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Abstract
In this paper, we are concerned with the following fractional equation:

CDα
0+u(t) = f (t,u(t),u′(t)), t ∈ (0, 1)

with the boundary value conditions

u(1) = u′(1) = 0, δu′′(0) = u′′(1), γ u′′′(0) = u′′′(1),

where CDα
0+ is the standard Caputo derivative with 3 < α ≤ 4 and δ, γ are constants

with δ > 1, γ > 1. By applying a new fixed point theorem on cone and Krasnoselskii’s
fixed point theorem, some existence results of positive solution are obtained.
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1 Introduction
In this paper, we are concerned with the existence of positive solutions for the fractional
equation

CDα
+u(t) = f

(
t,u(t),u′(t)

)
, t ∈ (, ) (.)

with the boundary value conditions

u() = u′() = , δu′′() = u′′(), γu′′′() = u′′′(), (.)

where CDα
+ is the standard Caputo derivative with  < α ≤  and δ, γ are constants with

δ > , γ > .
Differential equations of fractional order have recently proved to be valuable tools in

the modeling of many phenomena in various fields of science and engineering. Indeed, we
can findnumerous applications in viscoelasticity, electrochemistry, control, porousmedia,
electromagnetism, etc. (see [–]). There has been a significant development in the study
of fractional differential equations and inclusions in recent years, see the monographs of
Podlubny [], Kilbas et al. [], Lakshmikantham et al. [], Samko et al. [], Diethelm [],
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and the survey by Agarwal et al. []. For some recent contributions on fractional differ-
ential equations, see [–] and the references therein.
On the other hand, it is well known that the fourth-order boundary value problem de-

scribes the deformations of an elastic beam in equilibrium state. Owing to its importance
in physics, the existence of solutions to this problem has been studied by many authors;
see, for example, [–] and references therein. Recently, there have been a few papers
dealing with the existence of solutions for fractional equations of order α ∈ (, ].
In [], Xu et al. discussed the problem

Dα
+u(t) = f

(
t,u(t)

)
, t ∈ (, ),u() = u′() = u() = u′() = ,

where  < α ≤  and f ∈ C([, ] × (,∞)) is nonnegative, Dα
+ is the Riemann-Liouville

fractional derivative of order α. The existence results of positive solutions are obtained by
applying the Leray-Schauder nonlinear alternative theorem.
In [], Liang and Zhang studied the following nonlinear fractional boundary value

problem:

Dα
+u(t) = f

(
t,u(t)

)
, t ∈ (, ),u() = u′() = u′′() = u′′() = ,

where  < α ≤ , f (t,u) ∈ C([, ]× [,∞), [,∞)) is nondecreasing relative to u,Dα
+ is the

Riemann-Liouville fractional derivative of order α. By means of the lower and upper solu-
tion method and fixed point theorems, some results on the existence of positive solutions
were obtained.
In [], Agarwal andAhmad studied the solvability of the following anti-periodic bound-

ary value problem for a nonlinear fractional differential equation:

⎧⎪⎨
⎪⎩
Dα

+u(t) = f (t,u(t)), t ∈ (,T),
u() + u(T) = , u′() + u′(T) = ,
u′′() + u′′(T) = , u′′′() + u′′′(T) = ,

where  < α ≤ . The existence results were obtained by the nonlinear alternative theorem.
Inspired by above work, the author will be concerned with the boundary value prob-

lem (BVP for short in the sequel) (.)-(.). To the best of our knowledge, no contribution
exists concerning the existence of solutions for BVP (.)-(.). In the present paper, by ap-
plying a new fixed point theorem on cone and Krasnoselskii’s fixed point theorem, some
existence results of positive solution for BVP (.)-(.) are obtained. It is worth to point
out that the results in this paper are also new even for α =  relative to the correspond-
ing literature with regard to the fourth-order boundary value problem. In addition, the
conditions imposed in this paper are easily verified.
The organization of this paper is as follows. In Section , we present some necessary

definitions and preliminary results that will be used to prove ourmain results. In Section ,
we put forward and prove our main results. Finally, we give two examples to demonstrate
our main results.

2 Preliminaries
In this section, we introduce some preliminary facts which are useful throughout this pa-
per.

http://www.boundaryvalueproblems.com/content/2013/1/109


Chai Boundary Value Problems 2013, 2013:109 Page 3 of 19
http://www.boundaryvalueproblems.com/content/2013/1/109

Let N be the set of positive integers, R be the set of real numbers, R+ = [,+∞), and
R– = (–∞, ]. Let I = [, ]. Denote by C(I,R) the Banach space endowed with the norm
‖u‖ = ‖u‖ + ‖u′‖, where ‖u‖ =maxt∈I |u(t)| for u ∈ C(I,R).

Definition . [] The Riemann-Liouville fractional integral of order α >  of a function
y : (a,b]→ R is given by

Iαa+y(t) =


�(α)

∫ t


(t – s)α–y(s)ds, t ∈ (a,b].

Definition . [] The Riemann-Liouville fractional derivative of order α >  of a func-
tion y : (a,b]→R is given by

Dα
a+y(t) =


�(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+

ds, t ∈ (a,b],

where n = [α] + , [α] denotes the integer part of α.

Definition . [] The Caputo fractional derivative of order α >  of a function y on (a,b]
is defined via the above Riemann-Liouville derivatives by

(CDα
a+y

)
(x) =

(
Dα

a+

[
y(t) –

n–∑
k=

y(k)(a)
k!

(t – a)k
])

(x), x ∈ (a,b].

Lemma . [] Let α >  and y ∈ C[a,b]. Then

(CDα
a+I

α
a+y

)
(x) = y(x)

holds on [a,b].

Lemma . [] Let n ∈ N with n≥ , α ∈ (n – ,n]. If y ∈ Cn–[a,b] and CDα
a+y ∈ C(a,b),

then

Iαa+
CDα

a+y(t) = y(t) –
n–∑
k=

y(k)(a)
k!

(t – a)k

holds on (a,b).

For convenience, we first list somehypotheseswhichwill be used throughout this paper.

(H) f ∈ C(I ×R+ ×R–,R+).
(H)  < α ≤ , γ > , δ > .

For h ∈ C[, ], consider the following BVP:

CDα
+u(t) = h(t), t ∈ (, ), (.)

u() = u′() = , δu′′() = u′′(), γu′′′() = u′′′(). (.)

We have the following lemma, which is important in this paper.

http://www.boundaryvalueproblems.com/content/2013/1/109
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Lemma . Let (H) hold. Then u ∈ C[, ] is a solution of BVP (.)-(.) iff u ∈ C[, ]
has the expression as follows:

u(t) =
∫ 


G(t, s)h(s)ds, t ∈ I, (.)

where

G(t, s) =

{
G(t, s),  ≤ s≤ t < ,
G(t, s),  ≤ t ≤ s < ,

(.)

and

G(t, s) =
[(t – s)α– – ( – s)α–]

�(α)
+
( – t)( – s)α–

�(α – )

+
( – t)( – s)α–

(δ – )�(α – )
+
( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–, (.)

G(t, s) = –
( – s)α–

�(α)
+
( – t)( – s)α–

�(α – )
+
( – t)( – s)α–

(δ – )�(α – )

+
( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–. (.)

Proof Let u ∈ C[, ] be a solution of (.)-(.). Then by Lemma ., we have

u(t) = c + ct + ct + ct + Iα+h(t), t ∈ I, (.)

and so

u′(t) = c + ct + ct + Iα–+ h(t), t ∈ I,

u′′(t) = c + ct + Iα–+ h(t), t ∈ I,

u′′′(t) = c + Iα–+ h(t), t ∈ I.

Thus, by the boundary value condition (.), we can obtain

c + c + c + c + Iα+h() = , (.)

c + c + c + Iα–+ h() = , (.)

( – δ)c + c + Iα–+ h() = , (.)

( – γ )c + Iα–+ h() = . (.)

From (.), we have

c =


(γ – )
Iα–+ h(). (.)

Substituting (.) into (.), we get

c =


(γ – )(δ – )
Iα–+ h() +


(δ – )

Iα–+ h(). (.)

http://www.boundaryvalueproblems.com/content/2013/1/109
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So, by (.), (.), and (.), we have

c = –
 + δ

(γ – )(δ – )
Iα–+ h() –


δ – 

Iα–+ h() – Iα–+ h(). (.)

Thus, from (.), we have

c =
 + δ

(γ – )(δ – )
Iα–+ h() +


(δ – )

Iα–+ h() + Iα–+ h() – Iα+h(). (.)

Hence, from (.) together with (.)-(.), it follows that

u(t) = c + ct + ct + ct + Iα+h(t)

= –Iα+h() + ( – t)Iα–+ h() +


(δ – )
( – t)Iα–+ h()

+
[(δ + ) – ( + δ)t + t + (δ – )t]

(γ – )(δ – )
Iα–+ h() + Iα+h(t). (.)

Noticing that

(δ + ) – ( + δ)t + t + (δ – )t = ( – t)
[
 + δ + (δ – )t

]
,

by Definition ., we have

u(t) =
∫ t



[
(t – s)α– – ( – s)α–

�(α)
+
( – t)( – s)α–

�(α – )
+
( – t)( – s)α–

(δ – )�(α – )

+
( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–
]
h(s)ds

+
∫ 

t

[
–
( – s)α–

�(α)
+
( – t)( – s)α–

�(α – )
+
( – t)( – s)α–

(δ – )�(α – )

+
( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–
]
h(s)ds

=
∫ 


G(t, s)h(s)ds, t ∈ I.

Conversely, if u has the expression (.), then from the fact that h ∈ C[, ], we can easily
verify that

u′(t) =
∫ t



[
(t – s)α– – ( – s)α–

�(α – )
+
(t – )( – s)α–

(δ – )�(α – )
+

(t – )[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

]
h(s)ds

+
∫ 

t

[
–
( – s)α–

�(α – )
+
(t – )( – s)α–

(δ – )�(α – )
+

(t – )[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

]
h(s)ds, (.)

u′′(t) =
∫ t



[
(t – s)α–

�(α – )
+

( – s)α–

(δ – )�(α – )
+

 + (δ – )t
(γ – )(δ – )�(α – )

]
h(s)ds

+
∫ 

t

[
( – s)α–

(δ – )�(α – )
+

 + (δ – )t
(γ – )(δ – )�(α – )

]
h(s)ds, (.)

http://www.boundaryvalueproblems.com/content/2013/1/109
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u′′′(t) =
∫ t



[
(t – s)α–

�(α – )
+


(γ – )�(α – )

]
h(s)ds +

∫ 

t


(γ – )�(α – )

h(s)ds (.)

hold for t ∈ I , and u satisfies the boundary condition (.).
Again, from (.) and Lemma ., we have that CDα

+x(t) = h(t), t ∈ (, ). In addition,
noting that h ∈ C[, ], it is easy to see that x ∈ C[, ] from (.). �

For the forthcoming analysis, we need to introduce some new notations.
Let η =min{ α–

(α–) ,
(+δ)
δ }, and η =min{ (α–)

(α+δ–) ,
+δ
δ }. Denote

w(s) =
( – s)α–

�(α – )
+

( – s)α–

(δ – )�(α – )
+

δ( – s)α–

(γ – )(δ – )�(α – )
, s ∈ [, ),

w(s) =
(α + δ – )( – s)α–

(α – )(δ – )�(α – )
+

δ( – s)α–

(γ – )(δ – )�(α – )
, s ∈ [, ).

It is easy to verify that η,η ∈ (, ), and w,w ∈ C([, ), (, +∞)) noting that  < α ≤ ,
γ > , δ > .
We also need the following lemma, which will play an important role in obtaining our

main results in Section .

Lemma . Under the assumption (H), Green’s function G(t, s) has the following proper-
ties:

() G is continuous on [, )× [, );
() G(t, s) > , t, s ∈ [, ); Gt(t, s) < , t, s ∈ [, ), s 	= t;
() G(t, s)≤ w(s), t, s ∈ [, ); G(t, s)≥ ηw(s), t ∈ [  ,


 ], s ∈ [, );

 < –Gt(t, s)≤ w(s), t, s ∈ [, ), s 	= t; –Gt(t, s)≥ ηw(s), t ∈ [  ,

 ], s ∈ [, ), s 	= t.

Proof () Observing the expression of Green’s function given by (.)-(.), the conclusion
() of Lemma . is obvious.
() We first show that Gt(t, s) < , t, s ∈ [, ), s 	= t.
In fact, if  ≤ s < t < , then by (.) we have

∂G

∂t
=
[(t – s)α– – ( – s)α–]

�(α – )
–
( – t)( – s)α–

(δ – )�(α – )

–
( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–. (.)

Owing to the fact that  < α ≤  and  ≤ s < t < , we have that (t – s)α– < ( – s)α–.
Thus, we immediately obtain that ∂G

∂t <  for  ≤ s < t <  from (.) together with the
condition δ > , γ > .
Similarly, we can deduce that

∂G

∂t
= –

( – s)α–

�(α – )
–
( – t)( – s)α–

(δ – )�(α – )
–

( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α– (.)

for  ≤ t < s < , and so ∂G
∂t <  for  ≤ t < s < .

To summarize, ∂G
∂t <  for all s, t ∈ [, ) with s 	= t.

http://www.boundaryvalueproblems.com/content/2013/1/109
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Now, since G(, s) = G(, s) =  for  ≤ s < , and ∂G
∂t <  for t, s ∈ [, ) with t 	= s, it

follows that G(t, s) >  for all t, s ∈ [, ).
() The proof is divided into four steps.
Step . We show that G(t, s)≤ w(s) for t, s ∈ [, ).
(i) If  ≤ s ≤ t < , then by (.) and the assumption that  < α ≤ , γ > , and δ > , we

have

G(t, s) ≤ ( – t)( – s)α–

�(α – )
+
( – t)( – s)α–

(δ – )�(α – )
+
( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–

<
( – s)α–

�(α – )
+

( – s)α–

(δ – )�(α – )
+

δ( – s)α–

(γ – )(δ – )�(α – )
�= w(s). (.)

(ii) If  ≤ t ≤ s < , then by an argument similar to (.), we have

G(t, s)≤ w(s).

Summing up the above analysis (i)-(ii), we obtain

G(t, s)≤ w(s) for t, s ∈ [, ).

Step . We show that G(t, s) ≥ ηw(s) for t ∈ [  ,

 ] and s ∈ [, ).

In fact, if  ≤ s ≤ t and t ∈ [  ,

 ], then by (.) combined with the assumption that

 < α ≤ , γ > , δ > , we have

G(t, s) ≥ –
( – s)α–

�(α)
+
( – t)( – s)α–

�(α – )
+
( – t)( – s)α–

(δ – )�(α – )

+
( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–

≥ –
( – s)α–

�(α)
+
( – s)α–

�(α – )
+

( – s)α–

(δ – )�(α – )
+

( + δ)( – s)α–

(γ – )(δ – )�(α – )

=
(α – )
(α – )

· ( – s)α–

�(α – )
+



· ( – s)α–

(δ – )�(α – )

+
( + δ)

δ
· δ( – s)α–

(γ – )(δ – )�(α – )
≥ ηw(s), (.)

where η =min{ α–
(α–) ,


 ,

(+δ)
δ } =min{ α–

(α–) ,
(+δ)
δ }, because α–

(α–) <

 .

If t ∈ [  ,

 ] with t ≤ s < , then by an argument similar to (.), we have

G(t, s)≥ ηw(s). (.)

So, by (.)-(.), we have
G(t, s) ≥ ηw(s) for s ∈ [, ), and t ∈ [  ,


 ].

Step . Now, we show that

 < –
∂G(t, s)

∂t
≤ w(s) for s, t ∈ [, ), s 	= t.

http://www.boundaryvalueproblems.com/content/2013/1/109
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(i) If  ≤ s < t < , then by (.) and keeping in mind that  < α ≤ , γ > , δ > , it
follows that

–
∂G

∂t
= –

(t – s)α–

�(α – )
+
( – s)α–

�(α – )
+
( – t)( – s)α–

(δ – )�(α – )

+
( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–

≤ ( – s)α–

�(α – )
+

( – s)α–

(δ – )�(α – )
+

δ( – s)α–

(γ – )(δ – )�(α – )

≤ ( – s)α–

�(α – )
+

( – s)α–

(δ – )�(α – )
+

δ( – s)α–

(γ – )(δ – )�(α – )

=
(α + δ – )( – s)α–

(α – )(δ – )�(α – )
+

δ( – s)α–

(γ – )(δ – )�(α – )
�= w(s). (.)

(ii) If  ≤ t < s < , then by an argument similar to (.), from (.), we have

–
∂G(t, s)

∂t
=

( – s)α–

�(α – )
+
( – t)( – s)α–

(δ – )�(α – )
+

( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–

≤ w(s).

Summing up the above analysis (i)-(ii), and noting Step  of the proof as before, it follows
that

 < –
∂G(t, s)

∂t
≤ w(s) for s, t ∈ [, ), s 	= t.

Step . It remains to show that

–
∂G(t, s)

∂t
≥ ηw(s) for t ∈

[


,



]
, s ∈ [, ) with s 	= t.

(i) If  ≤ s < t < , then by (.) and the fact that ( – s)α– > (t – s)α–, we know that the
relations

–
∂G

∂t
>

( – t)( – s)α–

(δ – )�(α – )
+

( – t)[ + δ + (δ – )t]
(γ – )(δ – )�(α – )

( – s)α–

≥ 


( – s)α–

(δ – )�(α – )
+

( + δ)( – s)α–

(γ – )(δ – )�(α – )

=
(α – )

(α + δ – )
· (α + δ – )( – s)α–

(α – )(δ – )�(α – )
+
 + δ

δ
· δ( – s)α–

(γ – )(δ – )�(α – )
≥ ηw(s)

hold for t ∈ [  ,

 ], s ∈ [, ) with s < t, where η =min{ (α–)

(α+δ–) ,
+δ
δ }, and

w(s) =
(α + δ – )( – s)α–

(α – )(δ – )�(α – )
+

δ( – s)α–

(γ – )(δ – )�(α – )
, s ∈ [, ).

http://www.boundaryvalueproblems.com/content/2013/1/109
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Similarly, we can obtain that

–
∂G

∂t
≥ ηw(s) for t ∈

[


,



]
with t < s < .

The proof is complete. �

Now, we introduce a cone as follows:

P =
{
u ∈ C[I,R] : u(t) ≥ ,u′(t)≤ , t ∈ I;u() = ;

u(t) ≥ η‖u‖, –u′(t)≥ η
∥∥u′∥∥

, t ∈
[


,



]}
.

It is easy to check that the above set P is a cone in the space C[I,R], which will be used in
the sequel.
We define an operator T on P as follows:

Tu =
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds, u ∈ P. (.)

Obviously, under the assumption (H)-(H), the operator T is well defined. Moreover,

(Tu)′(t) =
∫ 


Gt(t, s)f

(
s,u(s),u′(s)

)
ds, t ∈ I,u ∈ P, (.)

where Gt(t, s) = ∂
∂t G(t, s),  ≤ s < t < , Gt(t, s) = ∂

∂t G(t, s),  ≤ t < s < , and ∂
∂t G(t, s),

∂
∂t G(t, s) are given by (.)-(.), respectively.
A function u ∈ C[, ] is a positive solution of BVP (.)-(.) if u(t) ≥ , t ∈ I , u 	= ,

and u satisfies BVP (.)-(.).
By Lemma ., it is easy to know that a function u ∈ C[, ] is a positive solution of BVP

(.)-(.) iff u ∈ P is a nonzero fixed point of T . So, we can focus on seeking the existence
of a nonzero fixed point of T in P.
Finally, for the remainder of this section, we give the following two theorems, which are

fundamental in the proof of our main results.
Let X be a Banach space, and let P ⊂ X be a cone. Suppose that the functions α,β satisfy

the following condition:
(D) α,β : X →R+ are continuous convex functionals satisfying α(λu) = |λ|α(u),

β(λu) = |λ|(u) for u ∈ X , λ ∈ R; ‖u‖ ≤ kmax{α(u),β(u)} for u ∈ X , and
α(u) ≤ α(u) for u,u ∈ P with u ≤ u, where k >  is a constant.

Lemma . [] Assume that r, r, L are constants with r > r > , L > , and

�i =
{
u ∈ X : α(u) < ri,β(u) < L

}
, i = ,  are two bounded open sets in X.

Set Di = {u ∈ X : α(u) = ri}. Suppose that T : P → P is a completely continuous operator
satisfying

(C) α(Tu) < r, u ∈D ∩ P; α(Tu) > r, u ∈D ∩ P;

http://www.boundaryvalueproblems.com/content/2013/1/109
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(C) β(Tu) < L, u ∈ P;
(C) there is a p ∈ (� ∩ P)\{} such that α(p) 	=  and α(u + λp) ≥ αu for all u ∈ P and

λ ≥ .

Then T has at least one fixed point in (�\�̄)∩ P.

Lemma . [] Assume that �, � are two open subsets of X with  ∈ � ⊂ �̄ ⊂ �,
and let T : P → P be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂�; ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�; ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂�.

Then T has a fixed point in P ∩ (�̄\�).

3 Main results
We first prove the following lemma to obtain our main results.

Lemma . Suppose that (H)-(H) hold. Then the operator T defined by (.) maps P
into P, and T is completely continuous.

Proof It is well known that the norms ‖u‖ = ‖u‖ + ‖u′‖ and ‖u‖ = max{‖u‖,‖u′‖}
are equivalent on C[, ]. So, we can consider that the Banach space C[, ] is equipped
with the norm ‖u‖ =max{‖u‖,‖u′‖} in the following proof.
For any u ∈ P, in view of the conclusion ()-() of Lemma . and the hypotheses (H)-

(H), it is easy to see that Tu ∈ C(I,R), (Tu)(t) ≥ , t ∈ I , and (Tu)′(t) ≤ , t ∈ I observing
(.)-(.). Moreover, the conclusion () of Lemma . implies that

(Tu)(t) =
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds

≤
∫ 


w(s)f

(
s,u(s),u′(s)

)
ds, t ∈ I, (.)

and

(Tu)(t) =
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds

≥ η

∫ 


w(s)f

(
s,u(s),u′(s)

)
ds (.)

for t ∈ [  ,

 ].

From (.)-(.), it follows that (Tu)(t) ≥ η(Tu)(τ ), t ∈ [  ,

 ], τ ∈ I . Thus,

(Tu)(t) ≥ η‖Tu‖, t ∈
[


,



]
.

Similarly, we can obtain

–(Tu)′(t)≥ η
∥∥(Tu)′∥∥, t ∈

[


,



]
.

In addition, (Tu)() = . Thus, T : P → P.

http://www.boundaryvalueproblems.com/content/2013/1/109
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Now, we show that the operator T is compact on P.
In fact, let U be an arbitrary bounded set in P. Then there exists a positive number L

such that ‖u‖ ≤ L for all u ∈U , and so ∃M >  such that  ≤ f (t,u(s),u′(s))≤ M, t ∈ I for
all u ∈U .
In terms of Lemma ., it follows from (.)-(.) that

 ≤ (Tu)(t) =
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds

≤ M
∫ 


w(s)ds, t ∈ I, (.)

 ≤ (–Tu)′(t) =
∫ 


(–Gt(t, s)f

(
s,u(s),u′(s)

)
ds

≤ M
∫ 


w(s)ds, t ∈ I. (.)

Because the functions w and w are integrable on I , the formulae (.)-(.) yield that
‖Tu‖ ≤ M, ‖(Tu)′‖ ≤ M, whereM =M ·max{∫ 

 w(s)ds,
∫ 
 w(s)ds}. So, ‖Tu‖ ≤ M.

That is, TU is uniformly bounded.
On the other hand, for any t, t ∈ I with t < t, by setting h = f (t,u,u′), the formula

(.) implies that

∣∣(Tu)(t) – (Tu)(t)
∣∣ = ∣∣∣∣

∫ t



(
G(t, s)–G(t, s)

)
h(s)ds

+
∫ t

t

(
G(t, s)–G(t, s)

)
h(s)ds

+
∫ 

t

(
G(t, s)–G(t, s)

)
h(s)ds

∣∣∣∣
≤ M

∫ t



∣∣G(t, s)–G(t, s)
∣∣ds + M

∫ t

t
w(s)ds

+M
∫ 

t

∣∣G(t, s)–G(t, s)
∣∣ds. (.)

According to (.)-(.) and by applying the mean value theorem, we have

∣∣G(t, s) –G(t, s)
∣∣ ≤

[


�(α – )
+


(δ – )�(α – )

+
δ( – s)α–

(γ – )(δ – )�(α – )

]
|t – t|,

and so

∫ t



∣∣G(t, s)–G(t, s)
∣∣ds ≤ N|t – t|, (.)

where N = 
�(α–) +


(δ–)�(α–) +

δ
(γ–)(δ–)�(α–) .

Similarly, there is another constant N such that

∫ 

t

∣∣G(t, s) –G(t, s)
∣∣ds ≤ N|t – t|. (.)

http://www.boundaryvalueproblems.com/content/2013/1/109
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Again, because the function w is integrable on I , the absolute continuity of integral of w

on [t, t] ensures that there exists a constant N such that

∫ t

t
w(s)ds <N(t – t). (.)

So, (.) together with (.)-(.) implies that there exists a constant N such that the in-
equality

∣∣(Tu)(t) – (Tu)(t)
∣∣ ≤ N(t – t)

holds for any u ∈U and t, t ∈ I with t < t. That is, the set TU is equicontinuous.
Similarly, we can deduce that the set {(Tu)′|u ∈ U} is also equicontinuous in terms of

(.).
So, as a consequence of the Arzelà-Ascoli theorem, we have that TU is a compact set.
Now, we come to prove the operator T is continuous on P.
Let {un} be an arbitrary sequence in P with un → u ∈ P. Then there exists an L >  such

that

un(t) ∈ [,L], u′
n(t) ∈ [–L, ], t ∈ I,n = , , , . . . .

According to the uniform continuity of f on I × [,L] × [–L, ], for an arbitrary number
ε > , there is a number N ≥  such that

∣∣f (t,un(t),u′
n(t)

)
– f

(
t,u(t),u′

(t)
)∣∣ < ε (.)

for all t ∈ I , whenever n ≥ N .
Thus, in view of Lemma ., from (.)-(.) and (.), it follows that

∣∣(Tun)(t) – (Tu)(t)
∣∣ ≤ ε

∫ 


w(s)ds, t ∈ I,

and

∣∣(Tun)′(t) – (Tu)′(t)
∣∣ ≤ ε

∫ 


w(s)ds, t ∈ I,

whenever n≥ N . That is, T is continuous on P. �

We are now in a position to state and prove the first theorem in the article. Let constants
k, k satisfy k ∈ (, (

∫ 
 w(s)ds)–), k > (η

∫ 



w(s)ds)–.

Theorem . Suppose that (H)-(H) hold. In addition, there are two constants r, r with

ηηr > r >  such that f satisfies the following condition:

(H) f (t,x, y)≤ kr, for (t,x, y) ∈ I × [, r]× [–r, ];
f (t,x, y)≥ kr, for (t,x, y) ∈ I × [ ηηr, r]× [–r, –ηr].

Then BVP (.)-(.) has at least one positive solution u satisfying r < maxt∈I |u′(t)| < r
and maxt∈I |u(t)| < r.

http://www.boundaryvalueproblems.com/content/2013/1/109
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Proof We already know that T : P → P is completely continuous by Lemma ..
Let α(u) =maxt∈I |u′(t)|, β(u) =maxt∈I |u(t)| for u ∈ P. It is easy to verify that the func-

tions α, β satisfy the condition (D).
Choose a constant L large enough so that L > max{M ∫ 

 w(s)ds, r}, where M =
max(t,x,y)∈I×J×� f (t,x, y), and J = [, r], � = [–r, ]. Set Di = {u ∈ C(I,R) : α(u) = ri},
�i = {u ∈ C(I,R) : α(u) < ri,β(u) < L}, i = , . Define the function f̄ on I × R+ × R– as
f̄ (t,x, y) = f (t,φ(x),ϕ(y)), (t,x, y) ∈ I×R+ ×R–, where φ(x) =min{x, r}, ϕ(y) =max{y, –r}.
Consider the following ancillary BVP:

{
CDα

+x(t) = f̄ (t,x(t),x′(t)), t ∈ (.),
x() = x′() = , δx′′() = x′′(), γ x′′′() = x′′′().

(.)

Obviously, the function f̄ is continuous on I × R+ × R– according to the continuity
of f . Thus, by an argument similar to that in Lemma ., the operator T̄ given by T̄u =∫ 
 G(t, s)f̄ (s,u(s),u

′(s))ds is also completely continuous on P and maps P into P.
We will prove that T has at least one nonzero fixed point in P by applying Lemma ..

The approach is divided into four steps.
Step . We first show that

‖u‖ ≤ ∥∥u′∥∥
, u(t) ≥ 


ηη

∥∥u′∥∥
, t ∈

[


,



]
for any u ∈ P. (.)

In fact, for any u ∈ P, owing to the condition u() = , we have that u(t) = –
∫ 
t u

′(s)ds,
t ∈ I , and so ‖u‖ ≤ ‖u′‖.
On the other hand, applying themean value theorem, for any u ∈ P, we have that ‖u‖ ≥

|u(  ) –u(  )| = 
 |u′(ξ )| for some ξ ∈ (  ,


 ). Therefore, we have that ‖u‖ ≥ 

η‖u′‖ from
the fact that –u′(ξ ) ≥ η‖u′‖, ξ ∈ [  ,


 ] because u ∈ P. So,

u(t) ≥ η‖u‖ ≥ 


ηη
∥∥u′∥∥

, t ∈
[


,



]
,

keeping in mind that u(t)≥ η‖u‖, t ∈ [  ,

 ] for u ∈ P.

Step . Now, we come to verify that the conditions corresponding to (C) in Lemma .
hold.
For any u ∈ P with α(u) = r, we have that u(t) ≥ , u′(t) ≤ , t ∈ I , and ‖u′‖ = r. Thus,

in view of (.), we have that  ≤ u(t) ≤ r, –r ≤ u′(t) ≤ , t ∈ I . So, according to (H), we
have

f̄
(
t,u(t),u′(t)

)
= f

(
t,u(t),u′(t)

) ≤ kr, t ∈ I.

Thus, from (.) and Lemma ., it follows that

–(T̄u)′(t) = –
∫ 


Gt(t, s)f

(
s,u(s),u′(s)

)
ds

≤ kr
∫ 



(
–Gt(t, s)

)
ds≤ kr

∫ 


w(s)ds, t ∈ I.
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Thus, maxt∈I |(T̄u)′(t)| ≤ kr
∫ 
 w(s)ds < r, noting that the assumption k <

(
∫ 
 w(s)ds)–. That is, α(Tu) < r.
For any u ∈ P with α(u) = r, then u(t) ≥ , u′(t) ≤ , t ∈ I , and maxt∈I |u′(t)| = r. Thus,

from (.), we obtain




ηηr ≤ u(t) ≤ r, –r ≤ u′(t) ≤ –ηr, t ∈
[


,



]
,

and so

f̄
(
t,u(t),u′(t)

)
= f

(
t,u(t),u′(t)

) ≥ kr, t ∈
[


,



]
,

from the condition (H). Therefore, in view of Lemma ., we have

–(T̄u)′(t) = –
∫ 


Gt(t, s)f

(
s,u(s),u′(s)

)
ds

≥ –
∫ 






Gt(t, s)f
(
s,u(s),u′(s)

)
ds

≥ kr
∫ 






(
–Gt(t, s)

)
ds≥ krη

∫ 





w(s)ds, t ∈ I.

Thus, maxt∈I |T ′u(t)| ≥ kηr
∫ 




w(s)ds > r, noting that k > (η

∫ 



w(s)ds)–. That is,

α(Tu) > r.
Step . We verify that the conditions corresponding to (C) in Lemma . hold.
For any u ∈ P, owing to the fact that  ≤ φ(u(t))≤ r, –r ≤ ϕ(u′(t)) ≤ , from themean-

ing ofM, we have immediately that

f̄
(
t,u(t),u′(t)

)
= f

(
t,φ

(
u(t)

)
,ϕ

(
u′(t)

)) ≤ M, t ∈ I.

Thus,

(T̄u)(t) =
∫ 


G(t, s)f̄

(
s,u(s),u′(s)

)
ds

≤ M
∫ 


G(t, s)ds≤ M

∫ 


w(s)ds, t ∈ I.

Hence, ‖(T̄u)‖ ≤ M
∫ 
 w(s)ds, and so ‖(T̄u)‖ < L from the choice of L. Thus, β(T̄u) < L.

Step . Finally, take p = σ
∫ 
 G(t, s)ds with  < σ < r(

∫ 
 w(s)ds)–. Then, by an ar-

gument similar to that in Lemma ., we can know that p ∈ P. Moreover,  ≤ –p′(t) =
σ

∫ 
 (–Gt(t, s))ds ≤ σ

∫ 
 w(s)ds < r, t ∈ I , and  ≤ p(t) < r, t ∈ I from (.). Thus,

p ∈ (� ∩ P)\{}, α(p) 	= . Again,

α(u + λp) = max
t∈I

|u′ + λp′(t)| =max(–u′(t) + λ
(
–p′(t)

)
≥ λmax

(
–u′(t)

)
= λα(u)

for any u ∈ P, λ ≥ .
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So, the conditions corresponding to (C) in Lemma . hold.
Summing up the above steps - and applying Lemma ., we obtain that BVP (.)

has at least one positive solution u ∈ (�\�̄) ∩ P. That is, r < ‖u′‖ < r. ‖u‖ < L, and
so ‖u‖ < r from the fact that r < L and ‖u‖ ≤ ‖u′‖ by (.). Thus,  ≤ u(t) < r, t ∈ I ,
 ≤ –u′(t) < r, t ∈ I , and u′ 	= . Hence, f̄ (t,u(t),u′(t)) = f (t,u(t),u′(t)), t ∈ I , and so u is a
positive solution of BVP (.)-(.). The proof is complete. �

Now, we state another theorem in this paper. Let us begin with introducing some nota-
tions.
Let B = R+ × R–. Denote f∞ = lim infx+|y|→∞ mint∈I f (t,x,y)

x+|y| with (x, y) ∈ B, and f  =
lim supx+|y|→maxt∈I f (t,x,y)

x+|y| with (x, y) ∈ B. Put λ = (ημ)–, λ = μ–
 , where μ =∫ 




[G(, s) –Gt(, s)]ds, μ =

∫ 
 (w(s) +w(s))ds, η = min{η,η}, and ηi (i = , ) are

given in Lemma ..

Theorem . Assume that (H)-(H) hold. If f∞ > λ, f  < λ, then BVP (.)-(.) has at
least one positive solution.

Proof As described in the proof of Theorem ., T : P → P is completely continuous.
Again, from f∞ > λ, it follows that there exists an R >  such that

f (t,x, y) > λ
(
x + |y|), t ∈ I (.)

holds when x + |y| ≥ R with x ≥ , y≤ .
Take R≥ η–

 R. Set �R = {u ∈ C[, ] : ‖u‖ < R}. Now, we show that the following rela-
tion holds:

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂�R ∩ P. (.)

In fact, for any u ∈ ∂�R ∩ P, we have that u ∈ P with ‖u‖ = R. Then

u(t) ≥ , u′(t) ≤ , t ∈ I;

u(t) ≥ η‖u‖, –u′(t) ≥ η‖u′‖, t ∈
[


,



]
.

Thus,

u(t) +
∣∣u′(t)

∣∣ ≥ η‖u‖ + η
∥∥u′∥∥



≥ η
(‖u‖ +

∥∥u′∥∥


)
= ηR ≥ R, for t ∈

[


,



]
. (.)

Thus, from (.), (.), it follows that

f
(
t,u(t),u′(t)

)
> ληR, t ∈

[


,



]
. (.)
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Hence, (.) together with (.) implies that

(Tu)(t) =
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds

≥
∫ 






G(t, s)f
(
s,u(s),u′(s)

)
ds

≥ ληR
∫ 






G(t, s)ds, t ∈ I.

So,

‖Tu‖ ≥ (Tu)() ≥ ληR
∫ 






G(, s)ds. (.)

Similarly, we can obtain

∥∥(Tu)′∥∥ ≥ –(Tu)′() ≥ ληR
∫ 






[
–Gt(, s)

]
ds. (.)

Therefore, noting that λ = (ημ)–, from (.)-(.), we have

‖Tu‖ = ‖Tu‖ +
∥∥(Tu)′∥∥

≥ ληR
∫ 






[
G(, s) –Gt(, s)

]
ds = λημR = R = ‖u‖.

So, the relation (.) holds.
Now, from f  < λ, it follows that there exists an r >  such that

f (t,x, y) < λ
(
x + |y|), t ∈ I, (.)

whenever x + |y| ≤ r with x ≥ , y ≤ .
Take  < r <min{r,R}. Set �r = {u ∈ C[, ] : ‖u‖ < r}. We prove the following relation

holds:

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂�r ∩ P. (.)

In fact, for any u ∈ ∂�r ∩ P, we have u ∈ P and ‖u‖ = r. Thus, u(t) ≥ , u′(t) ≤ , t ∈ I ,
and u(t) + |u′(t)| ≤ r, t ∈ I . So, by (.), it follows that

f
(
t,u(t),u′(t)

)
< λ

(
u(t) +

∣∣u′(t)
∣∣) ≤ λr.

Therefore, from (.) and in view of Lemma ., we have

(Tu)(t) =
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds

≤ λr
∫ 


G(t, s)ds≤ λr

∫ 


w(s)ds, t ∈ I. (.)
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So,

‖Tu‖ ≤ λr
∫ 


w(s)ds. (.)

Similarly, we can obtain

∥∥(Tu)′∥∥ ≤ λr
∫ 


w(s)ds. (.)

Consequently, noting that λ = μ–
 , from (.)-(.), it follows that

‖Tu‖ = ‖Tu‖ +
∥∥(Tu)′∥∥

≤ λr
∫ 



(
w(s) +w(s)

)
ds = rλμ = r = ‖u‖.

So, the relation (.) holds.
Summing up (.) and (.), applying Lemma ., the operator T has at least one fixed

point u ∈ (�̄\�) ∩ P. Thus u is a positive solution of BVP (.)-(.). The proof is com-
plete. �

Example . Consider the following BVP:

{
CDα

+x(t) = f (t,x(t),x′(t)), t ∈ (, ),
x() = x′() = , δx′′() = x′′(), γ x′′′() = x′′′(),

(.)

where  < α ≤ , γ > , δ > , and f is given by

f (t,x, y) = et
[
a(sin

√
x) + a(

√
–y)

]
, (t,x, y) ∈ I ×R+ ×R–,

where constants a, a are two positive numbers. Then BVP (.) has at least one positive
solution.
In fact, assume that the notations k, k, η, and η are described in Theorem .. Take

 < r <min{, k
e(a+a)

}, r >max{ k
aη

, 
ηη

}. Then the inequality

f (t,x, y)≤ e
[
ax + ay

] ≤ e[a + a]r ≤ kr

holds for (t,x, y) ∈ I × [, r]× [–r, ], and the inequality

f (t,x, y)≥ ay ≥ aη
r


 ≥ kr

holds for (t,x, y) ∈ I × [, +∞)× [–r, –ηr].
So, by Theorem ., BVP (.) has at least one positive solution.

Example . Consider the following BVP:

{
CDα

+x(t) = f (t,x(t),x′(t)), t ∈ (, ),
x() = x′() = , δx′′() = x′′(), γ x′′′() = x′′′(),

(.)

http://www.boundaryvalueproblems.com/content/2013/1/109
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where  < α ≤ , γ > , δ > , and f is given by

f (t,x, y) = et
[
a

(
x + |y|)β + a(sinxy)

]
, (t,x, y) ∈ I ×R+ ×R–,

where constants a, a are two positive numbers and a constant β > . Then BVP (.)
has at least one positive solution.
In fact, observing that f∞ = +∞, f  = , the conclusion follows from Theorem ..
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