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Abstract
We consider equations involving the one-dimensional p-Laplacian

(
∣∣u′(t)

∣∣p–2u′(t))′ + λf (u(t)) = 0, t ∈ (0, 1)

with the Dirichlet boundary conditions. By using time map methods, we show how
changes of the sign of f (·) lead to multiple positive solutions of the problem for
sufficiently large λ.
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1 Introduction
Let f : [,∞)→R be continuous and change its sign. Let � be an open subset of RN with
smooth boundary ∂�. The semi-positone problems and their special cases

�u + λf (u) =  in �, u =  on ∂� (.)

and

u′′(t) + λf
(
u(t)

)
= , t ∈ (, ), u() = u() =  (.)

(and their finite difference analogues) have been extensively studied since early s. Sev-
eral different approaches such as variational methods, bifurcation theory, lower and up-
per solutions method and quadrature arguments have been successfully applied to show
the existence of multiple solutions. See Brown and Budin [], Peitgen et al. [], Peitgen
and Schmitt [], Hess [], Ambrosetti and Hess [], Cosner and Schmitt [], Dancer and
Schmitt [], Espinoza [], Anuradha and Shivaji [], Anuradha et al. [], de Figueiredo
[], Lin and Pai [], Clément and Sweers [] and the references therein.
Very recently, Loc and Schmitt [] considered the problem

�pu + λf (u) =  in �, u =  on ∂�, (.)

where �p is the p-Laplace operator for p ∈ (,∞). They assumed that the nonlinearity f is
a continuous function onR, f () ≥ , and there exist  < a < b < a < b < · · · < bm– < am
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such that f ≤  on (ak ,bk) and f ≥  on (bk ,ak+) for every k = , . . . ,m – . They proved
that, for λ sufficiently large, if

∫ ak+

ak
f (s)ds >  for all k ∈ {, . . . ,m – }, (.)

then the problem (.) has at least m –  positive bounded solutions u, . . . ,um– which
belong to the Sobolev space W ,p

 (�) and are such that ‖u‖∞ ∈ (ak ,ak+] for each k ∈
{, . . . ,m – }, where

‖u‖∞ =max
{∣∣u(x)∣∣ | x ∈ �̄

}
.

In the special case that p =  and N = , Brown and Budin [] applied the quadrature
arguments to get the following more detailed results.

Theorem A [, Theorem .] Assume that
(H) f ∈ C[,∞);
(H) f () > ;
(H) There exists a, . . . ,an ∈R such that  < a < a < · · · < an and f (ai)≤  for

i = , , . . . ,n;
(H) If F(u) =

∫ u
 f (s)ds, there exist b, . . . ,bn– ∈R with

a < b < a < b < · · · < an– < bn– < an such that f (bi) >  and F(bi) > F(u) for
 ≤ u≤ bi, i = , , . . . ,n – .

Then:
(a) For all λ > , there exists a solution (λ,u) of (.).
(b) If λ > inf{λ(ρ) : ρ ∈ (αi,βi)}, there exist at least two solutions (λ,u) of (.) such that

αi < ‖u‖∞ < βi, i = , , . . . ,n – ,

where

βi = inf
{
u > bi | f (u) = 

}
, αi = inf

{
u | (u,βi) ⊆ S

}
(.)

and

S =
{
u | u > , f (u) > ,F(u) > F(s) for all s :  ≤ s < u

}
. (.)

(c) If (λ,u) is any solution of (.) such that αi < ‖u‖∞ < βi, then

λ > αik–,

where k = sup{|f (u)| :  ≤ u ≤ βi}.

Of course the natural question is whether or not the similar results still hold for the
corresponding problem involving the one-dimensional p-Laplacian

(∣∣u′(t)
∣∣p–u′(t)

)′ + λf
(
u(t)

)
= , t ∈ (, ),

u() = u() = .
(.)
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We shall answer these questions in the affirmative if p ∈ (, ]. More precisely, we get the
following theorem.

Theorem . Let p ∈ (, ] and let (H), (H), (H) hold. Assume that

(H′) either f () >  or f () =  and

f = lim
s→+

f (s)
sp–

> . (.)

Then:
(a) For all λ > λ

f
, there exists a solution (λ,u) of (.), and λ is the least eigenvalue of

BVP

(∣∣u′(t)
∣∣p–u′(t)

)′ + λ
∣∣u(t)∣∣p–u(t) = , t ∈ (, ),

u() = u() = .
(.)

(b) If λ > inf{λ(ρ) : ρ ∈ (αi,βi)}, there exist at least two solutions (λ,u) of (.) such that

αi < ‖u‖∞ < βi, i = , , . . . ,n – .

(c) If (λ,u) is any solution of (.) such that αi < ‖u‖∞ < βi, then

λ >
(

αi

C∗

)p–

,

where

C∗ =
p – 
p

·
(



) p
p– (

sup
s∈[,βi]

∣∣f (s)∣∣) 
p– . (.)

We shall apply the time map method to show how changes of the sign of f (·) lead to
multiple positive solutions of (.) for sufficiently large λ.
In the following, we extend f so that f (u) >  for all u < , then all the solutions of (.)

are positive on (, ).

2 Preliminaries
To prove our main results, we use the uniqueness results due to Reichel and Walter []
on the initial value problem

(∣∣u′(t)
∣∣p–u′(t)

)′ + λf
(
u(t)

)
= , t ∈ (, ),

u(a) = b, u′(a) = d,
(.)

where a ∈ [, ] and b,d ∈R.

Lemma . Let (H) hold. If a ∈ (, ] and d �= , then the initial value problem (.) has a
unique local solution. The extension u(t) remains unique as long as u′(t) �= .

Proof It is an immediate consequence of Reichel and Walter [, Theorem ]. �

http://www.boundaryvalueproblems.com/content/2013/1/125
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Lemma . Let (H) hold. Let a ∈ (, ), and let ρ ∈ (,∞) be such that

f (ρ) �= .

Then the initial value problem

(∣∣u′(t)
∣∣p–u′(t)

)′ + λf
(
u(t)

)
= , t ∈ (, ),

u(a) = ρ, u′(a) = 
(.)

has a unique local solution.

Proof (H) implies that f is locally Lipschitzian. This together with the assumption f (ρ) �=
 and using [, (iii) and (v) in the case (β) of Theorem ] yields that (.) has a unique
solution in some neighborhood of a. �

Lemma . Let g :R →R be continuous. Let u be a solution of the equation

(∣∣u′(t)
∣∣p–u′(t)

)′ + g
(
u(t)

)
= , t ∈ (, ) (.)

with ‖u‖∞ = ρ ∈ S . Let x ∈ (, ) be such that u′(x) = . Then

u(x – t)≡ u(x + t), t ∈ (
,min{x,  – x}

)
. (.)

Proof Since g is independent of t, both u(x – t) and u(x + t) satisfy the initial value prob-
lem

⎧⎪⎪⎨
⎪⎪⎩
(|w′(t)|p–w′(t))′ + g(w(t)) = , t ∈ (,min{x,  – x}),
w() = u(x),

w′() = .

(.)

By Lemmas . and ., (.) has a unique solution defined on t ∈ (,min{x,  – x}).
Therefore, (.) is true. �

Lemma . Let (λ,u) be a positive solution of the problem

(∣∣u′(t)
∣∣p–u′(t)

)′ + λf
(
u(t)

)
= , t ∈ (, ), (.)

u() = u() =  (.)

with ‖u‖∞ = ρ ∈ S and λ > . Let x ∈ (, ) be such that u′(x) = . Then
(a) x = 

 ;
(b) x is the unique point on which u attains its maximum;
(c) u′(t) > , t ∈ (,  ).

Proof (a) Suppose on the contrary that x �= 
 , say x >


 , then

 = u() = u( – x).

However, this is impossible since  – x ∈ (, ) and u >  in (, ). Therefore x = 
 .

http://www.boundaryvalueproblems.com/content/2013/1/125
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(b) Suppose on the contrary that there exists x ∈ (, ) with x �= x and

u(x) = u(x) =: ρ.

We may assume that x < x. The other case can be treated in a similar way.
If u(t) ≡ u(x) in the interval (x,x), then Lemma . yields that

u(t) ≡ u(x) = ρ > , t ∈ (, ).

This contradicts the boundary conditions u() = u() = . Therefore, u(t) �≡ u(x) in any
subinterval of (, ).
So, there exists x∗ ∈ (x,x), such that

u(x∗) =min
{
u(t) | t ∈ (x,x)

}
.

Obviously,

 < u(x∗) < ρ, u′(x∗) = .

Multiplying both sides of the equation in (.) by u′ and integrating from t to x, we get
that

∣∣u′(t)
∣∣p = λ

p
p – 

[
F(ρ) – F

(
u(t)

)]
, t ∈

[
,




]
(.)

and subsequently,

 =
∣∣u′(x∗)

∣∣p = λ
p

p – 
[
F(ρ) – F

(
u(x∗)

)]
.

This contradicts the facts that ρ ∈ S and u(x∗) < ρ . Therefore,

u
(



)
> u(t), t ∈

[
,




)
.

Similarly, we can prove that

u
(



)
> u(t), t ∈

(


, 

]
.

(c) Suppose on the contrary that there exists x̂ ∈ (,  ) with u′(x̂) = . Then

u(x̂) < ρ.

This together with (.) implies that

 =
∣∣u′(x̂)

∣∣p = λ
p

p – 
[
F(ρ) – F

(
u(x̂)

)]
.

This contradicts the facts that ρ ∈ S and u(x̂) < ρ . �
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3 Proof of themain results
To prove Theorem ., we need the following preliminary results.

Lemma . For any ρ ∈ S , there exists a unique λ >  such that

(∣∣u′(t)
∣∣p–u′(t)

)′ + λf
(
u(t)

)
= , t ∈ (, ), (.)

u() = u() =  (.)

has a positive solution (λ,u) with ‖u‖∞ = ρ . Moreover, ρ → λ(ρ) is a continuous function
on S .

Proof By Lemma ., (λ,u) is a positive solution of (.), (.) if and only if (λ,u) is a
positive solution of

(∣∣u′(t)
∣∣p–u′(t)

)′ + λf
(
u(t)

)
= , t ∈

(
,




)
, (.)

u() = u′
(



)
= . (.)

Suppose that (λ,u) is a solution of (.), (.) with ‖u‖∞ = ρ . Then

∣∣u′(t)
∣∣p = λ

p
p – 

(
F(ρ) – F

(
u(t)

))
, t ∈

[
,




]

and so

t
(

p
p – 

λ

)/p

=
∫ u(t)



(
F(ρ) – F(s)

)–/p ds, t ∈
[
,




]
. (.)

Putting t = 
 , we obtain

λ/p = 
(
p – 
p

)/p ∫ ρ



(
F(ρ) – F(s)

)–/p ds. (.)

Hence λ (if exists) is uniquely determined by ρ .
If ρ ∈ S , we define λ(ρ) by (.) and u(t) by (.). It is straightforward to verify that u is

twice differentiable, u satisfies (.), (.), u >  in (, ) and u(/) = ρ . The continuity of
λ(·) is implied by (.) and this completes the proof. �

Let

r = inf
{
u >  : f (u) = 

}
.

Then (, r) ∈ S .

Lemma . Let (H) and (H′) hold, and let p ∈ (,∞). Then

lim
ρ→

λ(ρ) =
λ

f
, lim

ρ→r–
λ(ρ) = ∞,

where λ is the least eigenvalue of (.).

http://www.boundaryvalueproblems.com/content/2013/1/125
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Proof We only deal with limρ→ λ(ρ) = λ
f
. The other one can be treated by the same

method.
To this end, we divide the proof into two cases.
Case . We show that f = ∞ implies limρ→ λ(ρ) = .
In this case, for any M > , there is a positive number R such that f (w) > Mwp– for

 ≤ w≤ R. Thus, if ρ < R, then

F(ρ) – F(w) =
∫ ρ

w
f (v)dv

≥ M
p

(
ρp –wp)

for  ≤ w≤ ρ . From (.), we have that for any ρ ≤ R,

[
λ(ρ)

] 
p = 

(
p – 
p

) 
p
∫ ρ



dw
[F(ρ) – F(w)]/p

≤ 
(
p – 
p

)/p( p
M

)/p ∫ ρ



dw
[ρp –wp]/p

≤ 
(
p – 
M

)/p ∫ 



dw
ρ

[ – (w
ρ
)p]/p

≤ 
(
p – 
M

)/p( 
p – 

)/p ∫ (p–)/p



ds
[ – sp

p– ]/p

≤ 
(


M

)/p ∫ (p–)/p



ds
[ – sp

p– ]/p

=
(


M

)/p

πp,

where

πp := 
∫ (p–)/p



ds
[ – sp

p– ]/p
,

see Zhang []. Hence

lim
ρ→

λ(ρ) = .

Case . We show that f =m for somem ∈ (,∞) implies that

lim
ρ→

λ(ρ) =
p – 
pm

τ p
p =

(πp)p

f
, (.)

where

τp = 
∫ 



[
p

 – vp

]/p

dv, p > . (.)

http://www.boundaryvalueproblems.com/content/2013/1/125
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In fact, (.) yields

[
mλ(ρ)

]/p = 
[
m(p – )

p

] 
p
∫ ρ



dw
[F(ρ) – F(w)]/p

= 
(
p – 
p

)/p

·
∫ 



[
p

 – vp

]/p

dv

– 
(
p – 
p

)/p ∫ 



[
p

 – vp

]/p [ + γ (ρ, v)]/p – 
[ + γ (ρ, v)]/p

dv (.)

for p > , where

γ (ρ, v) =
p
m

∫ ρ

ρv[f (w) –mwp–]dw
ρp( – vp)

.

We will show that the last integral in (.) converges to zeros as ρ → .
For  ≤ v≤ 

 , using l’Hospital’s rule, it follows that as ρ → ,

∣∣γ (ρ, v)∣∣ =
p
m

∫ ρ

ρv |f (w) –mwp–|dw
ρp( – vp)

≤ p
m

∫ ρ

 |f (w) –mwp–|dw
ρp( – vp)

→ p
m

|f (ρ) –mρp–|
pρp–( – vp)

=
p
m

| f (ρ)
ρp–

–m|
p( – vp)

→ .

For 
 ≤ v ≤ ,

lim
ρ→

∣∣γ (ρ, v)∣∣ = lim sup
ρ→

{∣∣∣∣ f (w) –mwp–

wp–

∣∣∣∣ : ρ ≤ w≤ ρ

}
p

mρp( – vp)

∫ ρ

ρv
wp– dw = 

uniformly in v. Therefore, (.) implies

lim
ρ→

[
mλ(ρ)

]/p = 
(
p – 
p

) 
p
∫ 



[
p

 – vp

]/p

dv. (.)

Therefore, (.) holds. �

From the definitions of αi and βi, we have that ai ≤ αi < βi ≤ ai+ and (αi,βi) ⊆ S for
i = , , . . . ,n – . Moreover, we have the following.

Lemma . Let p ∈ (, ]. Then
(i) limρ→α+i

λ(ρ) =∞;
(ii) limρ→β–

i
λ(ρ) = ∞.

http://www.boundaryvalueproblems.com/content/2013/1/125
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Proof (i) Suppose firstly that f (αi) > . Since S is open, αi /∈ S and so there exists k :  < k <
αi such that

F(αi) = F(k).

Clearly k must be a local maximum for F and so f (k) = . If M =max{|f ′(u)| :  ≤ u ≤ bi},
then

f (u) ≤ M|u – k|,  ≤ u≤ bi.

Let

N =max
{∣∣f (u)∣∣ :  ≤ u≤ bi

}
.

Then if αi < ρ < bi,

F(ρ) – F(u) = F(ρ) – F(αi) + F(k) – F(u)

= (ρ – αi)f (ξ ) + (k – u)f (η),

where ξ ∈ (αi,ρ) and η ∈ (k,u)

≤ N(ρ – αi) +M(k – u).

Hence

(
λ(ρ)

)/p = 
(
p – 
p

)/p ∫ ρ



(
F(ρ) – F(s)

)–/p ds

≥ 
(
p – 
p

)/p ∫ αi



(
N(ρ – αi) +M(k – u)

)–/p du

=
∫ αi


Hρ(u)du.

As ρ → α+
i , Hρ(u) = ( p–p )/p(N(ρ – αi) +M(k – u))–/p is a nondecreasing sequence of

measurable functions. Therefore, by themonotone convergence theorem and the assump-
tion p ≥ , it follows that

lim
ρ→α+i

[
λ(ρ)

]/p ≥ lim
ρ→α+i

∫ αi


Hρ(u)du

=
∫ αi



(
p – 
p

)/p

M–/p[k – u]–/p du = ∞

since k ∈ (,αi).
Suppose next that f (αi) = . Then F ′(αi) = .
Since

F(αi) – F(u) = f (η)(αi – u), where η ∈ (u,αi),∣∣f (u)∣∣ = ∣∣f (u) – f (αi)
∣∣ ≤ M|u – αi|.

http://www.boundaryvalueproblems.com/content/2013/1/125
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Thus
∫ αi



[
F(αi) – F(u)

]–/p du ≥
∫ αi



[
M|αi – u|]–/p du

=
∫ αi


M–/p|αi – u|–/p du = ∞.

(ii) Let K =max{|f (u)| :  ≤ u ≤ βi} and K =max{|f ′(u)| :  ≤ u≤ βi}. Since f (βi) = ,

f (u) ≤ K|u – βi|, ≤ u < βi. (.)

Hence, if  ≤ u≤ ρ < βi, then it follows from (.) that

F(ρ) – F(u) = F(ρ) – F(βi) + F(βi) – F(u)

= (ρ – βi)f (ξ ) + (βi – u)f (η),

where ξ ∈ (ρ,βi),η ∈ (u,βi)

≤ K(βi – ρ) +K(βi – u).

Hence, if  < ρ < βi,

(
λ(ρ)

)/p ≥ 
(
p – 
p

)/p ∫ ρ



(
K(βi – ρ) +K(βi – u)

)–/p du

=
∫ βi


Gρ(u)du,

where Gρ(u) = ( p–p )/p(K(βi – ρ) +K(βi – u))–/pχ[,ρ] and χ[,ρ] denotes the character-
istic function of [,ρ]. AsGρ is a nondecreasing sequence of measurable functions, by the
monotone convergence theorem

lim
ρ→β–

i

[
λ(ρ)

]/p ≥ lim
ρ→β–

i

∫ βi


Gρ(u)du

=
∫ βi



(
p – 
p

)/p

K–/p
 |βi – u|–/p du = ∞. �

Proof of Theorem . (a) follows from the continuity of ρ → λ(ρ) and Lemma ..
(b) follows from the continuity of ρ → λ(ρ) and Lemma ..
(c) (λ,u) is any solution of (.), (.) if and only if

u(t) =
∫ t



(∫ /

τ

λf
(
u(s)

)
ds

) 
p–

dτ , t ∈
[
,




]
.

Hence

∣∣u(t)∣∣ ≤ λ


p–

∫ /



(∫ /

τ

∣∣f (u(s))∣∣ds
) 

p–
dτ

≤ λ


p–
p – 
p

·
(



) p
p– (

sup
y∈[,]

∣∣f (u(y))∣∣) 
p– .

http://www.boundaryvalueproblems.com/content/2013/1/125
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Now, if αi < ‖u‖∞ < βi, then

αi ≤ λ


p–
p – 
p

·
(



) p
p– (

sup
s∈[,βi]

∣∣f (s)∣∣) 
p–

and so

λ >
(

αi

C∗

)p–

. �
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