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Abstract
In this work, our main purpose is to develop of a sufficiently robust, accurate and
efficient numerical scheme for the solution of the regularized long wave (RLW)
equation, an important partial differential equation with quadratic nonlinearity,
describing a large number of physical phenomena. The crucial idea is based on the
discretization of the RLW equation with the aid of a combination of the discontinuous
Galerkin method for the space semi-discretization and the backward difference
formula for the time discretization. Furthermore, a suitable linearization preserves a
linear algebraic problem at each time level. We present error analysis of the proposed
scheme for the case of nonsymmetric discretization of the dispersive term. The
appended numerical experiments confirm theoretical results and investigate the
conservative properties of the RLW equation related to mass, momentum and energy.
Both procedures illustrate the potency of the scheme consequently.
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1 Introduction
We are concerned with a proposal of a sufficiently robust, accurate and efficient numeri-
cal method for the solution of scalar nonlinear partial differential equations. As a model
problem, we consider a regularized long wave (RLW) equation firstly introduced by Pere-
grine (in []) to provide an alternative description of nonlinear dispersive waves to the
Korteweg-de Vries (KdV) equation. As a consequence of this, the RLW can be observed
as a special class of a family of KdV equations.
The RLW equation contains a quadratic nonlinearity and exhibits pulse-like solitary

wave solutions or periodic waves; see []. It governs various physical phenomena in disci-
plines such as nonlinear transverse waves in shallow water, ion-acoustic waves in plasma
or magnetohydrodynamics waves in plasma. Since the RLW equation can be solved by
analytical means in special cases, the proposed numerical methods can be easily verified.
Several numerical studies of the RLW equation and its modified variant have been intro-
duced in the literature, from finite difference methods [], over collocation methods [,
], to finite element approaches [, ], or Galerkin methods [], and in references cited
therein.
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In this paper, we present a semi-implicit scheme for the numerical solution of the RLW
equation based on an alternative approach to the commonly used methods. The discon-
tinuous Galerkin (DG) methods have become a very popular numerical technique for the
solution of nonlinear problems.DG space semi-discretization uses higher-order piecewise
polynomial discontinuous approximation on arbitrarymeshes; for a survey, see [, ] and
[]. Among several variants of DGmethods, we deal with the nonsymmetric variant inte-
rior penalty Galerkin discretizations; see []. The discretization in time coordinate is per-
formedwith the aid of linearization and the backward Eulermethod, sidetracking the time
step restriction well known from the explicit schemes, proposed in []. Consequently, we
extend the results from [], and the attention is paid to the a priori error analysis of the
method with the aid of standard techniques introduced in [] and [].
The rest of the paper is organized as follows. The problem formulation and its variational

reformulation are given in Section . Discretization, including space semi-discretization
and fully time space discretization, is considered in Section . The Section  is devoted to a
priori error analysis. Finally, in Section , the theoretical results are illustrated by numeri-
cal tests on a propagation of a single solitary wave and experimental orders of convergence
are computed for piecewise linear approximations togetherwith invariant quantities of the
RLW equation.

2 Regularized long wave equation
Let � = (a,b) ⊂ R be a bounded open interval and T >  be a final time. We set QT =
� × (,T) and consider the following initial boundary value problem: Find u(x, t) : QT =
� × (,T) →R such that, for all T > ,

∂u
∂t

+
∂u
∂x

+ εu
∂u
∂x

–μ
∂

∂t

(
∂u
∂x

)
=  in QT , ()

u(a, t) = uaD(t) and u(b, t) = ubD(t) for all t ∈ (,T), ()

u(x, ) = u(x) for all x ∈ �, ()

where constant parameters ε >  and μ >  are related to the amplitude of the wave and
long-wavelength, respectively. From the mathematical point of view, problem ()-() rep-
resents the regularized long wave equation equipped with a set of two generally nonho-
mogeneous Dirichlet boundary conditions () and with the initial condition u : � → R.
These given data have to satisfy the compatibility conditions prescribed at both endpoints
of the domain �, i.e.,

uaD() = u(a) and ubD() = u(b). ()

The whole system ()-() was found to have single solitary or periodic traveling wave so-
lutions; for details, see [].

Remark  In the case of a single solitary wave propagation, the homogeneous Dirichlet
boundary conditions in () arise from the asymptotic behavior of the exact solution u, and
the endpoints a and b are chosen large enough so that the boundaries do not affect the
single solitary wave during its propagation up to final time T .

http://www.boundaryvalueproblems.com/content/2013/1/116
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In what follows we use the standard notation for function spaces and their norms ‖ · ‖
and seminorms | · |. Let k ≥  be an integer and p ∈ [,∞]. We use the well-known
Lebesgue and Sobolev spaces Lp(�), Hk(�), Bochner spaces Lp(,T ;X) of functions de-
fined in (,T) with values in a Banach space X and the spaces Ck([,T];X) of k-times
continuously differentiable mappings of the interval [, T] with values in X. By H

(�) we
denote the subspace of all functions v ∈ H(�) satisfying v(a) = v(b) = . To this end, we
use the following notation for a scalar product in L(�) by

(u, v) =
∫

�

uvdx, u, v ∈ L(�) ()

for a norm in L(�) by ‖ · ‖ = √
(·, ·), for a seminorm in H(�) by | · |, = √

(∇·,∇·) and
for a norm in H(�) by ‖ · ‖, = √

(·, ·) + (∇·,∇·). It is a known fact that | · |, is a norm on
H

(�) equivalent to ‖ · ‖,
A sufficiently regular solution satisfying ()-() pointwise is called a classical solution.

Now, we are ready to introduce the concept of weak formulation. Firstly, we recall the
definition of a bilinear dispersion form a(·, ·) and a nonlinear convection form bε(·, ·) from
[], i.e.,

a
(
u(t), v

)
=

∫
�

∂u(t)
∂x

· v′ dx, ()

bε
(
u(t), v

)
=

∫
�

∂f (u(t))
∂x

· vdx with f (u) = u +
ε


u, ()

where symbol u(t) stands for the function on � such that u(t)(x), x ∈ � and function f (u)
in () represents the physical flux.

Definition  We say that u is a weak solution of problem ()-() if u ∈ L(,T ;H(�)) ∩
L∞(QT ) such that ∂u

∂t ∈ L(,T ;H(�)) and the following conditions are satisfied:

(a) u – u∗ ∈ L
(
,T ;H

(�)
)
, where u∗(t) ∈H(�) such that

u∗(t)|x=a = uaD(t) and u∗(t)|x=b = ubD(t) for a.e. t ∈ (,T),

(b)
d
dt

(
u(t), v

)
+ bε

(
u(t), v

)
+μ

d
dt

a
(
u(t), v

)
= 

∀v ∈H
(�) and a.e. t ∈ (,T),

(c)
(
u(), v

)
=

(
u, v

) ∀v ∈ H
(�),u ∈ L(�).

()

Remark  In order to unify the definition of the weak solution (), we consider nonhomo-
geneous Dirichlet boundary conditions instead of the second parallel analysis of periodic-
type solutions with the aid of Sobolev spaces of periodic functions Hk

λ((a,b)) with period
λ >  satisfying mod(b – a,λ) = .

Further, to carry out the error analysis later, we need to specify additional assumptions
on the regularity of a solution of continuous problem ()-(). Therefore, we assume that
the weak solution u is sufficiently regular, namely

http://www.boundaryvalueproblems.com/content/2013/1/116
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Assumptions (R)

(R) u,
∂u
∂t

∈ L∞(
,T ;Hs+(�)

)
, s≥ , ()

(R)
∂u
∂t

∈ L∞(
,T ;H(�)

)
, ()

(R)
∥∥∥∥∂u(t)

∂x

∥∥∥∥
L∞(�)

≤ CD for a.a. t ∈ (,T). ()

3 Discretization
Let Th (h > ) be a family of the partitions of the closure � = [a,b] of the domain � into
N closed mutually disjoint subintervals Ik = [xk–,xk] with length hk := xk – xk– and the
symbol J stands for an index set {, . . . ,N}. Then we call Th = {Ik ,k ∈ J } a partition with
a spatial step h := maxk∈J (hk) and interval Ik an element. By Eh we denote the set of all
partition nodes of �, i.e., Eh = {x = a,x, . . . ,xN–,xN = b}. Further, we label by E I

h the set
of all inner nodes. Obviously, Eh = E I

h ∪ {a,b}.
We additionally assume that the partitions satisfy the following condition.

Assumption (M) Th are locally quasi-uniform:

∃Cq ≥  : hk ≤ Cqhk′ ∀Ik , Ik′ ∈ Th sharing a node. ()

The condition () in fact allows to control a level of the mesh refinement if adapted
meshes are used.
DG methods can handle different polynomial degrees over elements. Therefore, we as-

sign a local Sobolev index sk ∈ N and a local polynomial degree pk ∈ N to each Ik ∈ Th.
Then we set the vectors s ≡ {sK ,K ∈ Th} and p ≡ {pK ,K ∈ Th}. Over the triangulation Th,
we define the so-called broken Sobolev space corresponding to the vector s as

Hs(�,Th) :=
{
v; v|Ik ∈ Hsk (Ik) ∀Ik ∈ Th

}
()

with the norm

‖v‖Hs(�,Th) :=
( ∑
Ik∈Th

‖v‖Hsk (Ik )

)/

()

and the seminorm

|v|Hs(�,Th) :=
( ∑
Ik∈Th

|v|Hsk (Ik )

)/

, ()

where ‖ ·‖Hsk (Ik ) and | · |Hsk (Ik ) denote the standard norm and the seminorm on the Sobolev
space Hsk (Ik), Ik ∈ Th.
The approximate solution of variational problem () is sought in a finite dimensional

space of discontinuous piecewise polynomial functions associated with the vector p by

Shp ≡ Shp(�,Th) :=
{
v; v|Ik ∈ Ppk (Ik) ∀Ik ∈ Th

}
, ()

where Ppk (Ik) denotes the space of all polynomials of degree ≤ pk on Ik , Ik ∈ Th.

http://www.boundaryvalueproblems.com/content/2013/1/116
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Let us denote v(x+k ) = limε→+ v(xk + ε) and v(x–k ) = limε→+ v(xk – ε). Then we can define
the jump and average of v at inner points xk ∈ E I

h of the domain � by

[
v(xk)

]
= v

(
x–k

)
– v

(
x+k

)
,

〈
v(xk)

〉
=


(
v
(
x–k

)
+ v

(
x+k

))
. ()

By convention, we also extend the definition of jump and mean value for endpoints of �,
i.e., [v(x)] = –v(x+), 〈v(x)〉 = v(x+), [v(xN )] = v(x–N ) and 〈v(xN )〉 = v(x–N ). In case that xk ∈ Eh
are arguments of v(x–k ) or v(x

+
k ), we usually omit these arguments x–k , x

+
k and write simply

v– and v+, respectively.

3.1 DG semi-discrete formulation
Now, we recall the space semi-discrete DG scheme presented in []. First, we multiply ()
by a test function vh ∈ Shp, integrate over an element Ik ∈ Th and use integration by parts in
the dispersion term ah and convection term bε

h of () subsequently. Further, we sum over
all Ik ∈ Th and add some artificial terms vanishing for the exact solution such as penalty
Jσh and stabilization terms, which replace the inter-element discontinuities and guarantee
the stability of the resulting numerical scheme, respectively. Consequently, we employ the
concept of an upwind numerical flux (see []) for the discretization of the convection
term and end up with the following DG formulation for the semi-discrete solution uh(t),
introduced in [] as a system of ordinary differential equations, i.e.,

d
dt

{(
uh(t), vh

)
+μah

(
uh(t), vh

)
+μJσh

(
uh(t), vh

)}
+ bε

h
(
uh(t), vh

)
= 

∀vh ∈ Sh,∀t ∈ (,T), ()

where forms ah(·, ·) and bε
h(·, ·) stand for the semi-discrete variants of forms () and (),

i.e.,

ah
(
u(t), v

)
=

∑
k∈J

∫
Ik

∂u(t)
∂x

· v′ dx –
∑
x∈Eh

〈
∂u(t)
∂x

〉
[v] +

∑
x∈Eh

〈
v′〉[u(t)], ()

bε
h
(
u(t), v

)
= –

∑
k∈J

∫
Ik

(
u +

ε


u

)
· v′ dx +

∑
x∈Eh

H
(
u–(t),u+(t)

)
[v]. ()

The crucial item of the DG formulation of the model problem is the treatment of the
convection part. We proceed analogously as in [], where the convection terms are ap-
proximated with the aid of the following numerical flux H(·, ·) through node x ∈ Eh in the
positive direction (i.e., outer normal is equal to one):

H
(
u
(
x–

)
,u

(
x+

))
=

⎧⎨⎩f (u(x–)) = u(x–) + ε
u

(x–), if A > ,

f (u(x+)) = u(x+) + ε
u

(x+), if A≤ ,
()

where A = f ′( u(x
–)+u(x+)
 ) and the choice of f (u(x–)) and f (u(x+N )) for boundary points has

to satisfy the prescribed Dirichlet boundary conditions; for more details, see [].
In what follows, we shall assume that the numerical flux H : R → R has the following

properties.

http://www.boundaryvalueproblems.com/content/2013/1/116


Hozman and Lamač Boundary Value Problems 2013, 2013:116 Page 6 of 20
http://www.boundaryvalueproblems.com/content/2013/1/116

Assumptions (H)
(H) H(u, v) is Lipschitz-continuous with respect to u, v:

∣∣H(u, v) –H
(
u∗, v∗)∣∣ ≤ CH

(∣∣u – u∗∣∣ + ∣∣v – v∗∣∣), u, v,u∗, v∗ ∈R. ()

(H) H(u, v) is consistent:

H(u,u) = f (u), u ∈R. ()

(H) H(u, v) is conservative:

H(u, v) = –H(v,u) in the negative direction,u, v ∈R. ()

One can see that the numerical flux H given by () satisfies conditions (H) and (H)
and is Lipschitz-continuous on any bounded subset of R.
A particular attention should be also paid to the treatment of the dispersion terms,which

include an artificially added stabilization in the form
∑

x∈Eh〈v′〉[u(t)], in order to guarantee
the stability of the numerical scheme. In our case, where this stabilization is added with a
positive sign (+), we speak of the nonsymmetric interior penalty Galerkin method.
In the end, the semi-discrete DG scheme is completed with the weighted penalty

Jσh
(
u(t), v

)
=

∑
x∈E I

h

σ
[
u(t)

]
[v] + σ (x) ·

(
u
(
x+, t

)
– uaD(t)

) · v(x+)
+ σ (xN ) ·

(
u
(
x–N , t

)
– ubD(t)

) · v(x–N)
()

which replaces the inter-element discontinuities and guarantees the fulfillment of the pre-
scribed boundary conditions.
The penalty parameter function σ : Eh → R for a nonsymmetric variant is defined in

spirit of [] as

σ (x) =

⎧⎪⎪⎨⎪⎪⎩
p/h, x = a,

min(pk/hk ,p

k+/hk+), x ∈ E I

h ∧ {x} = Ik ∩ Ik+,

pN /hN , x = b.

()

In order to simplify the notation, we introduce the form

Aμ

h
(
u(t), v

)
:=

(
u(t), v

)
+μah

(
u(t), v

)
+μJσh

(
u(t), v

)
, u(t), v ∈ Shp, t ∈ (,T), ()

which is bilinear due to () and (). Consequently, we can here define the semi-discrete
solution uh of problem ().

Definition  We say that uh is a semidiscrete solution of problem () if uh ∈ C(,T ;Shp)
and the following conditions are satisfied:

(a)
d
dt

Aμ

h
(
uh(t), v

)
+ bε

h
(
uh(t), vh

)
=  ∀vh ∈ Shp,∀t ∈ (,T), ()

(b)
(
uh(), vh

)
=

(
u, vh

) ∀vh ∈ Shp.

http://www.boundaryvalueproblems.com/content/2013/1/116
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3.2 Semi-implicit linearized DG scheme
In order to obtain the discrete solution, it is necessary to equip the scheme () with suit-
able solvers for the time integration. In [], we have proposed a semi-implicit time dis-
cretization based on the backward Euler scheme with the linearized convection form bε

h

which is suitable for avoiding the strong time step restriction of explicit time schemes as
well as for the preservation of linear algebraic problems at each time level.
We now partition [,T] as  = t < t < t < · · · < tN = T , denoting each time step by τl ≡

tl+ – tl and letting ulh stand for the approximate solution of uh(tl), tl ∈ [,T], l = , . . . ,M.
The linearization of the physical flux f is treated in spirit of [] as

f
(
ul+h

) ≈ (
 + εulh

)
ul+h –

ε


(
ulh

), l = , . . . ,M, ()

which implies the splitting of a convection form in the following way:

bε
h
(
ul+h , vh

) ≈ bε
hL

(
ulh,u

l+
h , vh

)
– bε

hN
(
ulh, vh

)
()

with

bε
hL

(
ulh,u

l+
h , vh

)
= –

∑
k∈J

∫
Ik

(
 + εulh

) · ul+h · v′
h dx

+
∑
x∈Eh

HL
((
ulh

)–, (ulh)+, (ul+h
)–, (ul+h

)+)[vh], ()

bε
hN

(
ulh, vh

)
= –

∑
k∈J

∫
Ik

ε


(
ulh

) · v′
h dx +

∑
x∈Eh

HN
((
ulh

)–, (ulh)+)[vh], ()

where HL(·, ·, ·, ·) and HN (·, ·) represent the corresponding linearized and nonlinear parts
of the original numerical fluxH(·, ·) given by (); for more details, see []. One can easily
observe that the form bε

hL(·, ·, ·) is linear in its second and third argument and the form
bε
hN (·, ·) is in fact an original convection form () with half the amount of the physical

flux but from the previous time level.
The fully discrete solution of problem () via the aforementioned semi-implicit ap-

proach is defined in following way.

Definition  Let  = t < t < · · · < tr = T be a partition of the time interval [,T] and
τl ≡ tl+ – tl , l = , , . . . ,M. We define the approximate solution of problem () as functions
ulh ∈ Shp, t ∈ [,T], l = , . . . ,M, satisfying the following conditions:

(a) Aμ

h
(
ul+h , vh

)
+ τlbε

hL
(
ulh,u

l+
h , vh

)
=Aμ

h
(
ulh, vh

)
+ τlbε

hN
(
ulh, vh

) ∀vh ∈ Shp, ()

(b) uh is Shp approximation of u.

Discrete problem () is equivalent to a system of linear algebraic equations at each time
instant tl ∈ [,T]. In what follows, we shall be concerned with the analysis of method ().

Lemma  Discrete problem () has a unique solution.

http://www.boundaryvalueproblems.com/content/2013/1/116
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Proof We rewrite problem () in the following way. For ulh ∈ Shp, τl and tl+ ∈ [,T], we
find ul+h such that

Al
h
(
ul+h , vh

)
= f lh(vh) ∀vh ∈ Shp, ()

where

Al
h
(
ul+h , vh

)
=Aμ

h
(
ul+h , vh

)
+ τlbε

hL
(
ulh,u

l+
h , vh

)
, ulh, vh ∈ Shp ()

f lh(vh) =Aμ

h
(
ulh, vh

)
+ τlbε

hN
(
ulh, vh

)
, vh ∈ Shp. ()

Using the definitions () and (), one can see that Al
h is a bilinear form on the finite

dimensional space and f lh is a linear functional. Moreover, the form Al
h is coercive, i.e.,

Al
h(vh, vh) ≥ ‖vh‖ ∀vh ∈ Shp. ()

Hence, equation () has a unique solution ul+h ∈ Shp. �

4 A priori error analysis
For error analysis and in experiments, we consider pk = p for all k ∈ J . Thus we denote
Shp = Shp. Now we would like to analyze the error estimates of the approximate solution
ulh, l = , , . . . , obtained by method (). For simplicity, we consider a uniform partition
tl = lτ , l = , , . . . ,M, of the time interval [,T] with time step τ = T/M, whereM >  is an
integer.
Let �hul be the standard Shp-interpolation of ul = u(tl), (l = , . . . ,M) satisfying (cf. [])

for all v ∈Hp+(Ik), Ik ∈ Th,

‖�hv – v‖L(Ik ) ≤ c̃hp+k |v|Hp+(Ik ), ()

|�hv – v|H(Ik ) ≤ c̃hpk |v|Hp+(Ik ), ()

for a generic constant c̃ >  independent of h and v. We set

ξ l
h = ulh –�hul ∈ Shp, ηl

h = �hul – ul ∈ Hp+(�,Th). ()

Then the error elh = ulh – ul can be expressed as

elh = ξ l
h + ηl

h, l = , , . . . ,M. ()

Setting ξ l+
h in (), we get

Aμ

h
(
ul+h – ulh, ξ

l+
h

)
+ τ

(
bε
hL

(
ulh,u

l+
h , ξ l+

h
)
– bε

hN
(
ulh, ξ

l+
h

))
= . ()

On the other hand, from () it follows

Aμ

h

(
∂u
∂t

(tl+), ξ l+
h

)
+ bε

h
(
u(tl+), ξ l+

h
)
= . ()

http://www.boundaryvalueproblems.com/content/2013/1/116
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Multiplying () by τ , subtracting from () and using again the linearity of the formAμ

h ,
we get

Aμ

h

(
ul+h – ulh – τ

∂u
∂t

(tl+), ξ l+
h

)
+ τ

(
bε
hL

(
ulh,u

l+
h , ξ l+

h
)
– bε

hN
(
ulh, ξ

l+
h

)
– bε

h
(
u(tl+), ξ l+

h
))

= . ()

Since ul+h –ulh = ξ l+
h +ηl+

h +ul+ –ul–ξ l
h–ηl

h, we can rewrite equation () in the following
way:

Aμ

h
(
ξ l+
h – ξ l

h, ξ
l+
h

)
= –Aμ

h

(
ul+ – ul – τ

∂u
∂t

(tl+), ξ l+
h

)
–Aμ

h
(
ηl+
h – ηl

h, ξ
l+
h

)
+ τ

(
bε
hL

(
ulh,u

l+
h , ξ l+

h
)
– bε

hN
(
ulh, ξ

l+
h

)
– bε

h
(
u(tl+), ξ l+

h
))
. ()

For the term on the right-hand side of equation (), we use decomposition (m – n)m =

 (m

 – n + (m – n)) and linearity of the formAμ

h . Together with (), we finally get



{
Aμ

h
(
ξ l+
h , ξ l+

h
)
–Aμ

h
(
ξ l
h, ξ

l
h
)
+Aμ

h
(
ξ l+
h – ξ l

h, ξ
l+
h – ξ l

h
)}

= –Aμ

h

(
ul+ – ul – τ

∂u
∂t

(tl+), ξ l+
h

)
–Aμ

h
(
ηl+
h – ηl

h, ξ
l+
h

)
+ τ

{
bε
hL

(
ulh,u

l+
h , ξ l+

h
)
– bε

hL
(
ulh,u(tl+), ξ

l+
h

)
+ bε

hL
(
ulh,u(tl+), ξ

l+
h

)
– bε

hL
(
u(tl+),u(tl+), ξ l+

h
)

+ bε
hN

(
u(tl+), ξ l+

h
)
– bε

hN
(
ulh, ξ

l+
h

)}
. ()

For next estimates, we use the following lemmas.

Lemma  Under assumptions (R) for tl, tl+ ∈ [,T], the following hold:∣∣∣∣(ul+ – ul – τ
∂u
∂t

(tl+), ξ l+
h

)∣∣∣∣ ≤ cτ ∥∥ξ l+
h

∥∥
, ()∣∣(ηl+

h – ηl
h, ξ

l+
h

)∣∣ ≤ cτh(p+)
∥∥ξ l+

h
∥∥
, ()∣∣∣∣ah(ul+ – ul – τ

∂u
∂t

(tl+), ξ l+
h

)∣∣∣∣ ≤ cτ (∣∣ξ l+
h

∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
)/), ()

∣∣ah(ηl+
h – ηl

h, ξ
l+
h

)∣∣ ≤ cτh(p+)
(∣∣ξ l+

h
∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
)/), ()∣∣∣∣Jσh (

ul+ – ul – τ
∂u
∂t

(tl+), ξ l+
h

)∣∣∣∣ ≤ cτ Jσh
(
ξ l+
h , ξ l+

h
)/, ()

∣∣Jσh (
ηl+
h – ηl

h, ξ
l+
h

)∣∣ ≤ cτh(p+)Jσh
(
ξ l+
h , ξ l+

h
)/, ()

where c is a generic constant independent of h and τ .

Proof The proof of these standard estimates can be found, for instance, in []. �
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Lemma  Under assumptions (R), (H) and for tl , tl+ ∈ [,T], the following hold:∣∣bε
hL

(
ulh,u

l+
h – u(tl+), ξ l+

h
)∣∣

≤ c
(∣∣ξ l+

h
∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
)/)(hp+ + ∥∥ξ l+

h
∥∥


)
, ()∣∣bε

hL
(
ulh,u(tl+), ξ

l+
h

)
– bε

hL
(
u(tl+),u(tl+), ξ l+

h
)∣∣

≤ c
(∣∣ξ l+

h
∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
)/)(hp+ + ∥∥ξ l

h
∥∥
 + τ

)
, ()∣∣bε

hN
(
u(tl+), ξ l+

h
)
– bε

hN
(
ulh, ξ

l+
h

)∣∣
≤ c

(∣∣ξ l+
h

∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
)/)(hp+ + ∥∥ξ l

h
∥∥
 + τ

)
, ()

where c is a generic constant independent of h and τ .

Proof Again, one can find the proof of these estimates in []. �

Since Aμ

h (ξ
l+
h – ξ l

h, ξ
l+
h – ξ l

h) is always nonnegative, applying previous lemmas gives us



Aμ

h
(
ξ l+
h , ξ l+

h
)
–


Aμ

h
(
ξ l
h, ξ

l
h
)

≤ c
{
τ
(
τ + hp+

)∥∥ξ l+
h

∥∥
 +μτ

(
τ + hp

)(∣∣ξ l+
h

∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
)/)

+μτ
(
τ + hp

)
Jσh

(
ξ l+
h , ξ l+

h
)/

+ τ
(∣∣ξ l+

h
∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
)/)(∥∥ξ l+

h
∥∥
 + hp+ +

∥∥ξ l
h
∥∥
 + τ

)}
. ()

Multiplying by , applying the Young inequality and using the definition of the form Aμ

h ,
we obtain

∥∥ξ l+
h

∥∥
 +μ

(∣∣ξ l+
h

∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
))

≤ ∥∥ξ l
h
∥∥
 +μ

(∣∣ξ l
h
∣∣
, + Jσh

(
ξ l
h, ξ

l
h
))

+ cτ
{

τ 

ν
+

ν


∥∥ξ l+

h
∥∥
 +

h(p+)

ν
+

ν


∥∥ξ l+

h
∥∥


+μ

(
τ 

ν
+
h(p)

ν
+

ν + ν


(∣∣ξ l+

h
∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
)))

+μ

(
τ 

ν
+
h(p)

ν
+

ν + ν


Jσh

(
ξ l+
h , ξ l+

h
))

+
ν + ν + ν + ν


μ

(∣∣ξ l+
h

∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
))

+


μν

∥∥ξ l+
h

∥∥
 +

h(p+)

μν
+


μν

∥∥ξ l
h
∥∥
 +

τ 

μν

}
. ()

If we take into account that Jσh (ξ
l+
h , ξ l+

h ) ≤ |ξ l+
h |, + Jσh (ξ l+

h , ξ l+
h ), the previous inequality

can be rewritten as

(
 – cτ

(
ν +


μν

))∥∥ξ l+
h

∥∥
 +

(
 – cτ

∑
i=

νi

)
μ

(∣∣ξ l+
h

∣∣
, + Jσh

(
ξ l+
h , ξ l+

h
))

≤
(
 +

cτ
νμ

)∥∥ξ l
h
∥∥
 +μ

(∣∣ξ l
h
∣∣
, + Jσh

(
ξ l
h, ξ

l
h
))

+ cτq(τ ,h,μ), ()
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where we denoted ν = ν + ν and

q(τ ,h,μ) =
(

ν

+
μ
ν

+
μ

ν
+


μν

)
τ  +

(

ν

+

ν

)
μhp

+
(


ν

+


νμ

)
h(p+). ()

Let us now introduce the so-called energy norm

‖|vh‖| =
√

|vh|, + Jσh (vh, vh) ()

and the norm

‖vh‖μ =
√

‖vh‖ +μ‖|vh‖|. ()

Denoting CL = c ·max{ν + 
μν

,
∑

i= νi} and CR = cτ
μν

from (), it follows

( – τCL)
∥∥ξ l+

h
∥∥

μ
≤ ( +CR)

∥∥ξ l
h
∥∥

μ
+ cτq(τ ,h,μ). ()

In order to finish our estimates, we require a fulfillment of the following technical assump-
tion.

Assumption (T)
(T) There exists θ ∈ (, ) such that  < τ < θ/CL.

If assumption (T) is fulfilled, then τ < 
CL

≤ μ

μν+/ν
≤ ν

 μ. Thus we can also reformu-
late assumption (T) so that τ =O(μ).
Thus, let us assume that assumption (T) holds, then

∥∥ξ l+
h

∥∥
μ

≤ B
∥∥ξ l

h
∥∥

μ
+

cτ
 – τCL

q(τ ,h,μ) ()

with B = +τCR
–τCL

=  + τ
CL+CR
–τCL

≤ exp(τ CL+CR
–τCL

). Consequently,

∥∥ξ l
h
∥∥

μ
≤ Bl∥∥ξ

h
∥∥

μ
+
Bl – 
B – 

cτ
 – τCL

q(τ ,h,μ) ()

and since B –  = τ
CL+CR
–τCL

, we have cτ
(B–)(–τCL)

= c
CL+CR

, i.e.,

∥∥ξ l
h
∥∥

μ
≤ Bl∥∥ξ

h
∥∥

μ
+
(Bl – )c
CL +CR

q(τ ,h,μ)

≤ exp

(
lτ
CL +CR

 – τCL

)(∥∥ξ
h
∥∥

μ
+

c
CL +CR

q(τ ,h,μ)
)

≤ C̃ exp

(
T
CL +CR

 – τCL

)(
μhp + h(p+) +

μνν

(ν + ν)
q(τ ,h,μ)

)
, ()

where we used a straightforward estimate ‖ξ
h ‖μ ≤ C̃(μhp + h(p+)). We can notice that

due to the presence of the factor μ in front of the function q(τ ,h,μ) on the left-hand side
of (), we lost μ in denominators of q(τ ,h,μ).

http://www.boundaryvalueproblems.com/content/2013/1/116
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Now we are ready to formulate the main theorem.

Theorem  Let assumptions (M), (H), (R) and (T) be satisfied, then there exists a constant
C = C(μ) such that

(a) max
l=,...,r

∥∥elh∥∥
 ≤ C

((
 +μ +μ)τ  + ( +μ)h(p+) + ( +μ)μhp

)
, ()

(b) μ max
l=,...,r

∥∥∣∣elh∥∥∣∣ ≤ C
((
 +μ +μ)τ  + ( +μ)h(p+) + ( +μ)μhp

)
, ()

where ‖| · ‖| is defined by ().

Proof Since ‖elh‖μ ≤ ‖ξ l
h‖μ + ‖ηl

h‖μ, the statement of the theorem comes from () and
the fact that ‖ηl

h‖μ ≤ c̃(hp+ +μhp). Then we set

C(μ) = C̃ exp

(
T
CL +CR

 – θ

)
νν

ν + ν
max

{

νj
, j ∈ {, , . . . , , , }

}
. ()

�

Remark  Theorem  implies that the error of ourmethod isO(hp+τ ) in both energy and
L-norm. However, as we will see in the next section, the error estimate in the L-norm is
suboptimal with respect to h.

Remark  The dependency C on μ in the expression () (choice of θ depends on μ) can
be removed by applying the so-called continuous mathematical induction mentioned in
[]. This is useful namely in the cases when convection terms dominate, i.e., μ → +.
Consequently, in these cases assumption (T) can be weakened to a CFL-like condition
τ =O(hα) for suitable α > .

5 Numerical experiments
In this section we shall numerically verify the theoretical a priori error estimates of the
proposed semi-implicit method () for the cases of propagation of both a single solitary
wave and periodic waves.
We verify numerically the convergence of the method in the L-norm and the energy

norm given by () with respect to time step τ andmesh size h. The computational errors
are evaluated at certain time instants t = lτ during all computations in the corresponding
norms, i.e.,

err,lh,τ ≡ ∥∥ulh – u(lτ )
∥∥
, ()

err,lh,τ ≡ ∥∥∣∣ulh – u(lτ )
∥∥∣∣, ()

where u(lτ ) is a prescribed exact solution at time lτ and ulh is the numerical solution at
time level lτ obtained by the semi-implicit scheme () with constant time step τ on the
uniform grid with mesh size h. We suppose that errors behave according to the formula

errnh,τ = errnh + errnτ , n = , , ()

where

errnh ≈ D̃nhan , errnτ ≈ D̂nτ
bn , n = , . ()

http://www.boundaryvalueproblems.com/content/2013/1/116
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The constants D̃n, n = , , are independent of τ and D̂n, n = , , are independent of h.
The values an, bn, n = , , are the orders of accuracy of the method in the corresponding
considered norms. We define the experimental order of convergence (EOC) by

an =
log(errnh,τ /err

n
h,τ )

log(h/h)
and bn =

log(errnh,τ /err
n
h,τ )

log(τ/τ)
, n = , . ()

5.1 Single solitary case
The RLW equation has the following analytical single solitary wave solution given by

u(x, t) = c · sech(B(x – x – vt)
)

with B =



√
εc

μ( + εc)
, ()

which represents a single solitary wave of amplitude c, traveling with the velocity v =
 + εc in a positive x-direction and located initially at the point x. The initial condition is
extracted from the exact solution () and homogeneous Dirichlet boundary conditions
are set.
In order to compare our semi-implicit approach to the schemes given in [, ] and

[], we set the parameter values c = ., x = ., ε = μ = .. The run of the algorithm is
carried out up to time T = . over the problem domain [–,]. The resulting linear
algebraic problems () are solved by the restarted GMRESmethod. Figure  captures the
development of approximation solutions of a single solitary wave from an initial condition
to the terminal time T for a piecewise linear approximation with time step τ = . and
mesh size h = .. The similar plots are also obtained for another combination of τ and
h as we consider below.

.. Convergence with respect to h
First, we investigate the convergence of the method with respect to h. In order to restrain
the discretization errors with respect to time step τ , we use a sufficiently small time step
τ = –. Numerical experiments are carried out with the use of piecewise linear (P) ap-
proximations on five consecutive uniformly refined meshes having , , , ,
and , elements.
Tables  and  show computational errors in the L-norm and the energy norm at four

time instances t = ., t = ., t = . and t = ., the corresponding EOC during all

Figure 1 The 3D plot of approximation solutions of a single solitary wave (left) and corresponding
isolines in space-time domain (right).

http://www.boundaryvalueproblems.com/content/2013/1/116
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Table 1 Single solitary case: Computational errors in the L2-norm and experimental orders of
convergence for P1 approximation on a consequence of meshes at time instances t (τ = 10–3)

h t = 5.0 t = 10.0 t = 15.0 t = 20.0

err0h EOC err0h EOC err0h EOC err0h EOC

0.80 2.643E-03 - 3.507E-03 - 4.376E-03 - 5.255E-03 -
0.40 6.732E-04 1.973 8.762E-04 2.001 1.099E-03 1.993 1.298E-03 2.017
0.20 1.634E-04 2.043 2.232E-04 1.973 2.605E-04 2.077 3.284E-04 1.983
0.10 4.061E-05 2.009 5.763E-05 1.953 6.561E-05 1.989 8.061E-05 2.026
0.05 1.004E-05 2.016 1.355E-05 2.089 1.638E-05 2.002 2.107E-05 1.936

Table 2 Single solitary case: Computational errors in the energy norm and experimental
orders of convergence for P1 approximation on a consequence of meshes at time instances t
(τ = 10–3)

h t = 5.0 t = 10.0 t = 15.0 t = 20.0

err1h EOC err1h EOC err1h EOC err1h EOC

0.80 7.082E-03 - 7.096E-03 - 7.108E-03 - 7.123E-03 -
0.40 3.540E-03 1.000 3.550E-03 0.999 3.603E-03 0.980 3.673E-03 0.956
0.20 1.778E-03 0.993 1.791E-03 0.987 1.810E-03 0.993 1.891E-03 0.958
0.10 8.866E-04 1.004 8.943E-04 1.002 9.049E-04 1.000 9.099E-04 1.055
0.05 4.441E-04 0.997 4.492E-04 0.993 4.533E-04 0.997 4.573E-04 0.993

computations. Since the exact solution u(t) is sufficiently regular over �, it follows from
Remark  that the theoretical error estimates are of orderO(hp+τ ). On the other hand, we
observe that the numerical experiment of propagation of a single solitary wave indicates
a better behavior of EOC in the L-norm, which is expected to be asymptotically O(h)
for piecewise linear (p = ) approximations. These observations also correspond with the
finite element approach from [], where the same example was studied.
Further, the results for EOC in the energy norm are in a quite good agreement with

derived theoretical estimates; in other words, this technique produces an optimal order of
convergenceO(hp). Finally, both estimates in Theorem  confirm the well-know attribute
of DG schemes from the class of convection-diffusion problems, cf. [] and [].

.. Convergence with respect to τ

Secondly, we verify experimentally the convergence of themethod in the L-norm and the
energy normwith respect to time step τ . In order to restrain the discretization errors with
respect to h, we use a finemesh with , elements with piecewise linear approximation.
The computations were carried out with five different time steps τ , see Table . The

computational error is evaluated at final time t = T in the L-norm and the energy norm,
respectively. We observe that both computational errors have EOC of order O(τ ) in the
corresponding norms, which is again in a good agreement with derived theoretical results.

.. Invariant conservation quantities
Similarly as in [], we shall monitor the three conservation quantities for the propagation
of the single solitary wave corresponding to mass

IM(u) =
∫

�

udx, ()

http://www.boundaryvalueproblems.com/content/2013/1/116
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Table 3 Single solitary case: Computational errors in the L2-norm and the energy norm for P1

approximation with respect to time step (h = 0.05)

τ t = 20.0 t = 20.0

err0τ EOC err1τ EOC

0.2000 5.852E-02 - 8.647E-03 -
0.1000 2.977E-02 0.975 4.384E-03 1.008
0.0500 1.445E-02 1.046 2.160E-03 0.994
0.0250 7.228E-03 0.996 1.097E-03 0.977
0.0125 3.601E-03 1.005 5.300E-04 1.049

momentum

IP(u) =
∫

�

(
u +μ

(
u′))dx, ()

and energy

IE(u) =
∫

�

(
u + u

)
dx, ()

with respect to the run of the proposed algorithm. The analytical values for the invariants
on the entire real domain are given (in []) by

IM(u) =
c
B

, IP(u) =
c

B
+
Bcμ


,

IE(u) =
c

B
+
c

B
.

()

Moreover, for the purpose of a more accurate comparison with reference results, we
introduce the discrete l∞-norm defined by

err∞,l ≡max
k∈J

(∣∣ulh(x+k–) – u
(
x+k–, lτ

)∣∣, ∣∣ulh(x–k ) – u
(
x–k , lτ

)∣∣) ()

assessing the accuracy of the method by measuring the difference between the numerical
and analytic solutions uh and u, respectively.
Table  records the invariant quantities together with errors err∞, err computed on the

finest space-time grid and compares obtained results with several previously presented
schemes given in [, , ] and []. All three conservation quantities are kept almost con-
stant thus they illustrate the suitability of the proposed scheme for this problem. The ob-
tained satisfactory results correspond to the reference ones from [, , ] and []. More-
over, we append the recent results from [] in order to compare the incomplete variant
of stabilization in dispersion terms with the nonsymmetric one.

5.2 Periodic case
The family of periodic solutions of the RLW equation may be analytically written as (cf.
[])

u(x, t) = A +A · dn(B(x – x – vt),k
)

with v =  + εc ()

http://www.boundaryvalueproblems.com/content/2013/1/116
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Table 4 Single solitary case: Computed invariant quantities and errors in the l∞-norm and
the L2-norm (h = 0.05, τ = 10–3)

Method Time err∞ err0 IM(ulh) IP(ulh) IE(ulh)

present
method

0.0 - - 3.9799 0.8105 2.5790
5.0 2.325E-05 1.004E-05 3.9799 0.8104 2.5787
10.0 4.518E-05 1.355E-05 3.9799 0.8103 2.5785
15.0 6.901E-05 1.638E-05 3.9799 0.8101 2.5782
20.0 9.322E-05 2.107E-05 3.9799 0.8100 2.5780

ref. meth. [6]
(h = 0.125, τ = 0.1)

20.0 6.843E-04 1.757E-03 3.9800 0.8104 2.5792

ref. meth. [7]
(h = 0.1, τ = 0.1)

20.0 1.501E-03 1.480E-05 3.96467 0.80462 2.56972

ref. meth. [20]
(h = 0.8, τ = 0.1)

20.0 6.660E-05 1.820E-04 3.97992 0.81046 2.57901

ref. meth. [13]
(h = 0.125, τ = 0.1)

20.0 3.960E-03 9.092E-03 3.9800 0.8105 2.5791

ref. meth. [5]
(h = 0.05, τ = 0.1)

20.0 7.805E-05 2.069E-04 3.97988 0.81046 2.57901

analytical val.
(c = 0.1, μ = 1.0)

- - - 3.979949 0.810462 2.579007

and the parameters A, A and B given by

A = c
(
 –

 – k√
k – k + 

)
, A =

c√
k – k + 

, ()

B =



√
εc

μ( + εc)


√k – k + 
, ()

where dn(·,k) is the Jacobi elliptic function and k ∈ [, ) stands for the elliptic modulus;
for definitions and other properties, see []. The exact solution ()-() represents a
one-parameter family of periodic waves of amplitude A + A, traveling with the velocity
v in a positive x-direction. The spatial period ωk and time period Tk for each wave are
defined by

ωk = K(k)/B and Tk = ωk/v, ()

where K(k) is a complete elliptic integral of the first kind, see []. The limit k →  implies
that the periodic behavior reduces to the propagation of a single solitary wave.
In order to compute the periodic case on approximately the same space-time domain

as in the single solitary case, we again set the parameter values c = ., x = ., ε = μ = .
and the parameter k is experimentally set up as k = . to have periods Tk

.= . and
ωk

.= ..
The run of the algorithm is carried out up to one time period Tk over the problem do-

main [–ωk , ωk]. The initial and nonhomogeneous Dirichlet conditions are extracted
from the exact solution () and the same linear algebraic solver is used as in the pre-
vious case. Figure  depicts the propagation of approximation solutions of periodic waves
from the initial condition to the final time Tk for a piecewise linear approximation on the
finest considered space-timemesh with time step τ = . andmesh size h = .. Other
coarse grids also produce similar plots.
In what follows, we shall proceed similarly as in Section . to verify the convergence

and preservation of studied invariant quantities.
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Figure 2 The 3D plot of approximation solutions of periodic waves (left) and corresponding isolines
in space-time domain (right).

Table 5 Periodic case: Computational errors in the L2-norm and experimental orders of
convergence for P1 approximation on a consequence of meshes at time instances t (τ = 10–3)

h t = 5.0 t = 10.0 t = 15.0 t = 20.0

err0h EOC err0h EOC err0h EOC err0h EOC

0.80 2.790E-02 - 3.589E-02 - 4.531E-02 - 6.290E-02 -
0.40 7.016E-03 1.992 9.085E-03 1.982 1.156E-02 1.971 1.612E-03 1.964
0.20 1.860E-03 1.915 2.308E-03 1.977 3.005E-03 1.943 4.281E-03 1.912
0.10 4.952E-04 1.909 6.179E-04 1.901 8.084E-04 1.894 1.204E-04 1.830
0.05 1.357E-04 1.868 1.724E-04 1.841 2.314E-04 1.804 3.534E-04 1.768

Table 6 Periodic case: Computational errors in the energy norm and experimental orders of
convergence for P1 approximation on a consequence of meshes at time instances t (τ = 10–3)

h t = 5.0 t = 10.0 t = 15.0 t = 20.0

err1h EOC err1h EOC err1h EOC err1h EOC

0.80 9.029E-03 - 9.004E-03 - 9.115E-03 - 9.251E-03 -
0.40 4.615E-03 0.968 4.658E-03 0.951 4.767E-03 0.935 4.862E-03 0.928
0.20 2.370E-03 0.961 2.488E-03 0.905 2.597E-03 0.876 2.770E-03 0.812
0.10 1.275E-03 0.894 1.363E-03 0.868 1.502E-03 0.790 1.601E-03 0.790
0.05 6.906E-04 0.885 7.533E-04 0.856 8.569E-04 0.809 9.154E-04 0.807

.. Convergence with respect to h
The h-convergence in the periodic case is investigated on a sequence of five successive
refined grids partitioning the considered problem domain [–,]. The choice of time
step is again small enough to suppress the influence of time discretization errors, and the
computations are performed by piecewise linear approximations, subsequently.
The obtained results recorded in Tables  and  illustrate the same behavior of com-

putational errors in the L-norm and the energy norm with respect to the spatial dis-
cretization as in the case of a single solitary wave propagation. The computed EOCs at
all four monitoring time instances keep asymptotically the same orders, i.e., errh =O(h)
and errh =O(h), for piecewise linear approximations and confirm the spatially suboptimal
a priori error estimates () with respect to the L-norm and spatially optimal estimates
() in the energy norm, respectively. The influence of discretization errors on compu-
tations with a long time domain can be better eliminated by using the Crank-Nicolson
numerical scheme instead of the backward Euler method.
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Table 7 Periodic case: Computational errors in the L2-norm and the energy norm for P1

approximation with respect to time step (h = 0.05)

τ t = 20.0 t = 20.0

err0τ EOC err1τ EOC

0.2000 7.690E-02 - 2.287E-02 -
0.1000 4.061E-02 0.921 1.221E-02 0.905
0.0500 2.078E-02 0.967 6.393E-03 0.934
0.0250 1.044E-02 0.993 3.453E-03 0.889
0.0125 5.514E-03 0.921 1.831E-03 0.915

Table 8 Periodic case: Computed invariant quantities and errors in the l∞-norm and the
L2-norm (h = 0.05, τ = 10–3)

Method Time err∞ err0 IM(ulh) IP(ulh) IE(ulh)

present
method

0.0 - - 16.5051 3.3180 10.6008
5.0 2.855E-05 1.357E-04 16.5056 3.3180 10.6005
10.0 3.063E-05 1.724E-04 16.5057 3.3179 10.6003
15.0 4.604E-05 2.314E-04 16.5057 3.3178 10.6000
20.0 7.854E-05 3.534E-04 16.5060 3.3178 10.6001

analytical val.
(k = 0.63048)

- - - 16.50560 3.318064 10.60086

.. Convergence with respect to τ

The τ -convergence is experimentally verified by the computations on the finest spatial
grid having , elements with piecewise linear approximation. The computations are
performed by five different time steps τ and monitored at final time of one period Tk . The
theoretical results are in accordancewith the observations listed inTable , i.e., errτ =O(h)
and errτ =O(h).
From the presented numerical results in Sections ..-.. and ..-.., we see that

the quality of approximate solutions obtained for a single solitary case and a periodic case
is quite comparable.

.. Invariant conservation quantities
Similarly as in Section .., we monitor the preservation of invariants of mass, momen-
tum and energy defined by (), () and (), respectively. During the whole period of
time, in the course of which the waves propagate inside the periodic domain [–ωk , ωk],
all these three invariants of motion remain conserved and equal to their original values
that are well-determined analytically at t = .
The lack of similar problems in the literature caused that our experiments with peri-

odic waves could not be compared with other methods, thus Table  captures only the
development of errors in the l∞-norm and the L-norm and keeping the invariant quan-
tities during the whole computation performed on the finest space-time grid. All three
invariants of motion are not different from their analytical values, according to which this
method can be considered suitable also for nonperiodic cases.

6 Conclusion
We have presented and theoretically analyzed an efficient numerical method for the so-
lution of the RLW equation, which is based on the space dicretization by the discontin-
uous Galerkin method and a semi-implicit time discretization with suitable linearization
of convective terms. Under some additional assumptions, we have derived a priori error
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estimates, namely O(hp + τ ) in the L-norm and in the energy norm. On the other hand,
the presented numerical experiments for single solitary as well as periodic cases signal a
better behavior of the experimental (L)-order of convergence, which is expected to be
asymptotically O(h + τ ) for piecewise linear approximations with a nonsymmetric vari-
ant of interior penalty Galerkin discretizations. In the case of the energy norm, we obtain
the optimal experimental order of convergence.
The obtained results confirm that the proposed scheme is a powerful and reliable

method for the numerical solution of a nonstationary nonlinear partial differential equa-
tion such as the RLW equation.
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