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uniform attractor in L#(€2,du) for the non-autonomous p-Laplacian evolution
equations subject to dynamic nonlinear boundary conditions by using the Sobolev
compactness embedding theory, and the existence of the uniform attractor in
(W'P(2) N LI(2)) x LIT) by asymptotic a priori estimate.

1 Introduction
We are concerned with the existence of uniform attractors for the process associated with
the solutions of the following non-autonomous p-Laplacian equation:

ur— Dpu+ [ulPu + f(u) =gx,t), (x,t)eQxR. 1)
Equation (1) is subject to the dynamic flux boundary condition

U + |Vu|p‘2% +f(w)=0, (x,t)el xR, 2)
and the initial condition

ulx,v) = up(x), x€Q, (3)

where Q C R” (n > 3) is a bounded domain with smooth boundary I', v denotes the outer
unitnormalon T, p > 2, the nonlinearity f and the external force g satisfy some conditions
specified later.

Non-autonomous equations appear in many applications in the natural sciences, so they
are of great importance and interest. The long-time behavior of solutions of such equa-
tions has been studied extensively in recent years (e.g., see [1-4]). The first attempt was to
extend the notion of a global attractor to the non-autonomous case, leading to the con-
cept of the so-called uniform attractor (see [5]). It is remarkable that the conditions en-
suring the existence of a uniform attractor are parallel with those for the autonomous
case. A uniform attractor need not be ‘invariant; unlike a global attractor for autonomous
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systems. Moreover, it is well known that the trajectories may be unbounded for many non-
autonomous systems when the time tends to infinity, and there does not exist a uniform
attractor for these systems.

Dynamic boundary conditions are very natural in many mathematical models such as
heat transfer in a solid in contact with a moving fluid, thermoelasticity, diffusion phenom-
ena, heat transfer in two mediums, problems in fluid dynamics (see [1-4, 6-11]).

In recent years, many authors have studied p-Laplacian equations (see [12-17]) and the
problem (1)-(3) for p = 2 (see [3, 7, 9, 10]) by discussing the existence and uniqueness of
local solutions, the blow-up of solutions, the global existence of solutions, the global at-
tractors of solutions and the eigenvalue problems, etc. In [18], the authors have proved
the global existence of solutions for quasi-linear elliptic equations with dynamic bound-
ary conditions. Due to the complications inherent to nonlinear dynamic boundary condi-
tions, these problems (1)-(3) still need to be investigated. In [15-17, 19], the authors have

considered the eigenvalue problem

~Apu+ |ulPPu=0, x€Q,

|VulP=23% = A|ulpu, xel

and obtained some results, and some p-Laplacian elliptic equations with nonlinear bound-
ary condition have been studied by using these results mentioned in [15-17, 19]. In [14,
20], the authors have proved the existence of uniform attractors for the non-autonomous
p-Laplacian equations with Dirichlet boundary conditions in a bounded and an un-
bounded domain in R”. The authors have proved the existence of global attractors for
the autonomous p-Laplacian equations with dynamic flux boundary conditions in [21]. In
[11], the authors have used a new type of uniformly Gronwall inequality and proved the

existence of a pullback attractor in L1 (2) x L"2(T") of the following equation:

u— DNpu+ [ulPu+f(u) = h(t), (x,t)eQ xR,
U + |Vu|P‘Zg—Z +g(u)=0, el xR,

u(x, 7) =up(x), x€Q,

under the assumptions that f, g satisfy the polynomial growth condition with order ry, r,

and /(¢) satisfies some weak assumption

t
/ e’ ||h(s)|‘iz(m ds < 00

for all £ € R, where 6 is some positive constant.

Moreover, the existence of uniform attractors for the non-autonomous p-Laplacian
equations with dynamical boundary conditions remains unsolvable.

To study problem (1)-(3), we assume the following conditions.

(H;) The functions f € C}(R,R) and satisfy

fw)=~l (4)
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for some [ > 0, and
alul? —k <f(wu < co|lul? + k, (5)

where¢; >0 (i=1,2),g>2,k>0.
(Hy) The external force g : 2 x R — R is locally Lipschitz continuous, %, ge
I? (R,L*(S2)) and satisfies

loc

r+l
sup/ ||g(s) ||i2(9) ds < 00. (6)
reR Jr

(H3) Furthermore, g(¢) is uniformly bounded in L2(2) with respect to ¢ € R, i.e., there
exists a positive constant K such that

s0pl¢(0)] 2 g < K-

The main purpose of this paper is to study the long-time dynamical behavior for the
non-autonomous p-Laplacian evolutionary equations (1)-(3) under quite general assump-
tions (4)-(6). We first prove the existence and the uniqueness of solutions for (1)-(5),
and then the existence of uniformly (w.r.t. o € H,(g)) absorbing sets for the process
{U,(t,7)}sem, (o) corresponding to (1)-(5) in L*(Q,du) and (W(Q) N L1()) x L1(T), re-
spectively, is obtained. Finally, the existence of the uniform (w.r.t. o € H,,(g)) attractor for
the process {U; (£, T)}se1,,(g) corresponding to (1)-(5) in L?(R) is obtained by the Sobolev
compactness embedding theory and the existence of the uniform (w.r.t. o € H,,(g)) attrac-
tor for the process {U, (£, T)}o e, (g corresponding to (1)-(5) in (WP(Q)NLI(RQ)) x LI(T)
is obtained by asymptotic a priori estimate.

This paper is organized as follows. In Section 2, we give some notations and lemmas used
in the sequel. The existence and the uniqueness of solutions for the problem (1)-(5) have
been proved in Section 3. Section 4 is devoted to proving the existence of the uniformly
(w.r.t. o € H,(g)) absorbing sets in L*(Q2,du), L1(Q,du) and (L1(Q) N WP(Q)) x L1(T),
respectively, for the process {Us (¢, T)}5 e, (o) corresponding to (1)-(5) and the existence of
the uniform (w.r.t. o € H,,(g)) attractors in L>(Q, dj), L1(Q,dp) and (L1(2) N W (R)) x
L1(T"), respectively, for the process {U, (¢, T)}s e, (g corresponding to (1)-(5).

Throughout this paper, we denote the inner product in L2(£2) (or L(I")) by (-, ), and let
C be a positive constant, which may be different from line to line (and even in the same
line); we denote the trace operator by y.

2 Preliminaries
In order to study the problem (1)-(5), we recall the Sobolev space W'#($2) defined as the
closure of C®(2) N W(Q) in the norm

1
p
llallnp = </ [Vul? + Iulpdx>
Q

and denote by X~ the dual space of X. We also define the Lebesgue spaces as follows:

L'(D) = {v: IVl < oo},
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where

1
Wl = ( f |v|’d5>
r

for r € [1,00). Moreover, we have
Q)@ L) = L*(Q,du), se[l,00)

and

1 1
”U”LS(Q,dM) = (/ |u|s dx) + (/ |V|S ds)
Q r

for any U = (':) € L’(Q, du), where the measure du = dx|q @ dS|r on Q is defined for any
measurable set A C Q by u(A) = |A N Q| + S(ANT). In general, any vector 6 € L*(Q2, du)
will be of the form (3;) with 6; € L°(2,dx) and 6, € L*(T,dS), and there need not be any
connection between 6; and 6,.

Denote

V=yu,

P
p-1

QT=QX(1',T),

p

Iy =T x (1,7),
V= (L7 (r, T; W(Q)) N L*(Qr) N LY(Q))

x (L7 (z, T; W PP (D)) x L2(T'7) N LU(T'7)),
V' = (7 (¢, T; (W(Q) ) + L2(Q) + L7 (7))

x (L7 (x, T; (W5 (D)) ) + L2(T7) + L7 (T'7))
and let the operator A : L?(z, T; W?(Q)) — (L?(z, T; W?(2))) be defined as follows:

(A(u),v):/ IVulP2Vu - Vv + lulf2uv. 7)
Qr

Next, we recall briefly some lemmas used to prove the well-posedness of the solutions
and the existence of the uniform (w.r.t. ¢ € ) attractors for (1)-(3) under some assump-
tions on f.

Lemma 2.1 [22] Let O be a bounded domain in R" and {g,};2, C L1(O), let 1 < q < 0o be
given. Assume that ||g,||1a(0) < C, where C is independent of n, g, — g, as n — 00, almost
everywhere in O, and g € L1(O). Then g, — g, as n — oo weakly in L1(O).
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Lemma 2.2 [13] Letx,y € R" and (-,-) be the standard scalar product in R". Then, for any
P > 2, there exist two positive constants Cy, Cy, which depend on p, such that

(Il 2x = [y %y,2 = y) = Cilx - y1?,

[l — [ylP~2y| < Co (12 + 191)? e =y

Lemma 2.3 [23] Let 1 < p < 00 and Q be a bounded subset of R" with smooth boundary

I'. Then the inclusion
W (Q) << L'(I")

is compact for any r € [1,p*), where

(n-1)p .
pa': — n-p ’ p<n
00, p=n.

Lemma 2.4 [24] Let A be defined in (7) and X = LF(t, T; WYP(RQ)). Then, for any u,v € X,

one has
() - AW),u =)= (Il = IvIE) (Ll = V).
Furthermore, (A(u) — A(v),u —v) =0 ifand only ifu =v a.e. in Qr.
Lemma 2.5 [25] Let X be a given Banach space with dual X', and let u and g be two

functions belonging to L' (a, b; X). Then the following three conditions are equivalent:

(i) u is almost everywhere equal to a primitive function of g, i.e.,

ut)= ¢+ / g(s)ds

for almost every t € [a, b);
(i) For each test function ¢ € D(a, b),

b b
f u()$'(¢) dt = - / 2(O)(¢) dt (¢/(t)=d_‘/’>;

(iii) Foreachne X',

a (u,m) = (g:m)
—\U, = \&
a0
in the scalar distribution sense on (a, b).
If (1)-(iii) are satisfied, u is almost everywhere equal to a continuous function from [a, b]
into X.

Page 5 of 24
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3 The well-posedness of solutions
In what follows, we assume that u, € L*(Q,dpu) is given.

Definition 3.1 A function u(x, £) is called a weak solution of (1)-(3) on (z, T) if

du v .
(M,V)EV, R ev,
at ot

Uli—r = Uy a.e.in Q
and

/ (1 + Vil VuVE + |l ué +fW)E) + / (vié +f()E)

Qr rr

- s

for all test functions £ € V.

Theorem 3.1 Let Q2 be a bounded domain in R" (n > 3). Assume that f satisfies (H;),
g2:Q x R — R is locally Lipschitz continuous and g € L? (R, L*(2)). Then, for any t € R,

loc
any initial data uy € L*(Q,dp) and any T > t, there exists a unique weak solution u(x, t)

of (1)-(3), and the mapping
(uo, yuo) — (u(t), v(2))
is continuous on L*(Q,du).
Proof We first prove the existence of solutions for (1)-(5) by the Faedo-Galerkin method

(see [25]).
Consider the approximating solution u,(t) in the form

un() =Yy (t)es

i=1

Vl’l(t) = Z unl‘(t)yeir
i=1

where {(ej, yej)}]‘?fl is an orthogonal basis of L%(2,du), which is included in (W?(£2) N
L1(2)) x L1(T"). We get u,, from solving the following problem:

<@,ek> + <@,ek> + (Aun) + | P~ 4, )

dt dt
+ <f(un)r ek) + (f(Vn): ek> = <g(xr t)r €k>, (8)
(un(v), €)= (o ex), k=1,...,n. 9)

Since f is continuous and g is locally Lipschitz continuous, using the Peano theorem, we
get the local existence of (u,,v,). Next, we establish some a priori estimates for (u,,v,).
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We have
1d H
2dt

= f glx, tyu, dx.
Q

2 1d 2
ey + 5 5 1Ol ey Wl [ S+ [ S, ds

Thanks to (5), we obtain

1d 2 1d 2
5 % ” u,(t) ||L2(Q) + ) % ” Vu() ”LZ(F) + [l ”fp + ¢ ||y ”Zq(g) +a ||Vn”zq(r) (10)
1 2 1
< S 1Oy + Il gy + K11+ AIT] (11)

by virtue of the following inequality (see Theorem 2.3.1 in [26]):

=2 49
2

—nl + A2 < Cur2 )72, (12)
Let i = ¢; and A = 1, we deduce from (10) and (12) that

d d
@) 2y + 2 @) ey + 20l + callienl gy + 261 1wl ry

< |lg(®) ”22(9) +C. 13)

Integrating (13) over [7, ], we obtain

t t t
2 2
s i * Oy +2 [ Vil s o [ iy 261 [ ey ds
T T T
t
2
<O =)+ [ g0 ds + I 1)
T

forany ¢ € (z, T].
Due to (14), we get
{u,} is uniformly bounded in L™ (r, T; LZ(Q)),
{v,} is uniformly bounded in L* (‘L’, T;LZ(F)),
{u,} is uniformly bounded in Lp(r, T; Wl’p(Q)),
{u,} is uniformly bounded in L(Q27),
{v,} is uniformly bounded in LY(I"7).

Therefore, {u,} is uniformly bounded in # in the L?(z, T; W*(R)), L1(Qr), respectively,
and {v,} is uniformly bounded in 7 in the L7(I"7), and one can extract a subsequence {t4n}
of {u,} such that

{tn;} = u weakly in L7 (z, T; W (Q)),
{un} — u weakly in L1(Q27),

{vi;} — v weakly in L1(T7).
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Let P, : V — span{(e;, yej)};‘:1 be a projection. For any ¢ € V, set ¢, = P, ¢, we have

du,, dv,
< . ¢n> ¥ <d—”t,¢n> + {AG), b) + (£ ), ) + (F ), )

dt’
= (gx,0), ). s)
We perform the following estimate deduced from the Hoélder inequality and the Young
inequality:
A 0ull = | [ 190,250,581, s
Qr

-1 -1
< IVl | Voullrr) + Il |dullirgr)

e

=< ”un Lp(I'T;Wl,p(Q))||¢n||M(T,T;W1’p(Q))’

Using the boundedness of {u,} in L?(z, T; W'*(2)) again, we infer that
{A(u,)} is uniformly bounded in )74 (. T; (WI’P(Q))*).

Since g € L2 (R, L3()), f(un) € L7 (Q27), f(v,,) € L7 (1), we find

loc

Therefore we can extract a subsequence such that
(#,,v,) =~ @,V) inV,
Aly) =€ inL” (¢, T;(W(Q)).

By virtue of the Aubin compactness theorem, we can extract a further subsequence (still
denoted by {u, 1.}) such that additionally

Uy —> U in L7 (Q7), (16)
vy >V in L7(T'7). 17)

Due to the boundedness of {u,} in L7(Q27) and (5), we obtain that {f(u,)} is uniformly
bounded in L7 (Q7) and hence f(u,) — x in L7 (Q27), similarly, f(v,) — 1 in L7 (U'7). By
virtue of (16)-(17), we see that Uy, — ua.e.inQr and vy, —> vae.inl'r, thenf(u,,].) — f(u)
a.e. in Qr andf(vn/) — f(v) a.e. in I'r. Thanks to Lemma 2.1, we know that

x=f@), n=f@).

Therefore, we have

(M/, ¢> + (V/: ¢> +(&,¢) + (f(u), d)) + (f(V): ¢) = (g(xx £), ¢) (18)

forany¢p € V.
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In order to prove that u is a weak solution of (1)-(3), it remains to show that & = A(u).
Noticing that

T
(A, ) = f etall, s
T
1 1 1
= 2 ) oy = 5 (D2 + 5 1O gy

1 T
S 1Dy - / f f ), dxds
T Q

_ / ' /F Fw)vndSds + / ' /Q g%, £, dx s, (19)

it follows from the formulation of «,(t) and v,(t) that u,(t) — ug in L*(Q) and v,(t) — 6,

in L2(I"). Moreover, by the lower semi-continuity of || - llz2() and || - [l ;2(r, we obtain

[T 32 gy = timinf4,(T) g (20)
D)2y < timintva(D) 2 - 2

Meanwhile, by the Lebesgue dominated theorem, one can check that

/;T/S;f(u)udxds+/TT/rf(v)Vdes

T T
= lim/ /f(un)u,,dxds+ lim/ /f(v,,)v,,des,
n— o0 T Q n— 00 T r

T T
lim f / gx, u, dxds = / / glx, udxds.
=00 Jr Ja . JQ

This fact and (20)-(21) imply

lim sup(A(uy,), u,,)

n—o0

1 1 1 1
< 5 1@ g = 5 14D 2y + 5 1O Gy = 5 D

_/TT-/S;f(u)udxds—v/TT/Ff(V)vdes+[TAg(x,t)udxds. (22)

In view of (18), we have
1 1 1 1
(&) = 2 |2 = 5 14D 2y + 5 VO 2y = 5 D
T T T
—/ /f(u)udxds—/ /f(v)vdes+/ /g(x, Hudxds.
T Q T r T Q
This and (22) deduce

lim sup(A(u,,),un) < (£,u). (23)

n—0o0
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To this end, we first observe that

lim (A(u,,) - Au), u, - u)

= nlin;o(<A(un), tn) — (Aun), 1) — (A(), u — 1))
< (& u)— (& u)

On the other hand, it follows from Lemma 2.4 that

(A(un) - A(u), u, — u>

> (”un”p PG ToWP () ||M||Lp(r ravioay) (14l o rwiey) = 14l o w0 @) = 0.
Hence
letnll oo, rwie ) = Nl oo, win)),  asm— oo. (24)
Combining (24) with u,, — u in L?(z, T; W?(Q2)), we obtain
uy — u inI? (v, T; W(Q)).

Therefore, from Lemma 2.2, the Holder inequality and the Young inequality, we deduce
that for any ¢ € L7(z, T; W2(Q)),

(AG,) - Aw), ¢)]

/ (IVun P2V = [VulP>Vu) - Vo + (|t P>t — |ul?~>u) p dix s
Qr
§C2/ (|Vun|+|Vu|)p_2|Vun—Vu||V¢|dxds

Qr

-2
o [ (il + ), il s
Qr
(”ul’l”p (7,T; Wlp(Q) + ”u”p (7,T; Wlp(Q)))
X Ny = ll oo, 7 wre @ 1P oo, wie )
which implies that A(u,) — A(u) in (L?(t, T; W?(Q)))", hence £ = A(u).
Finally, we prove the uniqueness and continuous dependence of the initial data of the

solutions. Let u!, u* be two solutions of (1)-(5) with the initial data u}, u3, respectively.
Let w = u! — 42, Taking the inner product of the equation with w, we deduce that

1d = _
3 dt H ||i2( ot 2 ||w t)HL2 /Q(’u1|17 2,1 _ ‘u2|p 2,2 40 _Mz) dax
+ / (‘Vul ’p%Vul - ’Vu2 ’p%Vuz, Vil - Vuz) dx
Q

. /ﬂ (F() = £ (), = 1) i+ /F (F(!) = £ (P), v =) dS = . (25)

Page 10 of 24
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By virtue of (4) and Lemma 2.2, we obtain

1d 1d
2dt T2

< wid)] 32,0 + 1| WO 221y

Hw(t) ||i2(sz) ”W(t) ”i%r)

which implies that

2 2
”W(t)HLZ(Q) + ”W(t) HLZ(F)
< exp(2U(t = ) (W) 2 + [0 ).
Therefore, u(x,t) = u*(x,t) a.e. in Q7 if ul(x) = u3(x) in Q, and u(x,t) is continuously
dependent on the initial data.
Since
(u(t),v(t)) eV,

(ut(t),vt(t)) eV,
by use of Lemma 2.5, we know that
(u(@),v(0)) € C([r, T];LZ(Q,du)).
Therefore, (u(t),v(r)) € L*(R, dj1) is meaningful. (|

By Theorem 3.1, we can define a family of continuous processes {U(¢,7): —co <t <t <
oo} in L%(2,dp) as follows: For all ¢ > ,

U, t)(ug, yuo) = (u(t),v(t)) = (u(t; T, (1o, yuo)),v(t;r, (0, yuo))),

where u(t) is the solution of (1)-(5) with initial data (u(t), v(z)) = (uo, y10) € L*(Q,dw).
That is, a family of mappings U(¢t, ) : L*(Q,dp) — L*(Q,du) satisfies

U(t,t)=id (identity),

Ut,t)=U(t,rU(r,t) forallt <r<t.

4 Existence of uniform attractors

In this section, we prove the existence of uniform attractors for (1)-(3).

4.1 Abstract results

In this subsection, let X be a parameter set, let X, Y be two Banach spaces, Y C X contin-
uously. {U (¢, T)}sex is a family of processes in a Banach space X. Denote by B(X) the set
of all bounded subsets of X and R, = [, +00). In the following, we give some basic defi-
nitions and some abstract results about the existence of bi-space uniform (with respect to

(w.rt.) o € X) attractors.
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Definition 4.1 [5, 27] A set By C B(Y) is called to be (X, Y)-uniformly (w.r.t. 0 € X) ab-
sorbing for {U, (¢, 7)}sex if for any T € R and any bounded subset B C X, there exists a
positive constant ¢y = £y(t, B) > t such that

|J t- (¢, 7)B C B

oceX

for any ¢ > ¢.
A set P C Y is said to be (X, Y)-uniformly (w.r.t. o € ¥) attracting for the family of

processes {U, (¢, T)}oex, if

sup disty (Uy (¢ + 7,7)B,P) > 0 (t — o0)

ocex

for an arbitrary fixed r € R and any bounded set B C X.

Definition 4.2 [5] A closed set Ay C Y is said to be an (X, Y)-uniform (w.rt. ¢ € X)
attractor for the family of processes {U, (¢, T)}ocy if it is (X, Y)-uniformly (w.r.t. o € X)
attracting and it is contained in any closed (X, Y)-uniformly (w.r.t. ¢ € X) attracting set
A’ for the family of processes {U, (£, 7)}sex: Ay CA'.

Definition 4.3 [5] Define the uniform (w.rt. o € X) w-limit set of B by w;x(B) =
Nz Uses Uss; Us (s, T)B. This can be characterized by the following: y € w, x(B) if and
only if there are sequences {x,} C B, {0,,} C I, {t,} C Ry, £, = oo such that U, (¢,, T)x, —

y (n— 00).

Definition 4.4 [5] A family of processes {U, (¢, T)},cx possessing a compact (X,Y)-
uniformly (w.r.t. ¢ € X) absorbing set is called (X, Y)-uniformly compact. A family of
processes {U, (¢, 7)}scx is called (X, Y)-uniformly asymptotically compact if it possesses a
compact (X, Y)-uniformly (w.r.t. o € X) attracting set, i.e., for any bounded subset B C X
and any sequences {7,} C R, ¢, - +00 as n — +00 and {x,} C B, {U(t, + Tn, Tn)%u}ooq is
precompact in Y.

Lemma 4.1 [20] If a family of processes {U,(t,T)}ocx is (X, Y)-uniformly asymptotically
compakct, then for any T € R, B C B(X),
(i) for any sequences {x,} C B, {0,} C I, {t,} CR,, t, > 00 asn— oo, there is a
convergent subsequence of {Uy, (t,, T)x,} in Y,

(i) wy,5(B) is nonempty and compact in Y,

(iii) @ z(B) = wo,x(B),

(iv) lim;— oo (sup, .y disty (Us (¢, T)B, w5 (B))) = 0,

(v) ifAisaclosed set and (X, Y)-uniformly (w.rt. o € X) attracting B, then w, 5(B) C A.

Assumption 1 Let {7 (/)4 > 0} be a family of operators acting on X and satisfying:
(i) T =2, VheRY,

(ii) translation identity:

Us;(t+h,T+h) =Urge(t,t), YoeX,t>1,1teRh>0.
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Definition 4.5 [5] The kernel K of the process {U,(t, )} acting on X consists of all

bounded complete trajectories of the process {U, (¢, T)}:
K= {u(-)|LI(t, u(t) = u(t),dist(u(t), u(O)) <C,Vt>1,T€ R}.
The set K(s) = {u(s)|u(-) € K} is said to be kernel section at time £ = s, s € R.

Definition 4.6 [5] A family of processes {U, (¢, T)}, s is said to be (X x ¥, Y)-weakly con-
tinuous if for any fixed ¢ > 7, v € R, the mapping (4, o) — U, (¢, 7)u is weakly continuous
fromX x X to Y.

Assumption 2 Let X be a weakly compact set and {U, (¢, T)}secx be (X x X, Y)-weakly

continuous.

Lemma 4.2 [20] Under Assumptions 1 and 2 with {T(h)};>0, which is a weakly continuous
semigroup, if {Uy(t,T)}oecs acting on X is (X, Y)-uniformly (w.rt. o € X) asymptotically
compact, then it possesses an (X, Y)-uniform (w.r.t. o € X) attractor As, which is compact
in'Y and attracts all the bounded subsets of X in the topology of Y.

Moreover,

As =ors(Bo) = | Kols), VseR,

oex

where By is a bounded neighborhood of the compact (X, Y)-uniformly attracting set in Y;
i.e., By is a bounded (X, Y)-uniformly (w.r.t. o € X) absorbing set of {U, (£, T)}sex- Ko (s) is
the section at t = s of kernel K, of the process {U,(t, )} with symbol o € X. Furthermore,
Ko is nonempty forall o € X.

From the ideas of [4, 20, 28], we give the following results, which are very useful for the

existence of a uniform attractor in L?($2, du).

Lemma 4.3 [20] Let {U, (¢, T)}sex be a family of processes on LP () (p > 1) and suppose
{U, (¢, T)}oex has a bounded (LP(2), LP(R2))-uniformly (w.r.t.c € X) absorbing set in LP(S2).
Then, for any € > 0, T € R and any bounded subset B € LP(R2), there exist two positive
constants T = T(B, t) and M = M(€) such that

m(Q(}LIg(t,t)ur| ZM)) <e
foranyu, €B,t>T,0 € X.

Lemma 4.4 [4, 28] Let a family of processes {Uy(t,T)}ocx be (LP(2), L7 (2))-uniformly
(w.rt. o € X) asymptotically compact, then {Uy(t,T)}oecx is (LP(2),L1(2))-uniformly
asymptotically compact for p < q < 00, if
(i) {Uy(t,T)}oes has a bounded (LF(2), L1(2))-uniformly (w.rt. o € ) absorbing
set By,
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(ii) forany e >0, v € R and any bounded subset B C L?(S2), there exist two positive
constants M = M(¢,B) and T = T(¢,B, t) such that

/ |L[U(t,r)u,|q§e forallu, € B,t>T,o € X.
Q| U (t,7)ur |2M)

From Theorem 3.1, we know that the problem (1)-(5) generates a process {U, (£, T)}oecs
acting in L*(Q,dy) and the time symbol is o (s) = g(x,s). We denote by Lﬁ;’:(R; L%(R)) the
space L (R;L*(2)) endowed with a locally weak convergence topology. Let H,,(g) be the
hull of g in Lﬁ;zv(R;Lz(Q)), i.e., the closure of the set {g(s + /)|h € R} in Li;?(R;LZ(Q)) and

glx,5) € LA(R; L(Q)).

Lemma 4.5 [5] If € is reflective separable and ¢ € L3(R;E), then
(i) for all g1 € H.u(9), ||¢1||il27 < ||¢||ii,
(ii) the translation group {T (h)} is weakly continuous on H,,(p),
(iii) T(W)Hw(@p) = Hw (@) for h >0,
(iv) Hw(p) is weakly compact.

Due to Lemma 4.5, H,,(g) is weakly compact and the translation semigroup {T'(k)|h €
R*} satisfies that T'(h)H,(g) = H.(g) and is weakly continuous on H,,(g). Because of the
uniqueness of solution, the following translation identity holds:

Us;(t+h,t+h)=Urpe(t,t) Yo e Hy(g),t>1,T1€R,h>0.

Theorem 4.1 The family of processes {U,(t,T)}oet,, (g corresponding to problem (1)-(5)
is (L*(,du) x H,(g), LX(RQ,d))-weakly continuous and (L*(Q,du) x H,(g), (LX) N
WP (Q)) x L4(T))-weakly continuous.

Proof For any fixed ¢ and 7, 41 > 7, T € R, let u,, — u, (n — 00) weakly in L2(Q,du)
and o, — op weakly in H,,(g) as n — oo, denote by u,(t) = U,, (¢, T)u,. The same es-
timates for u, € E, = span{(e;, ye;)}’, given in the Galerkin approximations (in Sec-
tion 3) are valid for the u,(t) here. Therefore, for some subsequence {m} C {n} and u(t)
such that for any t, T < t; < t, (U(t), vu(t1)) = (u(t),v(t;)) weakly in L*(Q,du) and
(L) N WP(Q)) x LI(T). And the sequence {(#,,(s),v,u(s))}, T < s < t is bounded in
LT, L2(Q,dp) N (P (T, WY (Q)) N L(T, £ L9())) x LI(t,t;LI(T"))). Denote by &(s),
x(s) and n(s) the weak limits of A(u,,)(s), f(un(s)) and f(v,,(s)) in L7 (z, 6 (W(Q))),
LY (7,417 () and L7 (1, £ L1 (T)), respectively. So, we get the following equation for u(s):

(atu’ ¢> + <8¢V, V¢> + (770 + M, ¢> + (772! V¢> = (UO: ¢>

forany¢p € V.

By the same method as the proof of Theorem 3.1, we know that 7o = A(x), 1 = f(4) and
n2 = f(v), which means that (u(s), v(s)) in V is the weak solution of (1)-(5) with the initial
condition #,. Due to the uniqueness of the solution, we state that U, (¢1, T)(ux,,, Y Uz,,) —
U,y (t1, T)(t4r, y ur) weakly in L*(Q,du) and (L1(Q) N W?(Q)) x L1(T'). For any other sub-
sequence, {u; } and {o,/} satisty u, , — u, weakly in L*(Q,du) and o,y — o9, by the
same process, we obtain the analogous relation Ugm,(tl, t)u,m, — Uy, (t1, T)u, weakly in
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L*(Q,dw) and (L1(2) N W(R)) x LI(T") holds. Then it can be easily seen that for any
weakly convergent initial sequence {u.,} € L*(Q2,dun) and weakly convergent sequence
{04} € Hu(g), we have U, (1, 7)uy, — Uy, (t, T)u, weakly in L*(Q,du) and (L4(R) N
Wlr(Q)) x L4(T). O

Lemma 4.6 [25] (The uniform Gronwall lemma) Let x(t), a(t), b(t) be three positive locally
integrable functions on [ty, 00), and for some r > 0 and all t > ty, x(t), a(t), b(t) satisfy the
following inequalities:

x'(t) < a(t)x(t) + b(t)

and
t+r t+r t+r
/ x(t)dt <R, f a(t)dr <A, f b(t)dr < B,
t t t

where R, A, B are three positive constants. Then
R
x(t) < (— + B)eA
r
forallt>ty+r.

4.2 The existence of uniformly absorbing sets
In this subsection, we prove the existence of uniformly (w.r.t. o € ¥) absorbing sets for
the process {U, (¢, T)}sex corresponding to (1)-(5).

Theorem 4.2 Assume that f and g satisfy (Hi1)-(Hz). Then the family of processes
{Us(t,T)}set,, () corresponding to problem (1)-(5) has a bounded (L2, dp), L2(Q,dw))-
and (L*(Q,dw), (L1(Q) N W(Q)) x LI(T))-uniformly (w.rt. o € H,(g)) absorbing set.
That is, for any bounded subset B of L*(Q,dj) and any t € R, there exist 1 = 1,(t, B),

Ty = To(t, B) > 1 and two positive constants py, py such that

@)z + VO 2y <301 (26)
forany t > 1) and

[ Fyrog) + 14O aiey + VO Lary = Co2 (27)
forany t > vy, where 71, ©, p1, and ps are specified in (33), (41), (32) and (40), respectively.

Proof Taking the inner product of (1) with u, we deduce that

1d
2 dr

=/ o(Hudx. (28)
Q

— (Il fagy + V32 ) + el + /f(u udx+/f JvdS
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By virtue of (5), the Holder inequality and the Young inequality, we obtain

|

—~

2 2
lllZ2 gy + IV 220y) + 28051 + 1l ey + 1V ey

N =
QU

t

1
lo @20, * 5 I1l2 ) + K12 + KIT

=

IA
N~ N~

2 1 1
Hd(t)HLz(Q) + §||M||iz(g) + §||V||%2(1-) + k|| + k|| (29)

Let ;= ¢; and A = 2, we deduce from (12) and (29) that

d d
Oy + 2 IOy + 20l + allulfyg

2 2
sVl o + 1l + V12

< Jlo®|}2q + C. (30)

It follows from the classical Gronwall inequality and Lemma 4.5 that
2 2
”“(t) HLZ(Q) + Hv(t)HLZ(I‘)

t
_ _ 2
< ol e+ [ & 1O gy ds+ €
T
<ol e +250p [ 1g®) g ds+ C (31)
=oleg@an® =02 [ 18 lee® T

where we have used the following inequality:

t
[ & le6) g ds
T

t
- [ e ey s [ e s

. =2
r+l 9
<(l+e'+e?+ - re+0r) ilel]g/r ) “LZ(Q) “

- 1 r+1 9 J
s, leOlned

r+l 2
< Zsup/ ||g(s)||L2(Q) ds.
reR Jr

From (31), we deduce that

Jlu®) HiZ(Q) + ”"(t)“;(r) =3p1,

where
r+l 9
o1 = SuHE/ ||g(5)||L2(sz) ds + C, (32)
re r

”uOH%Z(Qdu)
71 =7 +max4{0,In{ —————— ) &. (33)
L1

Page 16 of 24
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Integrating (30) over [r,r + 1], we obtain

r+l r+1
o [N gy e [ gy [l as
+ 2
< ||u0||L2 ©di)® e+ 3Sllp/ ||g(s) ||L2(Q) ds+ C. (34)
Let F(s fo f(6)dO, we deduce from (5) that there exist three positive constants «;, oy,
B such that

a|ul? = B <F(u) <aslul? + B,

and
a1|u|§m)—ﬁ|sz|sAP(u)dxsa2|u|Zq(Q)+ﬂ|9|, (35)
a1Vl - BIT E/FF(V)dSSaZIVIZq(r)+ﬁ|F|- (36)

Thanks to (34), we deduce from (35)-(36) that

r+l » a r+l
2 / |48y s + - / /Q F(u(s)) dxds

r+1
= / F(v(s)) dSds
r r
+ 2
— ||u0||L2 Qdu T +3$up/ ||g(S) ||L2(SZ) dS+ C. (37)
On the other hand, taking the inner product of (1) with u;, we obtain

d (1
172 g + IIVell7 +—< llaelly /F(u)dX+/F(V)dS>
YAL(0) ) " gy wlr(Q o T

1
< 5 le® e + 3Nl

N =

which implies

d
Nl e + [Ivell? ( lull? +2/F(u)dx+2/F(v)dS>
t Lz(Q) t L2 dt Wlp o -

Combining (37) with (38), by virtue of the uniform Gronwall Lemma 4.6, we get

|| u(t) H Wir@ /QF(u(t)) dx + ./rF(V(t)) ds

r+1
- 2
= C<||I/lo ”iZ(Q,du)er " + i:ﬂg[ ||g(s) ||L2(Q) dS + 1)7 (39)

Page 17 of 24
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which implies that for any (g, yup) € Band t € R, there exists a positive constant p, such

that

u) Hl\avl,p(sz) + [u(e) “Zq(sz) + v ”Zq(r) =Cp,
where

t+1 9
02 = sup/ ||g(s)||L2(Q) ds +1, (40)
teR Jt
401125
fzzmax{rl,ln<w> +r}. (41)
P2

O

From Theorem 4.2, the compactness of the Sobolev embedding W*(2) C L%(2), the
compactness of the Sobolev trace embedding W*(Q2) C L*(I") and Lemma 4.2, we have

the following result.

Corollary 4.1 The family of processes {Us(t,T)}se, o) generated by (1)-(5) with initial
data uy € L*(Q,d ) has an (L*(Q, du), L*(Q, dw))-uniform (w.r.t.o € H,,(g)) attractor A,,
which is compact in L*(Q, di) and attracts every bounded subset of L*(2, d 1) in the topol-
ogy of L*(,d1). Moreover,

Ar =0, @B0) = | Kols) VseR,
oeHw(g)

where By is the (L*(Q,duw),L*(Q,dw))-uniformly (wrt. o € H,(g)) absorbing set in
L*(Q,du) and K, (s) is the section at t = s of kernel K, of the process {Us(t, T)}o ety (o)
with symbol o € H,,(g).

4.3 The existence of (L2(S2, du), Lq(S_Z,d;L))-uniform attractor

The main purpose of this subsection is to give an asymptotic a priori estimate for the
unbounded part of the modular (|u«|, |v|) for the solution (i, v) of problem (1)-(5) in the
L9, dp)-norm.

Theorem 4.3 The family of processes {Us(t,T)}sen,, o) corresponding to problem (1)-(5)
with initial data uy € L*(Q,duw) has an (L*(Q,dp), L1(Q, du))-uniform (w.rt. o € H,(g))
attractor A,, which is compact in L1(Q,du) and attracts every bounded subset B of
L*(Q2,du) in the topology of L1($2, d ). Moreover,

Ag=ou,@B) = | Kols) VseR,
oeHw(g)

where By is the (L*(2, du), L1(2, d))-uniformly (w.r.t.o € H,,(g)) absorbing set and K, (s)
is the section at t = s of kernel IC, of the process {U, (¢, )} with symbol o € H,,(g).

Proof We need only prove that the process {Us(t, T)}se1,, (o) Satisfies the assumption (ii)
of Lemma 4.4.
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From (H3), we deduce that for any o € H,,(g),
SuP”U(t)”LZ(Q) < sup|g(®) HL2(9) =K.
teR teR

Moreover, from Lemma 4.3 and Theorem 4.2, we know that there exists T} = T1(B, ¢, 1)
and My = My (€) such that for any u, € B, t > Ty and 0 € H,(g),

m(Q(|LIa(t, t)u,‘ > Mo)) <e.

Multiplying (1) with |(z — M), |7 and integrating over 2, we obtain

é%(”(” - M), qu(g) + v -a), qu(r)) +(g-1) /Q(“ - M) |V(u—M), |p dx
+ L(M—M)Z’1|u|p’2udx+ /Qf(u)(u—M)Z’1 dx
+ /rf(v)(v—M)f{_1 ds
_ fQ g6, £)(u — M)T L d,
where (4 — M), denotes the positive part of u — M, that is,

u-M, u=>M,
0, u<M.

(M _M)+ =

Set Q1 = Q(|u(t)| > M) and I'y = T'(Jjv(¢)| > M), we have

1d
- _(” (- M), qu(sz) + ” (v—M), ”Zq(r)) +(q-1) f (u— M)Z_ZW(” - M), |p dx
q dt o)
+ (u—M)’fr_l|u|"_2udx+/ f(u)(u—M)’fldx
Q1 Q1
+ | fWv- M)Z_1 das
I
_ f 2, £)(u — M)t dix.
Q1
Due to (5), we can choose M > M, large enough such that
fw)>cu®™ inQ
for some positive constant c. Therefore,
1d q 4
g 0= Mgy + 10 = 2. [ )

+(g-1) (u—M)Z_2|V(u—M)+|pdx
Q)
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91

+ c/ VI (y - M)‘f1 ds
I
< / glx, t)(u - M)‘f1 dx.
Q1

Since

c/ ui™ (- M) dx
Q

+ (u—M)ﬂ’r_1|u|1’_21,tdac+c‘/Q uq_l(u—M)‘{_ldx
1

Cc c
> - / wI N - M) dx + = / (u — M) dx,
2 Jo 2 Jo

c/ VIl (v - M)1 dS
I

c c
> —/ VI (v - M) dS +
2 Jr, 2 Jr,

and

/ gl t)(u — M)Z_l dx
Q1

(v—M)HaD 4s

¢ _ 021 i/ 2
< 5 (u—M)? dx+2€ Qlyg(x,t)} dx.

Q1

From (42)-(45), we deduce that

1d
7 e =20 Loy + | =) o)

c c
+ —/ ™ (- M) dx + =~
2 Jo, 2
1
<= | |etx0)| ax.
2¢c [o})
Since u > M for all x € Q;, we obtain

d
27 U= M) g gy + [ = M) [

I

(r))

/ VI (v - M)T dS

+ ch_Z(”(” - M), HZ‘I(Q) * “ (v = M), ”Zq(r))

<C| g t)|2dx
Q1

< Ce.

It follows from ||(x(ty) — M), || )< lu(to) || < Cforany r €R, to > 75 and the

LA(Qudp
classical Gronwall inequality that

[ (&) = M) [y + | () - M), |

q
L4(T) =

L9(Qdp

Ce + || (u(to) - M)

. I Zq(ﬁ,du)e

ch‘z(to—t),

(43)

(44)

(45)
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which implies that for any € > 0, there exist two positive constants M; > My and 13 > £,
such that for all £ > t3 and M > M,

=20 Py # =800 [ oy =

Repeating the same steps as above, just taking (# + M)_ instead of (u + M), we deduce that
there exist two positive constants M, > 0 and 74 > 73 such that for all £ > t, and M > M,,

[Ge+ Moy + [0+ M- Loy =,

)-[ze@

where

Setting M, = max{M;, M,}, we have

/ (|u|—M)q+/ (|v|—M)q§e
Q(lu(®)|=M) L(v(©)1=M)

forall t > 14 and M > M.
Therefore,

/ ? + / ]
Q(|u(t)|=2M) C(jv(t)|=2M)

=/ (|u|—M+M)q+f (Iv| =M+ M)*
Q(lu(®)|=2M) L (jv(8)|=2M)

52‘1-1/ (lul = M)* + 247 (lv| -M)*
QJu()|=2M) T (jv(0)|=2M)
+24171 / M1 4217 / M1
Q(|u(t)|=2M) T (jv(®)|=2M)

52‘1/ (|u|—M)q+/ (vl -M)?
Q(|u(t)|=2M) T (lv(t)|=2M)

< 2e. 0

4.4 (Lz(S_Z,d,u,),(WLP(SZ) N L9(2)) x LI(T'))-uniform attractor

In this subsection, we prove the existence of an (L*(2,du), (W(Q) N L1()) x L1(T'))-
uniform attractor. For this purpose, we first give some a priori estimates about (i, v;)
endowed with L%($2, du)-norm.

Theorem 4.4 Under assumptions (H;)-(Hs), for any bounded subset B C L2(Q,dw), any
T € Rand o € H,/(g), there exists a positive constant T = T(B,t) > 1 such that

J:9) 320 + [V |2y < 3

forany u. € B,s> T, o € H,(g), where (u,(s),v,(s)) = % (U, (¢, 7)(uo, y o))l 1= and ps is a
positive constant which is independent of B and o .
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Proof First, we differentiate (1) and (2) in time, and denoting ¢ = u;, n = v;, we get

¢ = div(IVulP2Ve) = (p - 2) div(|VulP*(Vu - V) Vi)

a

-2 4 __g
=D+ f ) =~ (46)

0 0
N+ (p - 2) [ VP4V Vn)a—v ¥ |vV|1’-Za—'7 +f ()0 =0, (47)
% 1%

where ‘-’ denotes the dot product in R”.
Multiplying (46) by ¢ and integrating over 2, and combining (4) with (47), we obtain

1d
L e+ Il +/ VulP |V P dx
2dt( 12(Q) LZ(r)) Q

+(p—2)/ |Vu|p_4(Vu-V§)2dx+(p—1)/ lulP~2|¢ | dx
Q Q

dg

dt

< (12 122y + 122y + 1212
Q)

L2(

On the other hand, for any r > 7, integrating (38) from r to r + 1 and using (39), we find

r+l r+1
[ T

r+l
— 2
=< C<||”O ||22(Q,du)er T+ SUP/ ”g(s) ||L2(§2) ds + 1)»
reR Jr

Therefore, we deduce from the uniformly Gronwall inequality that

2
L2(9)>

which implies that there exist two positive constants t; > t and a positive constant p3
such that

4009120 + 176 12y

dg

dt

r+1 t

- 2
< C(||uo ”iZ(Q,dM)eT "+ sgﬂg/ ||g(s) ||L2(Q) ds+1+ /t 1
r r -

() 2y + 196 ey < 5

for any (uo, yuo) € B, T € R and ¢ > 15, where

r+l ) t 2
,03=C<sup/ g(s) ds+1+/ )
R ) ” ||L2(Q) 1 2@ O

Next, we prove the process {Us (¢, T)}sets, (o) is uniformly (w.r.t. o € H, (g)) asymptoti-
cally compact in (W () N L4()) x LI(T").

dg

dt

Theorem 4.5 Assume that f and g satisfy (H)-(Hs). Then the family of processes
{Us(t,T)}set, (g corresponding to problem (1)-(5) with initial data u, € LX(Q,dp) is
(L2(Q,dw), (WP(Q) N L1(Q)) x LYUT))-uniformly (w.rt. o € H,,(g)) asymptotically com-
pact, i.e., there exists a compact uniformly attracting set in (WP (Q)NL1(Q)) x L1(T"), which
attracts any bounded subset B C L*(Q,d) in the topology of (WYP(Q2) N L1(R)) x LI(T").
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Proof Let By be an (L*(Q,du), (W () N L1(Q)) x LI("))-uniformly (w.r.t. o € H,,(g))
absorbing set obtained in Theorem 4.2, then we need only to show that for any {u,,} C By,
{04} C Hyw(g) and t, — 00, {Uy, (L, Tn)s, }2; is pre-compact in (W'P(Q) NLI(2)) x LI(T).

Thanks to Lemma 4.2, it is sufficient to verify that for any {u.,} C B, {0,} C H.,(g) and
bty — 00, {Uy, (ty, T)thr, }32, is pre-compact in W7 ().

In fact, from Corollary 4.1 and Theorem 4.3, we know that {IU, (¢, Tn)us,}o0; is pre-
compact in L*(Q,du) and L1(Q, du).

Without loss of generality, we assume that {U,, (¢4, T,)ux, } 5o is a Cauchy sequence in
L2(Q,du) and L1(Q, du).

Now, we prove that {U,, (¢,, T,)us, 122, is a Cauchy sequence in W'?().

Denote by u"(t,) := Uy, (¢4, Tn)Us,, we deduce from Lemma 2.2 that

” uy (ty) — Uy (L) ”I\]VLP(Q)

= (= ) =P 6)) + G ) 4 ) ) 7))
Loon(t) = (V7 (1)) + o ) + F 0 o)V () = ¥ 1)
+<_EV” W) —f (V] n)+EVm m) +F (VI (6m)), v (£0) = VS m)

:11 +12.

We now estimate separately the two terms /; and I,. By simple calculations and the
Holder inequality, we deduce that

d d
L < | ul (tn) — —u3 (tm
ISHdt””( ) =t (tm)

© g (8) — w (6m) Hmm

L2
+ C(U+ |0 | Fargy + 125 ) [ F) 1265 (8) = 45 ) | o (48)
and
d On d Om On Om
I, < %Vn (&) - Evm () . ”Vn () Vi (tm) ||L2(F)
+ C+ V) [ Fimy + [V o)) 1V ) =V ) | oy (49)

which combining with Corollary 4.1, Theorem 4.3 and Theorem 4.4 yields Theorem 4.5
immediately. O
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