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Abstract
This paper studies the long-time asymptotic behavior of solutions for the
non-autonomous p-Laplacian equations with dynamic flux boundary conditions in
n-dimensional bounded smooth domains. We have proved the existence of the
uniform attractor in L2(�̄,dμ) for the non-autonomous p-Laplacian evolution
equations subject to dynamic nonlinear boundary conditions by using the Sobolev
compactness embedding theory, and the existence of the uniform attractor in
(W1,p(�)∩ Lq(�))× Lq(�) by asymptotic a priori estimate.

1 Introduction
We are concerned with the existence of uniform attractors for the process associated with
the solutions of the following non-autonomous p-Laplacian equation:

ut –�pu + |u|p–u + f (u) = g(x, t), (x, t) ∈ � ×R. ()

Equation () is subject to the dynamic flux boundary condition

ut + |∇u|p– ∂u
∂ν

+ f (u) = , (x, t) ∈ � ×R, ()

and the initial condition

u(x, τ ) = u(x), x ∈ �̄, ()

where � ⊂R
n (n≥ ) is a bounded domain with smooth boundary �, ν denotes the outer

unit normal on�, p≥ , the nonlinearity f and the external force g satisfy some conditions
specified later.
Non-autonomous equations appear inmany applications in the natural sciences, so they

are of great importance and interest. The long-time behavior of solutions of such equa-
tions has been studied extensively in recent years (e.g., see [–]). The first attempt was to
extend the notion of a global attractor to the non-autonomous case, leading to the con-
cept of the so-called uniform attractor (see []). It is remarkable that the conditions en-
suring the existence of a uniform attractor are parallel with those for the autonomous
case. A uniform attractor need not be ‘invariant’, unlike a global attractor for autonomous
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systems.Moreover, it is well known that the trajectoriesmay be unbounded formany non-
autonomous systems when the time tends to infinity, and there does not exist a uniform
attractor for these systems.
Dynamic boundary conditions are very natural in many mathematical models such as

heat transfer in a solid in contact with amoving fluid, thermoelasticity, diffusion phenom-
ena, heat transfer in two mediums, problems in fluid dynamics (see [–, –]).
In recent years, many authors have studied p-Laplacian equations (see [–]) and the

problem ()-() for p =  (see [, , , ]) by discussing the existence and uniqueness of
local solutions, the blow-up of solutions, the global existence of solutions, the global at-
tractors of solutions and the eigenvalue problems, etc. In [], the authors have proved
the global existence of solutions for quasi-linear elliptic equations with dynamic bound-
ary conditions. Due to the complications inherent to nonlinear dynamic boundary condi-
tions, these problems ()-() still need to be investigated. In [–, ], the authors have
considered the eigenvalue problem

⎧⎨
⎩
–�pu + |u|p–u = , x ∈ �,

|∇u|p– ∂u
∂ν

= λ|u|p–u, x ∈ �

and obtained some results, and some p-Laplacian elliptic equationswith nonlinear bound-
ary condition have been studied by using these results mentioned in [–, ]. In [,
], the authors have proved the existence of uniform attractors for the non-autonomous
p-Laplacian equations with Dirichlet boundary conditions in a bounded and an un-
bounded domain in R

n. The authors have proved the existence of global attractors for
the autonomous p-Laplacian equations with dynamic flux boundary conditions in []. In
[], the authors have used a new type of uniformly Gronwall inequality and proved the
existence of a pullback attractor in Lr (�)× Lr (�) of the following equation:

⎧⎪⎪⎨
⎪⎪⎩
ut –�pu + |u|p–u + f (u) = h(t), (x, t) ∈ � ×R,

ut + |∇u|p– ∂u
∂ν

+ g(u) = , (x, t) ∈ � ×R,

u(x, τ ) = u(x), x ∈ �̄,

under the assumptions that f , g satisfy the polynomial growth condition with order r, r
and h(t) satisfies some weak assumption

∫ t

–∞
eθs∥∥h(s)∥∥

L(�) ds <∞

for all t ∈ R, where θ is some positive constant.
Moreover, the existence of uniform attractors for the non-autonomous p-Laplacian

equations with dynamical boundary conditions remains unsolvable.
To study problem ()-(), we assume the following conditions.
(H) The functions f ∈ C(R,R) and satisfy

f ′(u) ≥ –l ()
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for some l ≥ , and

c|u|q – k ≤ f (u)u≤ c|u|q + k, ()

where ci >  (i = , ), q > , k > .
(H) The external force g : � × R → R is locally Lipschitz continuous, dg

dt , g ∈
Lloc(R,L

(�)) and satisfies

sup
r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds <∞. ()

(H) Furthermore, g(t) is uniformly bounded in L(�) with respect to t ∈ R, i.e., there
exists a positive constant K such that

sup
t∈R

∥∥g(t)∥∥L(�) ≤ K .

The main purpose of this paper is to study the long-time dynamical behavior for the
non-autonomous p-Laplacian evolutionary equations ()-() under quite general assump-
tions ()-(). We first prove the existence and the uniqueness of solutions for ()-(),
and then the existence of uniformly (w.r.t. σ ∈ Hw(g)) absorbing sets for the process
{Uσ (t, τ )}σ∈Hw(g) corresponding to ()-() in L(�̄,dμ) and (W ,p(�)∩ Lq(�))× Lq(�), re-
spectively, is obtained. Finally, the existence of the uniform (w.r.t. σ ∈Hw(g)) attractor for
the process {Uσ (t, τ )}σ∈Hw(g) corresponding to ()-() in L(�̄) is obtained by the Sobolev
compactness embedding theory and the existence of the uniform (w.r.t. σ ∈Hw(g)) attrac-
tor for the process {Uσ (t, τ )}σ∈Hw(g) corresponding to ()-() in (W ,p(�)∩Lq(�))×Lq(�)
is obtained by asymptotic a priori estimate.
This paper is organized as follows. In Section ,we give somenotations and lemmas used

in the sequel. The existence and the uniqueness of solutions for the problem ()-() have
been proved in Section . Section  is devoted to proving the existence of the uniformly
(w.r.t. σ ∈ Hw(g)) absorbing sets in L(�̄,dμ), Lq(�̄,dμ) and (Lq(�) ∩ W ,p(�)) × Lq(�),
respectively, for the process {Uσ (t, τ )}σ∈Hw(g) corresponding to ()-() and the existence of
the uniform (w.r.t. σ ∈Hw(g)) attractors in L(�̄,dμ), Lq(�̄,dμ) and (Lq(�)∩W ,p(�))×
Lq(�), respectively, for the process {Uσ (t, τ )}σ∈Hw(g) corresponding to ()-().
Throughout this paper, we denote the inner product in L(�) (or L(�)) by (·, ·), and let

C be a positive constant, which may be different from line to line (and even in the same
line); we denote the trace operator by γ .

2 Preliminaries
In order to study the problem ()-(), we recall the Sobolev space W ,p(�) defined as the
closure of C∞(�)∩W ,p(�) in the norm

‖u‖,p =
(∫

�

|∇u|p + |u|p dx
) 

p

and denote by X* the dual space of X. We also define the Lebesgue spaces as follows:

Lr(�) =
{
v : ‖v‖Lr(�) <∞}

,

http://www.boundaryvalueproblems.com/content/2013/1/128
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where

‖v‖Lr(�) =
(∫

�

|v|r dS
) 

r

for r ∈ [,∞). Moreover, we have

Ls(�)⊕ Ls(�) = Ls(�̄,dμ), s ∈ [,∞)

and

‖U‖Ls(�̄,dμ) =
(∫

�

|u|s dx
) 

s
+

(∫
�

|v|s dS
) 

s

for any U =
(u
v
) ∈ Ls(�̄,dμ), where the measure dμ = dx|� ⊕ dS|� on �̄ is defined for any

measurable set A ⊂ �̄ by μ(A) = |A ∩ �| + S(A ∩ �). In general, any vector θ ∈ Ls(�̄,dμ)
will be of the form

(
θ
θ

)
with θ ∈ Ls(�,dx) and θ ∈ Ls(�,dS), and there need not be any

connection between θ and θ.
Denote

v = γu,

p′ =
p

p – 
,

�T = � × (τ ,T),

�T = � × (τ ,T),

V =
(
Lp

(
τ ,T ;W ,p(�)

) ∩ L(�T )∩ Lq(�T )
)

× (
Lp

(
τ ,T ;W – 

p ,p(�)
) × L(�T )∩ Lq(�T )

)
,

V * =
(
Lp

′(
τ ,T ;

(
W ,p(�)

)*) + L(�T ) + Lq
′
(�T )

)

× (
Lp

′(
τ ,T ;

(
W – 

p ,p(�)
)*) + L(�T ) + Lq

′
(�T )

)

and let the operator A : Lp(τ ,T ;W ,p(�)) → (Lp(τ ,T ;W ,p(�)))* be defined as follows:

〈
A(u), v

〉
=

∫
�T

|∇u|p–∇u · ∇v + |u|p–uv. ()

Next, we recall briefly some lemmas used to prove the well-posedness of the solutions
and the existence of the uniform (w.r.t. σ ∈ �) attractors for ()-() under some assump-
tions on f .

Lemma . [] Let O be a bounded domain in R
n and {gn}∞n= ⊂ Lq(O), let  < q < ∞ be

given. Assume that ‖gn‖Lq(O) ≤ C, where C is independent of n, gn → g , as n→ ∞, almost
everywhere in O, and g ∈ Lq(O). Then gn → g , as n→ ∞ weakly in Lq(O).

http://www.boundaryvalueproblems.com/content/2013/1/128
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Lemma . [] Let x, y ∈R
n and 〈·, ·〉 be the standard scalar product inR

n. Then, for any
p≥ , there exist two positive constants C, C, which depend on p, such that

〈|x|p–x – |y|p–y,x – y
〉 ≥ C|x – y|p,

∣∣|x|p–x – |y|p–y∣∣ ≤ C
(|x| + |y|)p–|x – y|.

Lemma . [] Let  ≤ p < ∞ and � be a bounded subset of Rn with smooth boundary
�. Then the inclusion

W ,p(�) ↪→↪→ Lr(�)

is compact for any r ∈ [,p*), where

p* =

⎧⎨
⎩

(n–)p
n–p , p < n;

∞, p = n.

Lemma . [] Let A be defined in () and X = Lp(τ ,T ;W ,p(�)). Then, for any u, v ∈ X,
one has

〈
A(u) –A(v),u – v

〉 ≥ (‖u‖p–X – ‖v‖p–X
)(‖u‖X – ‖v‖X

)
.

Furthermore, 〈A(u) –A(v),u – v〉 =  if and only if u = v a.e. in �T .

Lemma . [] Let X be a given Banach space with dual X ′, and let u and g be two
functions belonging to L(a,b;X). Then the following three conditions are equivalent:

(i) u is almost everywhere equal to a primitive function of g , i.e.,

u(t) = ζ +
∫ t

a
g(s)ds

for almost every t ∈ [a,b];
(ii) For each test function φ ∈D(a,b),

∫ b

a
u(t)φ′(t)dt = –

∫ b

a
g(t)φ(t)dt

(
φ′(t) =

dφ

dt

)
;

(iii) For each η ∈ X ′,

d
dt

〈u,η〉 = 〈g,η〉

in the scalar distribution sense on (a,b).
If (i)-(iii) are satisfied, u is almost everywhere equal to a continuous function from [a,b]

into X.
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3 The well-posedness of solutions
In what follows, we assume that u ∈ L(�̄,dμ) is given.

Definition . A function u(x, t) is called a weak solution of ()-() on (τ ,T) if

(u, v) ∈ V ,
(

∂u
∂t

,
∂v
∂t

)
∈ V *,

u|t=τ = u a.e. in �̄

and
∫

�T

(
utξ + |∇u|p–∇u∇ξ + |u|p–uξ + f (u)ξ

)
+

∫
�T

(
vtξ + f (v)ξ

)

=
∫

�T

g(x, t)ξ

for all test functions ξ ∈ V .

Theorem . Let � be a bounded domain in R
n (n ≥ ). Assume that f satisfies (H),

g : � ×R → R is locally Lipschitz continuous and g ∈ Lloc(R,L
(�)). Then, for any τ ∈ R,

any initial data u ∈ L(�̄,dμ) and any T > τ , there exists a unique weak solution u(x, t)
of ()-(), and the mapping

(u,γu) →
(
u(t), v(t)

)

is continuous on L(�̄,dμ).

Proof We first prove the existence of solutions for ()-() by the Faedo-Galerkin method
(see []).
Consider the approximating solution un(t) in the form

un(t) =
n∑
i=

uni (t)ei,

vn(t) =
n∑
i=

uni (t)γ ei,

where {(ej,γ ej)}∞j= is an orthogonal basis of L(�̄,dμ), which is included in (W ,p(�) ∩
Lq(�))× Lq(�). We get un from solving the following problem:

〈
dun
dt

, ek
〉
+

〈
dvn
dt

, ek
〉
+

〈
A(un) + |un|p–un, ek

〉

+
〈
f (un), ek

〉
+

〈
f (vn), ek

〉
=

〈
g(x, t), ek

〉
, ()

(
un(τ ), ek

)
= (u, ek), k = , . . . ,n. ()

Since f is continuous and g is locally Lipschitz continuous, using the Peano theorem, we
get the local existence of (un, vn). Next, we establish some a priori estimates for (un, vn).

http://www.boundaryvalueproblems.com/content/2013/1/128
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We have



d
dt

∥∥un(t)∥∥
L(�) +



d
dt

∥∥vn(t)∥∥
L(�) + ‖un‖p,p +

∫
�

f (un)un dx +
∫

�

f (vn)vn dS

=
∫

�

g(x, t)un dx.

Thanks to (), we obtain



d
dt

∥∥un(t)∥∥
L(�) +



d
dt

∥∥vn(t)∥∥
L(�) + ‖un‖p,p + c‖un‖qLq(�) + c‖vn‖qLq(�) ()

≤ 

∥∥g(t)∥∥

L(�) +


‖un‖L(�) + k|�| + k|�| ()

by virtue of the following inequality (see Theorem .. in []):

–μzq + λz ≤ Cμ
–
q– λ

q
q– . ()

Let μ = c and λ = , we deduce from () and () that

d
dt

∥∥un(t)∥∥
L(�) +

d
dt

∥∥vn(t)∥∥
L(�) + ‖un‖p,p + c‖un‖qLq(�) + c‖vn‖qLq(�)

≤ ∥∥g(t)∥∥
L(�) +C. ()

Integrating () over [τ , t], we obtain

∥∥un(t)∥∥
L(�) +

∥∥vn(t)∥∥
L(�) + 

∫ t

τ

‖un‖p,p ds + c
∫ t

τ

‖un‖qLq(�) ds + c
∫ t

τ

‖vn‖qLq(�) ds

≤ C(T – τ ) +
∫ t

τ

∥∥g(s)∥∥
L(�) ds + ‖u‖L(�̄,dμ) ()

for any t ∈ (τ ,T].
Due to (), we get

{un} is uniformly bounded in L∞(
τ ,T ;L(�)

)
,

{vn} is uniformly bounded in L∞(
τ ,T ;L(�)

)
,

{un} is uniformly bounded in Lp
(
τ ,T ;W ,p(�)

)
,

{un} is uniformly bounded in Lq(�T ),

{vn} is uniformly bounded in Lq(�T ).

Therefore, {un} is uniformly bounded in n in the Lp(τ ,T ;W ,p(�)), Lq(�T ), respectively,
and {vn} is uniformly bounded in n in the Lq(�T ), and one can extract a subsequence {unj}
of {un} such that

{unj} ⇀ u weakly in Lp
(
τ ,T ;W ,p(�)

)
,

{unj} ⇀ u weakly in Lq(�T ),

{vnj} ⇀ v weakly in Lq(�T ).

http://www.boundaryvalueproblems.com/content/2013/1/128
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Let Pn : V → span{(ej,γ ej)}nj= be a projection. For any φ ∈ V , set φn = Pnφ, we have

〈
dun
dt

,φn

〉
+

〈
dvn
dt

,φn

〉
+

〈
A(un),φn

〉
+

〈
f (un),φn

〉
+

〈
f (vn),φn

〉

=
〈
g(x, t),φn

〉
. ()

We perform the following estimate deduced from the Hölder inequality and the Young
inequality:

∣∣〈A(un),φn
〉∣∣ =

∣∣∣∣
∫

�T

|∇un|p–∇un · ∇φn + |un|p–unφn dxds
∣∣∣∣

≤ ‖∇un‖p–Lp(�T )‖∇φn‖Lp(�T ) + ‖un‖p–Lp(�T )‖φn‖Lp(�T )

≤ ‖un‖p–Lp(τ ,T ;W ,p(�))‖φn‖Lp(τ ,T ;W ,p(�)).

Using the boundedness of {un} in Lp(τ ,T ;W ,p(�)) again, we infer that

{
A(un)

}
is uniformly bounded in Lp

′(
τ ,T ;

(
W ,p(�)

)*).
Since g ∈ Lloc(R,L

(�)), f (un) ∈ Lq′ (�T ), f (vn) ∈ Lq′ (�T ), we find

(
u′
n, v

′
n
) ∈ V *.

Therefore we can extract a subsequence such that

(
u′
n, v

′
n
)
⇀

(
u′, v′) in V *,

A(un) ⇀ ξ in Lp
′(

τ ,T ;
(
W ,p(�)

)*).
By virtue of the Aubin compactness theorem, we can extract a further subsequence (still
denoted by {unj}) such that additionally

unj → u in Lp(�T ), ()

vnj → v in Lp(�T ). ()

Due to the boundedness of {un} in Lq(�T ) and (), we obtain that {f (un)} is uniformly
bounded in Lq′ (�T ) and hence f (un) ⇀ χ in Lq′ (�T ), similarly, f (vn) ⇀ η in Lq′ (�T ). By
virtue of ()-(), we see that unj → u a.e. in�T and vnj → v a.e. in �T , then f (unj ) → f (u)
a.e. in �T and f (vnj ) → f (v) a.e. in �T . Thanks to Lemma ., we know that

χ = f (u), η = f (v).

Therefore, we have

〈
u′,φ

〉
+

〈
v′,φ

〉
+ 〈ξ ,φ〉 + 〈

f (u),φ
〉
+

〈
f (v),φ

〉
=

〈
g(x, t),φ

〉
()

for any φ ∈ V .

http://www.boundaryvalueproblems.com/content/2013/1/128
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In order to prove that u is a weak solution of ()-(), it remains to show that ξ = A(u).
Noticing that

〈
A(un),un

〉
=

∫ T

τ

‖un‖p,p ds

=


∥∥un(τ )∥∥

L(�) –


∥∥un(T)∥∥

L(�) +


∥∥vn(τ )∥∥

L(�)

–


∥∥vn(T)∥∥

L(�) –
∫ T

τ

∫
�

f (un)un dxds

–
∫ T

τ

∫
�

f (vn)vn dS ds +
∫ T

τ

∫
�

g(x, t)un dxds, ()

it follows from the formulation of un(τ ) and vn(τ ) that un(τ )→ u in L(�) and vn(τ ) → θ

in L(�). Moreover, by the lower semi-continuity of ‖ · ‖L(�) and ‖ · ‖L(�), we obtain
∥∥u(T)∥∥

L(�) ≤ lim inf
n→∞

∥∥un(T)∥∥
L(�), ()

∥∥v(T)∥∥
L(�) ≤ lim inf

n→∞
∥∥vn(T)∥∥

L(�). ()

Meanwhile, by the Lebesgue dominated theorem, one can check that

∫ T

τ

∫
�

f (u)udxds +
∫ T

τ

∫
�

f (v)vdS ds

= lim
n→∞

∫ T

τ

∫
�

f (un)un dxds + lim
n→∞

∫ T

τ

∫
�

f (vn)vn dS ds,

lim
n→∞

∫ T

τ

∫
�

g(x, t)un dxds =
∫ T

τ

∫
�

g(x, t)udxds.

This fact and ()-() imply

lim sup
n→∞

〈
A(un),un

〉

≤ 

∥∥u(τ )∥∥

L(�) –


∥∥u(T)∥∥

L(�) +


∥∥v(τ )∥∥

L(�) –


∥∥v(T)∥∥

L(�)

–
∫ T

τ

∫
�

f (u)udxds –
∫ T

τ

∫
�

f (v)vdS ds +
∫ T

τ

∫
�

g(x, t)udxds. ()

In view of (), we have

〈ξ ,u〉 = 

∥∥u(τ )∥∥

L(�) –


∥∥u(T)∥∥

L(�) +


∥∥v(τ )∥∥

L(�) –


∥∥v(T)∥∥

L(�)

–
∫ T

τ

∫
�

f (u)udxds –
∫ T

τ

∫
�

f (v)vdS ds +
∫ T

τ

∫
�

g(x, t)udxds.

This and () deduce

lim sup
n→∞

〈
A(un),un

〉 ≤ 〈ξ ,u〉. ()

http://www.boundaryvalueproblems.com/content/2013/1/128
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To this end, we first observe that

lim
n→∞

〈
A(un) –A(u),un – u

〉

= lim
n→∞

(〈
A(un),un

〉
–

〈
A(un),u

〉
–

〈
A(u),un – u

〉)

≤ 〈ξ ,u〉 – 〈ξ ,u〉 = .

On the other hand, it follows from Lemma . that

〈
A(un) –A(u),un – u

〉
≥ (‖un‖p–Lp(τ ,T ;W ,p(�)) – ‖u‖p–Lp(τ ,T ;W ,p(�))

)(‖un‖Lp(τ ,T ;W ,p(�)) – ‖u‖Lp(τ ,T ;W ,p(�))
) ≥ .

Hence

‖un‖Lp(τ ,T ;W ,p(�)) → ‖u‖Lp(τ ,T ;W ,p(�)), as n→ ∞. ()

Combining () with un ⇀ u in Lp(τ ,T ;W ,p(�)), we obtain

un → u in Lp
(
τ ,T ;W ,p(�)

)
.

Therefore, from Lemma ., the Hölder inequality and the Young inequality, we deduce
that for any φ ∈ Lp(τ ,T ;W ,p(�)),

∣∣〈A(un) –A(u),φ
〉∣∣

=
∣∣∣∣
∫

�T

(|∇un|p–∇un – |∇u|p–∇u
) · ∇φ +

(|un|p–un – |u|p–u)
φ dxds

∣∣∣∣
≤ C

∫
�T

(|∇un| + |∇u|)p–|∇un –∇u||∇φ|dxds

+C

∫
�T

(|un| + |u|)p–|un – u||φ|dxds

≤ C
(‖un‖p–Lp(τ ,T ;W ,p(�)) + ‖u‖p–Lp(τ ,T ;W ,p(�))

)

× ‖un – u‖Lp(τ ,T ;W ,p(�))‖φ‖Lp(τ ,T ;W ,p(�)),

which implies that A(un) ⇀ A(u) in (Lp(τ ,T ;W ,p(�)))*, hence ξ = A(u).
Finally, we prove the uniqueness and continuous dependence of the initial data of the

solutions. Let u, u be two solutions of ()-() with the initial data u, u, respectively.
Let w = u – u. Taking the inner product of the equation with w, we deduce that



d
dt

∥∥w(t)∥∥
L(�) +



d
dt

∥∥w(t)∥∥
L(�) +

∫
�

(∣∣u∣∣p–u – ∣∣u∣∣p–u,u – u
)
dx

+
∫

�

(∣∣∇u
∣∣p–∇u –

∣∣∇u
∣∣p–∇u,∇u –∇u

)
dx

+
∫

�

(
f
(
u

)
– f

(
u

)
,u – u

)
dx +

∫
�

(
f
(
v

)
– f

(
v

)
, v – v

)
dS = . ()

http://www.boundaryvalueproblems.com/content/2013/1/128
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By virtue of () and Lemma ., we obtain



d
dt

∥∥w(t)∥∥
L(�) +



d
dt

∥∥w(t)∥∥
L(�)

≤ l
∥∥w(t)∥∥

L(�) + l
∥∥w(t)∥∥

L(�),

which implies that

∥∥w(t)∥∥
L(�) +

∥∥w(t)∥∥
L(�)

≤ exp
(
l(t – τ )

)(∥∥w(τ )∥∥
L(�) +

∥∥w(τ )∥∥
L(�)

)
.

Therefore, u(x, t) = u(x, t) a.e. in �T if u(x) = u(x) in �̄, and u(x, t) is continuously
dependent on the initial data.
Since

(
u(t), v(t)

) ∈ V ,
(
ut(t), vt(t)

) ∈ V *,

by use of Lemma ., we know that

(
u(t), v(t)

) ∈ C
(
[τ ,T];L(�̄,dμ)

)
.

Therefore, (u(τ ), v(τ )) ∈ L(�̄,dμ) is meaningful. �

By Theorem ., we can define a family of continuous processes {U(t, τ ) : –∞ < τ ≤ t <
∞} in L(�̄,dμ) as follows: For all t ≥ τ ,

U(t, τ )(u,γu) =
(
u(t), v(t)

)
:=

(
u
(
t; τ , (u,γu)

)
, v

(
t; τ , (u,γu)

))
,

where u(t) is the solution of ()-() with initial data (u(τ ), v(τ )) = (u,γu) ∈ L(�̄,dμ).
That is, a family of mappings U(t, τ ) : L(�̄,dμ) → L(�̄,dμ) satisfies

U(τ , τ ) = id (identity),

U(t, τ ) =U(t, r)U(r, τ ) for all τ ≤ r ≤ t.

4 Existence of uniform attractors
In this section, we prove the existence of uniform attractors for ()-().

4.1 Abstract results
In this subsection, let � be a parameter set, let X, Y be two Banach spaces, Y ⊂ X contin-
uously. {Uσ (t, τ )}σ∈� is a family of processes in a Banach space X. Denote by B(X) the set
of all bounded subsets of X and Rτ = [τ , +∞). In the following, we give some basic defi-
nitions and some abstract results about the existence of bi-space uniform (with respect to
(w.r.t.) σ ∈ �) attractors.

http://www.boundaryvalueproblems.com/content/2013/1/128
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Definition . [, ] A set B ⊂ B(Y ) is called to be (X,Y )-uniformly (w.r.t. σ ∈ �) ab-
sorbing for {Uσ (t, τ )}σ∈� if for any τ ∈ R and any bounded subset B ⊂ X, there exists a
positive constant t = t(τ ,B) ≥ τ such that

⋃
σ∈�

Uσ (t, τ )B ⊂ B

for any t ≥ t.
A set P ⊂ Y is said to be (X,Y )-uniformly (w.r.t. σ ∈ �) attracting for the family of

processes {Uσ (t, τ )}σ∈� , if

sup
σ∈�

distY
(
Uσ (t + τ , τ )B,P

) →  (t → ∞)

for an arbitrary fixed τ ∈ R and any bounded set B⊂ X.

Definition . [] A closed set A� ⊂ Y is said to be an (X,Y )-uniform (w.r.t. σ ∈ �)
attractor for the family of processes {Uσ (t, τ )}σ∈� if it is (X,Y )-uniformly (w.r.t. σ ∈ �)
attracting and it is contained in any closed (X,Y )-uniformly (w.r.t. σ ∈ �) attracting set
A′ for the family of processes {Uσ (t, τ )}σ∈� : A� ⊂ A′.

Definition . [] Define the uniform (w.r.t. σ ∈ �) ω-limit set of B by ωτ ,�(B) =⋂
t≥τ

⋃
σ∈�

⋃
s≥t Uσ (s, τ )B. This can be characterized by the following: y ∈ ωτ ,�(B) if and

only if there are sequences {xn} ⊂ B, {σn} ⊂ �, {tn} ⊂ Rτ , tn → ∞ such thatUσn (tn, τ )xn →
y (n→ ∞).

Definition . [] A family of processes {Uσ (t, τ )}σ∈� possessing a compact (X,Y )-
uniformly (w.r.t. σ ∈ �) absorbing set is called (X,Y )-uniformly compact. A family of
processes {Uσ (t, τ )}σ∈� is called (X,Y )-uniformly asymptotically compact if it possesses a
compact (X,Y )-uniformly (w.r.t. σ ∈ �) attracting set, i.e., for any bounded subset B ⊂ X
and any sequences {τn} ⊂ R, tn → +∞ as n → +∞ and {xn} ⊂ B, {U(tn + τn, τn)xn}∞n= is
precompact in Y .

Lemma . [] If a family of processes {Uσ (t, τ )}σ∈� is (X,Y )-uniformly asymptotically
compact, then for any τ ∈R, B ⊂ B(X),

(i) for any sequences {xn} ⊂ B, {σn} ⊂ �, {tn} ⊂Rτ , tn → ∞ as n→ ∞, there is a
convergent subsequence of {Uσn (tn, τ )xn} in Y ,

(ii) ωτ ,�(B) is nonempty and compact in Y ,
(iii) ωτ ,�(B) = ω,�(B),
(iv) limt→∞(supσ∈� distY (Uσ (t, τ )B,ωτ ,�(B))) = ,
(v) if A is a closed set and (X,Y )-uniformly (w.r.t. σ ∈ �) attracting B, then ωτ ,�(B) ⊂ A.

Assumption  Let {T(h)|h≥ } be a family of operators acting on � and satisfying:
(i) T(h)� = �, ∀h ∈R

+,
(ii) translation identity:

Uσ (t + h, τ + h) =UT(h)σ (t, τ ), ∀σ ∈ �, t ≥ τ , τ ∈R,h≥ .

http://www.boundaryvalueproblems.com/content/2013/1/128
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Definition . [] The kernel K of the process {Uσ (t, τ )} acting on X consists of all
bounded complete trajectories of the process {Uσ (t, τ )}:

K =
{
u(·)|U(t, τ )u(τ ) = u(t),dist

(
u(t),u()

) ≤ Cu,∀t ≥ τ , τ ∈R
}
.

The set K(s) = {u(s)|u(·) ∈K} is said to be kernel section at time t = s, s ∈R.

Definition . [] A family of processes {Uσ (t, τ )}σ∈� is said to be (X×�,Y )-weakly con-
tinuous if for any fixed t ≥ τ , τ ∈R, the mapping (u,σ )→Uσ (t, τ )u is weakly continuous
from X × � to Y .

Assumption  Let � be a weakly compact set and {Uσ (t, τ )}σ∈� be (X × �,Y )-weakly
continuous.

Lemma. [] Under Assumptions  and with {T(h)}h≥,which is a weakly continuous
semigroup, if {Uσ (t, τ )}σ∈� acting on X is (X,Y )-uniformly (w.r.t. σ ∈ �) asymptotically
compact, then it possesses an (X,Y )-uniform (w.r.t. σ ∈ �) attractorA� , which is compact
in Y and attracts all the bounded subsets of X in the topology of Y .
Moreover,

A� = ωτ ,�(B) =
⋃
σ∈�

Kσ (s), ∀s ∈R,

where B is a bounded neighborhood of the compact (X,Y )-uniformly attracting set in Y ;
i.e., B is a bounded (X,Y )-uniformly (w.r.t. σ ∈ �) absorbing set of {Uσ (t, τ )}σ∈� . Kσ (s) is
the section at t = s of kernel Kσ of the process {Uσ (t, τ )} with symbol σ ∈ �. Furthermore,
Kσ is nonempty for all σ ∈ �.

From the ideas of [, , ], we give the following results, which are very useful for the
existence of a uniform attractor in Lp(�̄,dμ).

Lemma . [] Let {Uσ (t, τ )}σ∈� be a family of processes on Lp(�) (p ≥ ) and suppose
{Uσ (t, τ )}σ∈� has a bounded (Lp(�),Lp(�))-uniformly (w.r.t. σ ∈ �) absorbing set in Lp(�).
Then, for any ε > , τ ∈ R and any bounded subset B ∈ Lp(�), there exist two positive
constants T = T(B, τ ) and M =M(ε) such that

m
(
�

(∣∣Uσ (t, τ )uτ

∣∣ ≥ M
)) ≤ ε

for any uτ ∈ B, t ≥ T , σ ∈ �.

Lemma . [, ] Let a family of processes {Uσ (t, τ )}σ∈� be (Lp(�),Lp(�))-uniformly
(w.r.t. σ ∈ �) asymptotically compact, then {Uσ (t, τ )}σ∈� is (Lp(�),Lq(�))-uniformly
asymptotically compact for p ≤ q <∞, if

(i) {Uσ (t, τ )}σ∈� has a bounded (Lp(�),Lq(�))-uniformly (w.r.t. σ ∈ �) absorbing
set B,

http://www.boundaryvalueproblems.com/content/2013/1/128
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(ii) for any ε > , τ ∈R and any bounded subset B⊂ Lp(�), there exist two positive
constantsM =M(ε,B) and T = T(ε,B, τ ) such that

∫
�(|Uσ (t,τ )uτ |≥M)

∣∣Uσ (t, τ )uτ

∣∣q ≤ ε for all uτ ∈ B, t ≥ T ,σ ∈ �.

From Theorem ., we know that the problem ()-() generates a process {Uσ (t, τ )}σ∈�

acting in L(�̄,dμ) and the time symbol is σ (s) = g(x, s). We denote by L,wloc (R;L
(�)) the

space Lloc(R;L
(�)) endowed with a locally weak convergence topology. LetHw(g) be the

hull of g in L,wloc (R;L
(�)), i.e., the closure of the set {g(s + h)|h ∈ R} in L,wloc (R;L

(�)) and
g(x, s) ∈ Lb(R;L(�)).

Lemma . [] If E is reflective separable and φ ∈ Lb(R;E), then
(i) for all φ ∈Hw(φ), ‖φ‖Lb ≤ ‖φ‖Lb ,
(ii) the translation group {T(h)} is weakly continuous onHw(φ),
(iii) T(h)Hw(φ) =Hw(φ) for h ≥ ,
(iv) Hw(φ) is weakly compact.

Due to Lemma ., Hw(g) is weakly compact and the translation semigroup {T(h)|h ∈
R

+} satisfies that T(h)Hw(g) =Hw(g) and is weakly continuous on Hw(g). Because of the
uniqueness of solution, the following translation identity holds:

Uσ (t + h, τ + h) =UT(h)σ (t, τ ) ∀σ ∈Hw(g), t ≥ τ , τ ∈R,h≥ .

Theorem . The family of processes {Uσ (t, τ )}σ∈Hw(g) corresponding to problem ()-()
is (L(�̄,dμ) × Hw(g),L(�̄,dμ))-weakly continuous and (L(�̄,dμ) × Hw(g), (Lq(�) ∩
W ,p(�))× Lq(�))-weakly continuous.

Proof For any fixed t and τ , t ≥ τ , τ ∈ R, let uτn ⇀ uτ (n → ∞) weakly in L(�̄,dμ)
and σn ⇀ σ weakly in Hw(g) as n → ∞, denote by un(t) = Uσn (t, τ )uτn . The same es-
timates for un ∈ En = span{(ei,γ ei)}ni= given in the Galerkin approximations (in Sec-
tion ) are valid for the un(t) here. Therefore, for some subsequence {m} ⊂ {n} and u(t)
such that for any t, τ ≤ t ≤ t, (um(t), vm(t)) ⇀ (u(t), v(t)) weakly in L(�̄,dμ) and
(Lq(�) ∩ W ,p(�)) × Lq(�). And the sequence {(um(s), vm(s))}, τ ≤ s ≤ t is bounded in
L∞(τ , t;L(�̄,dμ) ∩ ((Lp(τ , t;W ,p(�)) ∩ Lq(τ , t;Lq(�))) × Lq(τ , t;Lq(�))). Denote by ξ (s),
χ (s) and η(s) the weak limits of A(um)(s), f (um(s)) and f (vm(s)) in Lp′ (τ , t; (W ,p(�))*),
Lq′ (τ , t;Lq′ (�)) and Lq′ (τ , t;Lq′ (�)), respectively. So, we get the following equation for u(s):

〈∂tu,φ〉 + 〈∂tv,γφ〉 + 〈η + η,φ〉 + 〈η,γφ〉 = 〈σ,φ〉

for any φ ∈ V .
By the same method as the proof of Theorem ., we know that η = A(u), η = f (u) and

η = f (v), which means that (u(s), v(s)) in V is the weak solution of ()-() with the initial
condition uτ . Due to the uniqueness of the solution, we state thatUσm (t, τ )(uτm ,γuτm ) ⇀
Uσ (t, τ )(uτ ,γuτ ) weakly in L(�̄,dμ) and (Lq(�)∩W ,p(�))× Lq(�). For any other sub-
sequence, {uτm′ } and {σm′ } satisfy uτm′ ⇀ uτ weakly in L(�̄,dμ) and σm′ ⇀ σ, by the
same process, we obtain the analogous relation Uσm′ (t, τ )uτm′ ⇀ Uσ (t, τ )uτ weakly in
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L(�̄,dμ) and (Lq(�) ∩ W ,p(�)) × Lq(�) holds. Then it can be easily seen that for any
weakly convergent initial sequence {uτn} ∈ L(�̄,dμ) and weakly convergent sequence
{σn} ∈ Hw(g), we have Uσn (t, τ )uτn ⇀ Uσ (t, τ )uτ weakly in L(�̄,dμ) and (Lq(�) ∩
W ,p(�))× Lq(�). �

Lemma. [] (The uniformGronwall lemma) Let x(t), a(t), b(t) be three positive locally
integrable functions on [t,∞), and for some r >  and all t ≥ t, x(t), a(t), b(t) satisfy the
following inequalities:

x′(t)≤ a(t)x(t) + b(t)

and

∫ t+r

t
x(τ )dτ ≤ R,

∫ t+r

t
a(τ )dτ ≤ A,

∫ t+r

t
b(τ )dτ ≤ B,

where R, A, B are three positive constants. Then

x(t)≤
(
R
r
+ B

)
eA

for all t ≥ t + r.

4.2 The existence of uniformly absorbing sets
In this subsection, we prove the existence of uniformly (w.r.t. σ ∈ �) absorbing sets for
the process {Uσ (t, τ )}σ∈� corresponding to ()-().

Theorem . Assume that f and g satisfy (H)-(H). Then the family of processes
{Uσ (t, τ )}σ∈Hw(g) corresponding to problem ()-() has a bounded (L(�̄,dμ),L(�̄,dμ))-
and (L(�̄,dμ), (Lq(�) ∩ W ,p(�)) × Lq(�))-uniformly (w.r.t. σ ∈ Hw(g)) absorbing set.
That is, for any bounded subset B of L(�̄,dμ) and any τ ∈ R, there exist τ = τ(τ ,B),
τ = τ(τ ,B)≥ τ and two positive constants ρ, ρ such that

∥∥u(t)∥∥
L(�) +

∥∥v(t)∥∥
L(�) ≤ ρ ()

for any t ≥ τ and

∥∥u(t)∥∥p
W ,p(�) +

∥∥u(t)∥∥q
Lq(�) +

∥∥v(t)∥∥q
Lq(�) ≤ Cρ ()

for any t ≥ τ, where τ, τ, ρ, and ρ are specified in (), (), () and (), respectively.

Proof Taking the inner product of () with u, we deduce that



d
dt

(‖u‖L(�) + ‖v‖L(�)
)
+ ‖u‖pW ,p +

∫
�

f (u)udx +
∫

�

f (v)vdS

=
∫

�

σ (t)udx. ()
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By virtue of (), the Hölder inequality and the Young inequality, we obtain



d
dt

(‖u‖L(�) + ‖v‖L(�)
)
+ ‖u‖pW ,p(�) + c‖u‖qLq(�) + c‖v‖qLq(�)

≤ 

∥∥σ (t)

∥∥
L(�) +



‖u‖L(�) + k|�| + k|�|

≤ 

∥∥σ (t)

∥∥
L(�) +



‖u‖L(�) +



‖v‖L(�) + k|�| + k|�|. ()

Let μ = c and λ = , we deduce from () and () that

d
dt

∥∥u(t)∥∥
L(�) +

d
dt

∥∥v(t)∥∥
L(�) + ‖u‖p,p + c‖u‖qLq(�)

+ c‖v‖qLq(�) + ‖u‖L(�) + ‖v‖L(�)
≤ ∥∥σ (t)

∥∥
L(�) +C. ()

It follows from the classical Gronwall inequality and Lemma . that

∥∥u(t)∥∥
L(�) +

∥∥v(t)∥∥
L(�)

≤ ‖u‖L(�̄,dμ)e
τ–t +

∫ t

τ

es–t
∥∥g(s)∥∥

L(�) ds +C

≤ ‖u‖L(�̄,dμ)e
τ–t +  sup

r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds +C, ()

where we have used the following inequality:

∫ t

τ

es–t
∥∥g(s)∥∥

L(�) ds

=
∫ t

t–
es–t

∥∥g(s)∥∥
L(�) ds +

∫ t–

t–
es–t

∥∥g(s)∥∥
L(�) ds + · · ·

≤ (
 + e– + e– + · · · + e–n + · · · ) sup

r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds

≤ 
 – e–

sup
r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds

≤  sup
r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds.

From (), we deduce that

∥∥u(t)∥∥
L(�) +

∥∥v(t)∥∥
L(�) ≤ ρ,

where

ρ = sup
r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds +C, ()

τ = τ +max

{
, ln

(‖u‖L(�̄,dμ)

ρ

)}
. ()
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Integrating () over [r, r + ], we obtain

c
∫ r+

r

∥∥u(s)∥∥q
Lq(�) ds + c

∫ r+

r

∥∥v(s)∥∥q
Lq(�) ds + 

∫ r+

r

∥∥u(s)∥∥p
,p ds

≤ ‖u‖L(�̄,dμ)e
τ–r +  sup

r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds +C. ()

Let F(s) =
∫ s
 f (θ )dθ , we deduce from () that there exist three positive constants α, α,

β such that

α|u|q – β ≤ F(u)≤ α|u|q + β ,

and

α|u|qLq(�) – β|�| ≤
∫

�

F(u)dx ≤ α|u|qLq(�) + β|�|, ()

α|v|qLq(�) – β|�| ≤
∫

�

F(v)dS ≤ α|v|qLq(�) + β|�|. ()

Thanks to (), we deduce from ()-() that


∫ r+

r

∥∥u(s)∥∥p
W ,p(�) ds +

c
α

∫ r+

r

∫
�

F
(
u(s)

)
dxds

+
c
α

∫ r+

r

∫
�

F
(
v(s)

)
dSds

≤ ‖u‖L(�̄,dμ)e
τ–r +  sup

r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds +C. ()

On the other hand, taking the inner product of () with ut , we obtain

‖ut‖L(�) + ‖vt‖L(�) +
d
dt

(

p
‖u‖pW ,p(�) +

∫
�

F(u)dx +
∫

�

F(v)dS
)

≤ 

∥∥g(s)∥∥

L(�) +


‖ut‖L(�),

which implies

‖ut‖L(�) + ‖vt‖L(�) +
d
dt

(

p
‖u‖pW ,p(�) + 

∫
�

F(u)dx + 
∫

�

F(v)dS
)

≤ ‖g‖L(�). ()

Combining () with (), by virtue of the uniform Gronwall Lemma ., we get

∥∥u(t)∥∥p
W ,p(�) +

∫
�

F
(
u(t)

)
dx +

∫
�

F
(
v(t)

)
dS

≤ C
(

‖u‖L(�̄,dμ)e
τ–r + sup

r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds + 

)
, ()
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which implies that for any (u,γu) ∈ B and τ ∈ R, there exists a positive constant ρ such
that

∥∥u(t)∥∥p
W ,p(�) +

∥∥u(t)∥∥q
Lq(�) +

∥∥v(t)∥∥q
Lq(�) ≤ Cρ,

where

ρ = sup
t∈R

∫ t+

t

∥∥g(s)∥∥
L(�) ds + , ()

τ =max

{
τ, ln

(‖u‖L(�̄,dμ)

ρ

)
+ τ

}
. ()

�

From Theorem ., the compactness of the Sobolev embedding W ,p(�) ⊂ L(�), the
compactness of the Sobolev trace embedding W ,p(�) ⊂ L(�) and Lemma ., we have
the following result.

Corollary . The family of processes {Uσ (t, τ )}σ∈Hw(g) generated by ()-() with initial
data u ∈ L(�̄,dμ) has an (L(�̄,dμ),L(�̄,dμ))-uniform (w.r.t. σ ∈Hw(g)) attractorA,
which is compact in L(�̄,dμ) and attracts every bounded subset of L(�̄,dμ) in the topol-
ogy of L(�̄,dμ).Moreover,

A = ωτ ,Hw(g)(B) =
⋃

σ∈Hw(g)

Kσ (s), ∀s ∈R,

where B is the (L(�̄,dμ),L(�̄,dμ))-uniformly (w.r.t. σ ∈ Hw(g)) absorbing set in
L(�̄,dμ) and Kσ (s) is the section at t = s of kernel Kσ of the process {Uσ (t, τ )}σ∈Hw(g)

with symbol σ ∈Hw(g).

4.3 The existence of (L2(�̄,dμ),Lq(�̄,dμ))-uniform attractor
The main purpose of this subsection is to give an asymptotic a priori estimate for the
unbounded part of the modular (|u|, |v|) for the solution (u, v) of problem ()-() in the
Lq(�̄,dμ)-norm.

Theorem . The family of processes {Uσ (t, τ )}σ∈Hw(g) corresponding to problem ()-()
with initial data u ∈ L(�̄,dμ) has an (L(�̄,dμ),Lq(�̄,dμ))-uniform (w.r.t. σ ∈ Hw(g))
attractor Aq, which is compact in Lq(�̄,dμ) and attracts every bounded subset B of
L(�̄,dμ) in the topology of Lq(�̄,dμ).Moreover,

Aq = ωτ ,Hw(g)(B) =
⋃

σ∈Hw(g)

Kσ (s), ∀s ∈R,

where B is the (L(�̄,dμ),Lq(�̄,dμ))-uniformly (w.r.t. σ ∈Hw(g)) absorbing set andKσ (s)
is the section at t = s of kernel Kσ of the process {Uσ (t, τ )} with symbol σ ∈Hw(g).

Proof We need only prove that the process {Uσ (t, τ )}σ∈Hw(g) satisfies the assumption (ii)
of Lemma ..
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From (H), we deduce that for any σ ∈Hw(g),

sup
t∈R

∥∥σ (t)
∥∥
L(�) ≤ sup

t∈R

∥∥g(t)∥∥L(�) ≤ K .

Moreover, from Lemma . and Theorem ., we know that there exists T = T(B, ε, τ )
andM =M(ε) such that for any uτ ∈ B, t ≥ T and σ ∈Hw(g),

m
(
�

(∣∣Uσ (t, τ )uτ

∣∣ ≥ M
)) ≤ ε.

Multiplying () with |(u –M)+|q– and integrating over �, we obtain


q
d
dt

(∥∥(u –M)+
∥∥q
Lq(�) +

∥∥(v –M)+
∥∥q
Lq(�)

)
+ (q – )

∫
�

(u –M)q–+
∣∣∇(u –M)+

∣∣p dx

+
∫

�

(u –M)q–+ |u|p–udx +
∫

�

f (u)(u –M)q–+ dx

+
∫

�

f (v)(v –M)q–+ dS

=
∫

�

g(x, t)(u –M)q–+ dx,

where (u –M)+ denotes the positive part of u –M, that is,

(u –M)+ =

⎧⎨
⎩
u –M, u ≥ M,

, u ≤M.

Set � = �(|u(t)| ≥ M) and � = �(|v(t)| ≥ M), we have


q
d
dt

(∥∥(u –M)+
∥∥q
Lq(�) +

∥∥(v –M)+
∥∥q
Lq(�)

)
+ (q – )

∫
�

(u –M)q–+
∣∣∇(u –M)+

∣∣p dx

+
∫

�

(u –M)q–+ |u|p–udx +
∫

�

f (u)(u –M)q–+ dx

+
∫

�

f (v)(v –M)q–+ dS

=
∫

�

g(x, t)(u –M)q–+ dx.

Due to (), we can chooseM ≥M large enough such that

f (u) ≥ cuq– in �

for some positive constant c. Therefore,


q
d
dt

(∥∥(u –M)+
∥∥q
Lq(�) +

∥∥(v –M)+
∥∥q
Lq(�)

)

+ (q – )
∫

�

(u –M)q–+
∣∣∇(u –M)+

∣∣pdx
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+
∫

�

(u –M)q–+ |u|p–udx + c
∫

�

uq–(u –M)q–+ dx

+ c
∫

�

vq–(v –M)q–+ dS

≤
∫

�

g(x, t)(u –M)q–+ dx. ()

Since

c
∫

�

uq–(u –M)q–+ dx

≥ c


∫
�

uq–(u –M)q–+ dx +
c


∫
�

(u –M)(q–)+ dx, ()

c
∫

�

vq–(v –M)q–+ dS

≥ c


∫
�

vq–(v –M)q–+ dS +
c


∫
�

(v –M)(q–)+ dS ()

and
∫

�

g(x, t)(u –M)q–+ dx

≤ c


∫
�

(u –M)(q–)+ dx +

c

∫
�

∣∣g(x, t)∣∣ dx. ()

From ()-(), we deduce that


q
d
dt

(∥∥(u –M)+
∥∥q
Lq(�) +

∥∥(v –M)+
∥∥q
Lq(�)

)

+
c


∫
�

uq–(u –M)q–+ dx +
c


∫
�

vq–(v –M)q–+ dS

≤ 
c

∫
�

∣∣g(x, t)∣∣ dx.

Since u≥ M for all x ∈ �, we obtain

d
dt

(∥∥(u –M)+
∥∥q
Lq(�) +

∥∥(v –M)+
∥∥q
Lq(�)

)

+ cMq–(∥∥(u –M)+
∥∥q
Lq(�) +

∥∥(v –M)+
∥∥q
Lq(�)

)

≤ C
∫

�

∣∣g(x, t)∣∣ dx
≤ Cε.

It follows from ‖(u(t) –M)+‖qLq(�̄,dμ) ≤ ‖u(t)‖qLq(�̄,dμ) ≤ C for any τ ∈ R, t ≥ τ and the
classical Gronwall inequality that

∥∥(
u(t) –M

)
+

∥∥q
Lq(�) +

∥∥(
v(t) –M

)
+

∥∥q
Lq(�) ≤ Cε +

∥∥(
u(t) –M

)
+

∥∥q
Lq(�̄,dμ)e

cMq–(t–t),
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which implies that for any ε > , there exist two positive constants M >M and τ ≥ t
such that for all t ≥ τ andM ≥ M,

∥∥(u –M)+
∥∥q
Lq(�) +

∥∥(v –M)+
∥∥q
Lq(�) ≤ ε.

Repeating the same steps as above, just taking (u+M)– instead of (u+M)+, we deduce that
there exist two positive constantsM >  and τ ≥ τ such that for all t ≥ τ andM >M,

∥∥(u +M)–
∥∥q
Lq(�) +

∥∥(v +M)–
∥∥q
Lq(�) ≤ ε,

where

(u +M)– =

⎧⎨
⎩
u +M, u≤ –M;

, u≥ –M.

SettingM =max{M,M}, we have
∫

�(|u(t)|≥M)

(|u| –M
)q +

∫
�(|v(t)|≥M)

(|v| –M
)q ≤ ε

for all t ≥ τ andM ≥ M.
Therefore,

∫
�(|u(t)|≥M)

|u|q +
∫

�(|v(t)|≥M)
|v|q

=
∫

�(|u(t)|≥M)

(|u| –M +M
)q +

∫
�(|v(t)|≥M)

(|v| –M +M
)q

≤ q–
∫

�(|u(t)|≥M)

(|u| –M
)q + q–

∫
�(|v(t)|≥M)

(|v| –M
)q

+ q–
∫

�(|u(t)|≥M)
Mq + q–

∫
�(|v(t)|≥M)

Mq

≤ q
∫

�(|u(t)|≥M)

(|u| –M
)q +

∫
�(|v(t)|≥M)

(|v| –M
)q

≤ qε. �

4.4 (L2(�̄,dμ), (W1,p(�)∩ Lq(�))× Lq(�))-uniform attractor
In this subsection, we prove the existence of an (L(�̄,dμ), (W ,p(�) ∩ Lq(�)) × Lq(�))-
uniform attractor. For this purpose, we first give some a priori estimates about (ut , vt)
endowed with L(�̄,dμ)-norm.

Theorem . Under assumptions (H)-(H), for any bounded subset B ⊂ L(�̄,dμ), any
τ ∈R and σ ∈Hw(g), there exists a positive constant T = T(B, τ )≥ τ such that

∥∥ut(s)∥∥
L(�) +

∥∥vt(s)∥∥
L(�) ≤ ρ

for any uτ ∈ B, s ≥ T , σ ∈ Hw(g), where (ut(s), vt(s)) = d
dt (Uσ (t, τ )(u,γu))|t=s and ρ is a

positive constant which is independent of B and σ .
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Proof First, we differentiate () and () in time, and denoting ζ = ut , η = vt , we get

ζt – div
(|∇u|p–∇ζ

)
– (p – )div

(|∇u|p–(∇u · ∇ζ )∇u
)

+ (p – )|u|p–ζ + f ′(u)ζ =
dg
dt

, ()

ηt + (p – )|∇v|p–(∇v · ∇η)
∂v
∂ν

+ |∇v|p– ∂η

∂ν
+ f ′(v)η = , ()

where ‘·’ denotes the dot product in R
n.

Multiplying () by ζ and integrating over �, and combining () with (), we obtain



d
dt

(‖ζ‖L(�) + ‖η‖L(�)
)
+

∫
�

|∇u|p–|∇ζ | dx

+ (p – )
∫

�

|∇u|p–(∇u · ∇ζ ) dx + (p – )
∫

�

|u|p–|ζ | dx

≤ l
(‖ζ‖L(�) + ‖η‖L(�)

)
+

∥∥∥∥dgdt
∥∥∥∥
L(�)

‖ζ‖L(�).

On the other hand, for any r ≥ τ , integrating () from r to r +  and using (), we find

∫ r+

r

∥∥ζ (s)
∥∥
L(�) +

∫ r+

r

∥∥η(s)
∥∥
L(�)

≤ C
(

‖u‖L(�̄,dμ)e
τ–r + sup

r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds + 

)
.

Therefore, we deduce from the uniformly Gronwall inequality that

∥∥ut(s)∥∥
L(�) +

∥∥vt(s)∥∥
L(�)

≤ C
(

‖u‖L(�̄,dμ)e
τ–r + sup

r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds +  +

∫ t

t–

∥∥∥∥dgdt
∥∥∥∥


L(�)

)
,

which implies that there exist two positive constants τ ≥ τ and a positive constant ρ

such that

∥∥ut(s)∥∥
L(�) +

∥∥vt(s)∥∥
L(�) ≤ ρ

for any (u,γu) ∈ B, τ ∈ R and t ≥ τ, where

ρ = C
(
sup
r∈R

∫ r+

r

∥∥g(s)∥∥
L(�) ds +  +

∫ t

t–

∥∥∥∥dgdt
∥∥∥∥


L(�)

)
. �

Next, we prove the process {Uσ (t, τ )}σ∈Hw(g) is uniformly (w.r.t. σ ∈ Hw(g)) asymptoti-
cally compact in (W ,p(�)∩ Lq(�))× Lq(�).

Theorem . Assume that f and g satisfy (H)-(H). Then the family of processes
{Uσ (t, τ )}σ∈Hw(g) corresponding to problem ()-() with initial data u ∈ L(�̄,dμ) is
(L(�̄,dμ), (W ,p(�) ∩ Lq(�)) × Lq(�))-uniformly (w.r.t. σ ∈ Hw(g)) asymptotically com-
pact, i.e., there exists a compact uniformly attracting set in (W ,p(�)∩Lq(�))×Lq(�),which
attracts any bounded subset B ⊂ L(�̄,dμ) in the topology of (W ,p(�)∩ Lq(�))× Lq(�).
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Proof Let B be an (L(�̄,dμ), (W ,p(�) ∩ Lq(�)) × Lq(�))-uniformly (w.r.t. σ ∈ Hw(g))
absorbing set obtained in Theorem ., then we need only to show that for any {uτn} ⊂ B,
{σn} ⊂Hw(g) and tn → ∞, {Uσn (tn, τn)uτn}∞n= is pre-compact in (W ,p(�)∩Lq(�))×Lq(�).
Thanks to Lemma ., it is sufficient to verify that for any {uτn} ⊂ B, {σn} ⊂Hw(g) and

tn → ∞, {Uσn (tn, τn)uτn}∞n= is pre-compact inW ,p(�).
In fact, from Corollary . and Theorem ., we know that {Uσn (tn, τn)uτn}∞n= is pre-

compact in L(�̄,dμ) and Lq(�̄,dμ).
Without loss of generality, we assume that {Uσn (tn, τn)uτn}∞n= is a Cauchy sequence in

L(�̄,dμ) and Lq(�̄,dμ).
Now, we prove that {Uσn (tn, τn)uτn}∞n= is a Cauchy sequence inW ,p(�).
Denote by uσn

n (tn) :=Uσn (tn, τn)uτn , we deduce from Lemma . that

∥∥uσn
n (tn) – uσm

m (tm)
∥∥p
W ,p(�)

≤
(
–
d
dt

uσn
n (tn) – f

(
uσn
n (tn)

)
+

d
dt

uσm
m (tm) + f

(
uσm
m (tm)

)
,uσn

n (tn) – uσm
m (tm)

)

+
(
–
d
dt

vσn
n (tn) – f

(
vσn
n (tn)

)
+

d
dt

vσm
m (tm) + f

(
vσm
m (tm)

)
, vσn

n (tn) – vσm
m (tm)

)

= I + I.

We now estimate separately the two terms I and I. By simple calculations and the
Hölder inequality, we deduce that

I ≤
∥∥∥∥ d
dt

uσn
n (tn) –

d
dt

uσm
m (tm)

∥∥∥∥
L(�)

∥∥uσn
n (tn) – uσm

m (tm)
∥∥
L(�)

+C
(
 +

∥∥uσn
n (tn)

∥∥q–
Lq(�) +

∥∥uσm
m (tm)

∥∥q–
Lq(�)

)∥∥uσn
n (tn) – uσm

m (tm)
∥∥
Lq(�) ()

and

I ≤
∥∥∥∥ d
dt

vσn
n (tn) –

d
dt

vσm
m (tm)

∥∥∥∥
L(�)

∥∥vσn
n (tn) – vσm

m (tm)
∥∥
L(�)

+C
(
 +

∥∥vσn
n (tn)

∥∥q–
Lq(�) +

∥∥vσm
m (tm)

∥∥q–
Lq(�)

)∥∥vσn
n (tn) – vσm

m (tm)
∥∥
Lq(�), ()

which combining with Corollary ., Theorem . and Theorem . yields Theorem .
immediately. �
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