

http://www.boundaryvalueproblems.com/content/2013/1/107


Shakhmurov Boundary Value Problems 2013, 2013:107 Page 12 of 19
http://www.boundaryvalueproblems.com/content/2013/1/107

Therefore, by Lemma . and by estimate (.), we obtain

tθk
∥∥u(mk )

 (·)∥∥Ek
≤ C‖u‖Wm+,p

t (,;E(A),E) ≤ C‖f ‖Wm,p(,;E). (.)

So, in view of Lemma . and estimates (.)-(.), we get

m+∑
j=

t
j

m+ |λ|– j
m+

∥∥u(j) ∥∥
Lp(,;E) + ‖Au‖Lp(,;E)

≤ C

(
‖f ‖Lp(,;E) +

∑
k=

(‖fk‖Ek + |λ|–θk‖fk‖E
))

. (.)

Finally, from (.) and (.) we obtain (.). �

Now, we can prove the main result of this section.

Proof of Theorem . Let G = (,b)× (,b). It is clear to see that

Wm,q(G;E) =Wm,q(,b;X,X) =Wm,q(,b;X)∩ Lq(,b;X),

where X =Wm,q(,b;E) and X = Lq(,b;E).
Let us consider the BVP

–ε
∂u
∂x

– ε
∂u
∂x

+ (A + λ)u(x,x) = f (x,x), Lkjεu = , k, j = , , (.)

where Lkjε are defined by equalities (.). Problem (.) can be expressed as the following
BVP for an ordinary DOE:

Lu = –ε
du
dx

+ (Bε + λ)u(x) = f (x), x ∈ (,b), Lkεu = , (.)

where Lkε are boundary conditions of type (.), Bε is the operator acting in X and X
defined by

Bεu = –ε
du
dx

+Au(x), D(Bε ) =Wm+,q(,b;E(A),E,Lkε),
W ,q(,b;E(A),E,Lkε).

Since X and X are UMD spaces, (see, e.g., [, Theorem ..]) by virtue of Theorem .,
we obtain that problem (.) has a unique solution u ∈ Wm+,q(,b;D(Bε ),X) for f ∈
Wm,q(,b;X) and λ ∈ Sψ ,κ with sufficiently large κ > . Moreover, the coercive uniform
estimates holds

m+∑
i=

ε
i

m+
 |λ|– i

m+
∥∥u(i)∥∥Lq(,b;X)

+ ‖Bεu‖Lq(,b;X) ≤ C‖f ‖Wm,q(,b;X),

∑
i=

ε
i

 |λ|– i


∥∥u(i)∥∥Lq(,b;X)

+ ‖Bεu‖Lq(,b;X) ≤ C‖f ‖Lq(,b;X).
(.)

http://www.boundaryvalueproblems.com/content/2013/1/107
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From (.) we obtain that problem (.) has a unique solution

u ∈Wm+,q(G;E(A),E
)

forWm,q(G;E).

Moreover, the uniform coercive estimates hold

m+∑
i=

ε
i

m+
 |λ|– i

m+
∥∥u(i)∥∥Lq(,b;X)

+ ‖Bεu‖Lq(,b;X) ≤ C‖f ‖Wm,q(G;E). (.)

By applying Theorem . for fk =  and E = X, we get the following uniform estimate:

m+∑
j=

ε
i

m+
 |λ|– i

m+
∥∥u(i)∥∥X + ‖Au‖X ≤ C‖Bεu‖Wm,q(,b;E). (.)

From estimates (.)-(.) we conclude the corresponding claim for problem (.).
Then, by continuing this process n-times, we obtain the assertion. �

5 Nonlocal initial-boundary value problems for the Stokes systemwith small
parameters

In this section, we show the uniform maximal regularity properties of the nonlocal initial
value problem for nonstationary Stokes equations (.).
The function u ∈ W ,q

σ (G,Lkjε) = {u ∈ W ,q(G;Rn),Lkjεu = ,divu = } satisfying equa-
tion (.) a.e. on G is called the stronger solution of problem (.).
Let Ws,q(G),  < s < ∞ be the Sobolev space of order s such that W ,q(G) = Lq(G). For

q ∈ (,∞), let Xq = Lqσ (G) denote the closure of C∞
σ (G) in Lp(G;Rn), where

C∞
σ (G) =

{
u ∈ C∞

 (G),divu = 
}
.

It is known that ( see, e.g., Fujiwara and Morimoto []) a vector field u ∈ Lq(G;Rn) has
the Helmholtz decomposition, i.e., all u ∈ Lq(G;Rn) can be uniquely decomposed as u =
u + ∇ϕ with u ∈ Lqσ (G), u = Pqu, where Pq = P is a projection operator from Lq(G;Rn)
to Lqσ (G) and ϕ ∈ Lqloc(Ḡ), ∇ϕ ∈ Lq(G;Rn), so that

‖∇ϕ‖q ≤ C‖u‖q, ‖ϕ‖Lq(G∩B) ≤ C‖u‖q

with C independent of u, where B is an open ball in Rn and ‖u‖p denotes the norm of u in
Lq(G;Rn) or Lq(G).
Then problem (.) can be reduced to the following BVP:

–P �ε u + λu = f (x), x ∈G,

Lkjεu =
mkj∑
i=

ε
σik
k

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , (.)

k = , , . . . ,n, j = , .

http://www.boundaryvalueproblems.com/content/2013/1/107
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Consider the parameter-dependent Stokes operatorOε = Oε,q generated by problem (.),
i.e.,

D(Oε) =
(
W ,q

σ (G;Lkj)
)n, Oεu = –P �ε u.

From Corollary . we get that the operator Oε is positive and also is a generator of a
bounded holomorphic semigroup Sε(t) = exp(–Oεt) for t > .
In a similar way as in [], we show the following.

Proposition . The following estimate holds:

∥∥Oα
ε Sε(t)

∥∥ ≤ Ct–α

uniformly in ε = (ε, ε, . . . , εn) for α ≥  and t > .

Proof From Result . we obtain that the operator Oε is uniformly positive in Lq(G;Rn),
i.e., for λ ∈ Sψ ,κ ,  < ψ < π , the following estimate holds:

∥∥(Oε + λ)–
∥∥ ≤ M

|λ| ,

where the constantM is independent of λ and ε. Then, by using the Danford integral and
operator calculus as in [], we obtain the assertion. �

Now consider problem (.). The main theorem in this section is the following.

Theorem . Let  < εk ≤ , (–)mkαkβk – (–)mkαkβk �=  and p,q ∈ (,∞). Then
there is a unique solution (u,∇ϕ) of problem (.) for f ∈ Lp(,T ;Lq(G;Rn)) = B(p,q) and

a ∈ B
– 

p
p,q .Moreover, the following uniform estimate holds:

∥∥∥∥∂u
∂t

∥∥∥∥
B(p,q)

+
n∑
k=

∥∥∥∥εk
∂u
∂xk

∥∥∥∥
B(p,q)

+ ‖∇ϕ‖B(p,q) ≤ C‖f ‖B(p,q) + ‖a‖
B
– 

p
p,q (G)

(.)

with C = C(T ,G,p,q) independent of f and ε.

Proof Problem (.) can be expressed as the following abstract parabolic problem with a
small parameter:

du
dt

+Oεu = f (t), u() = a. (.)

If we put E = Lq(G;Rn) and A = κ >  in Theorem ., then the Result . implies that
the operator Oε is uniformly positive and generates bounded holomorphic semigroup
in Lq(G;Rn) uniformly in εk . Moreover, by using [, Theorem .] we get that opera-
tor Oε is R-positive in E. Since E is a UMD space, in a similar way as in [, Theo-
rem .], we obtain that for f ∈ Lp(,T ;E) and a ∈ (D(Oε),E) p ,p, there is a unique solution
u ∈ W ,p(,T ,D(Oε),E) of problem (.) so that the following uniform estimate holds:

∥∥∥∥dudt
∥∥∥∥
Lp(,T ;E)

+ ‖Oεu‖Lp(,T ;E) ≤ C
(‖f ‖Lp(,T ;E) + ‖a‖(D(Aε),E) 

p ,p

)
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/107
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From (.) for all u ∈W ,q
σ (G,Lkjε), we get the following estimate:

n∑
k=

εk

∥∥∥∥∂u
∂xk

∥∥∥∥
q
≤ C‖Aεu‖q

uniformly in ε = (ε, ε, . . . , εn). �

6 Existence and uniqueness for the Navier-Stokes equation with parameters
In this section, we study the Navier-Stokes problem (.)-(.) in the space Xq. Problem
(.)-(.) can be expressed as

du
dt

+Oεu = Fu + Pf , u() = , t > , (.)

where

Fu = –P(u,∇)u.

We consider equation (.) in an integral form

u(t) = Sε(t)a +
∫ t


Sε(t – s)

[
Fu(s) + Pf (s)

]
ds, t > . (.)

To prove the main result, we need the following result which are obtained in a similar
way as in [, Theorem ].

Lemma . For any  ≤ α ≤ , the domain D(Oα
ε ) is the complex interpolation space

[Xq,D(Oε)]α .

Lemma . For each k = , , . . . ,n, the operator u → O– 


ε P( ∂
∂xk

)u extends uniquely to a
uniformly bounded linear operator from Lq(G;Rn) to Xq.

Proof Since Oε is a positive operator, it has fractional powers Oα
ε . From Lemma ., it

follows that the domainD(Oα
ε ) is continuously embedded in Xq ∩Hα

q (G;Rn) for any α > ,
where Hα

q (G;Rn) is the vector-valued Bessel space. Then, by using the duality argument

and due to uniform positivity of O


ε , we obtain the following uniformly in ε estimate:

∥∥∥∥O– 


ε P
(

∂

∂xk

)
u
∥∥∥∥
Lq(G;Rn)

≤ C‖u‖Xq . (.)

By reasoning as in [], we obtain the following. �

Lemma . Let  ≤ δ < 
 +

n
 ( –


q ). Then the following estimate holds:

∥∥εO–δ
ε P(u,∇)υ

∥∥
q ≤ M

∥∥Oθ
εu

∥∥
q

∥∥Oσ
ε u

∥∥
q

uniformly in ε with some constant M =M(δ, θ ,q,σ ) provided that θ > , σ > , σ + δ > 


and

θ + σ + δ >
n
q

+


.
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Proof Assume that  < ν < n
 ( –


q ). Since D(Oα

ε ) is continuously embedded in Xq ∩
Hα

q (G;Rn), and since Lq′ (G;Rn) ∩ Xq′ is the same as Xs′ , by the Sobolev embedding theo-
rem, we obtain that the operator

O–ν
ε,q′ : Xq′ →D

(
Oν

ε,q′
) → Xs′

is bounded, where


s′
=


q′ –

ν
n
,


q
+


q′ = .

By the duality argument then, we get that the operator u → O–ν
ε,q is bounded from Xs to

Xq, where


s
=  –


s′
=

q
+
ν
n
.

Consider first the case δ > 
 . Since P(u,∇)υ is bilinear in u, υ , it suffices to prove the

estimate on a dense subspace. Therefore, assume that u and υ are smooth. Since divu = ,
we get

(u,∇)υ =
n∑
k=

∂

∂xk
(ukυ).

Taking ν = δ – 
 , using the uniform boundedness of O–ν

ε,q from Xs to Xq and Lemma .
for all ε > , we obtain

∥∥εO–δ
ε P(u,∇)υ

∥∥
q =

∥∥∥∥∥εO

 –ν
ε,q

n∑
k=

P
∂

∂xk
(ukυ)

∥∥∥∥∥
q

≤ ∥∥|u||υ|∥∥s.

By assumption we can take r and η such that


r

≥ 
q
–
θ
n
,


η

≥ 
q
–
σ
n
,


r
+

η
=

s
, r > ,η <∞.

Since D(Oα
ε,q) is continuously embedded in Xq ∩Hα

q (G;Rn), by the Sobolev embedding,
we get

∥∥|u||υ|∥∥s ≤ ‖u‖r‖υ‖η ≤ M
∥∥Oθ

ε,qu
∥∥
r

∥∥Oσ
ε,qυ

∥∥
η
,

i.e., we have the required result for δ > 
 . In particular, we get the following uniform esti-

mate:

∥∥εO– 


ε P(u,∇)υ
∥∥
q ≤M

∥∥Oθ
ε,qu

∥∥
r

∥∥Oσ
ε,qυ

∥∥
η
, θ + β ≥ n

q
, β > .

Similarly, we obtain

∥∥εP(u,∇)υ
∥∥
q ≤ C‖u‖r‖υ‖η ≤ C

∥∥Oθ
ε,qu

∥∥
r

∥∥Oβ+ 


ε,q υ
∥∥

η
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for 
r +


η
= 

q and δ = . The above two estimates show that the map υ → P(u,∇)υ is

a uniform bounded operator from D(Oβ
ε ) to D(O– 


ε ) and from D(Oβ+ 


ε ) to Xq. By using

Lemma . and the interpolation of Banach spaces [, §..] for ≤ δ ≤ 
 , we obtain

∥∥εP(u,∇)υ
∥∥
q ≤ C

∥∥Oθ
ε,qu

∥∥
r

∥∥Oσ
ε,qυ

∥∥
η
.

By using Lemma . and the iteration argument, by reasoning as in Fujita and Kato [],
we obtain the following. �

Theorem . Let  < εk ≤ , (–)mkαkβk – (–)mkαkβk �= . Let γ <  be a real number
and δ ≥  such that

n
q

–



≤ γ , –γ < δ <  – |γ |.

Suppose that a ∈D(Oγ
ε ), and that ‖O–δ

ε Pf (t)‖ is continuous on (,T) and satisfies

∥∥O–δ
ε Pf (t)

∥∥ = o
(
tγ+δ–) as t → .

Then there is T∗ ∈ (,T) independent of ε and a local solution of (.) such that
() u ∈ C([,T∗];D(Oγ

ε )), u() = a;
() u ∈ C((T∗];D(Oα

ε )) for some T∗ > ;
() ‖Oα

εu(t)‖ = o(tγ–α) as t →  for all α with γ < α <  – δ uniformly with respect to the
parameter ε.

Moreover, the solution of (.) is unique if
() u ∈ C((T∗];D(Oβ

ε ));
() ‖Oα

εu(t)‖ = o(tγ–β) as t →  for some β with β > |γ | uniformly in ε.

Proof We introduce the following iteration scheme:

u(t) = Sε(t)a +
∫ t


Sε(t – s)Pf (s)ds, (.)

um+(t) = u(t) +
∫ t


Sε(t – s)Fum(s)ds, m ≥ .

By estimating the term u(t) in (.) and by using Proposition . for γ ≤ α <  – δ, we
get

∥∥Oα
εu(t)

∥∥ ≤ ∥∥Oα
ε Sε(t)a

∥∥ +
∫ t



∥∥Oα+δ
ε Sε(t – s)

∥∥∥∥O–δ
ε Pf (s)

∥∥ds
≤ ∥∥Oα

ε Sε(t)a
∥∥ +Cα+δ

∫ t



∥∥(t – s)
∥∥–(α+δ)∥∥O–δ

ε Pf (s)
∥∥ds≤ Mαtγ–α

uniformly in ε with

Mα = sup
<t≤T ,ε>

tα–γ
∥∥Oα+δ

ε Sε(t)a
∥∥ +Cα+δNB( – δ – α,γ + α),
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where N = sup<t≤T t–γ–δ‖O–δ
ε Pf (t)‖ and B(a,b) is the beta function. Here we suppose

γ + δ > . By induction assume that um(t) satisfies the following estimate:

∥∥Oα
εum(t)

∥∥ ≤ Mαmtγ–α , γ ≤ α <  – δ. (.)

Wewill estimateOα
εum+(t) by using (.). To estimate the term ‖O–δ

ε Fum(s)‖, we suppose

θ + σ + δ =  + γ , γ < θ <  – δ,γ < σ <  – δ, θ > ,σ > , δ + σ >


,

so that the numbers θ , σ , δ satisfy the assumptions of Lemma .. Using Lemma . and
(.), we get the following uniform estimate:

∥∥O–δ
ε Fum(s)

∥∥ ≤ CMθmMσmsγ+δ–.

Therefore, we obtain

∥∥Oα
εum(t)

∥∥ ≤ Mαtγ–α +Mα+δ

∫ t



∥∥(t – s)
∥∥–(α+δ)∥∥O–δ

ε Fum(s)
∥∥ds

≤ Mαm+tγ–α

with

Mαm+ =Mα +Mα+δMB( – δ – α,γ + δ)MθmMσm.

Since we get the uniform estimates with respect to the parameter ε, the remaining part
of the proof is the same as in [, Theorem .], so this part is omitted. �
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