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Abstract
This paper is concerned with the existence and uniqueness of solutions for boundary
value problems with p-Laplacian delay differential equations on the half-line. The
existence of solutions is derived from the Schauder fixed point theorem, whereas the
uniqueness of solution is established by the Banach contraction principle. As an
application, an example is given to demonstrate the main results.
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1 Introduction
Boundary value problems on infinite intervals have many applications in physical prob-
lems. Such problems arise, for example, in the study of linear elasticity, fluid flows and
foundation engineering (see [, ] and the references cited therein). Boundary value prob-
lems on infinite intervals involving second-order delay differential equations are of specific
interest in these applications. An interesting survey on infinite interval problems, includ-
ing real world examples, history and various methods of proving solvability, can be found
in the recent monograph by Agarwal et al. [] and Agarwal and O’Regan []. Among the
many articles dealing with boundary value problems of second-order delay differential
equations, we refer the reader to [] and the references cited therein.
Boundary value problems of second-order delay differential equations on infinite in-

tervals are closely related to the problem of existence of global solutions with prescribed
asymptotic behavior. Recently, there is a growing interest in the solutions of such boundary
value problems; see, for example, [–]. For the basic theory of delay differential equations,
the reader is referred to the books by Diekmann et al. [] as well as by Hale and Verduyn
Lunel []. For boundary value problems, we mention the monographs by Azbelev et al.
[] and Azbelev and Rakhmatullina [].
To the best of our knowledge, few authors have considered the existence of solutions on

infinite intervals for delay differential equations. As far as we know, only in [, , ] the
existence and uniqueness of solutions on infinite intervals for second-order delay bound-
ary value problems are discussed. However, no work has been done on delay boundary
value problems with p-Laplacian on infinite intervals. Motivated by the work mentioned
above, this paper aims to fill in the gap, and we shall tackle the existence and uniqueness of
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solutions to a boundary value problem of delay differential equation with p-Laplacian on
infinite interval, which has been rarely discussed until now. The results we obtain improve
and generalize the results mentioned in the references.
Throughout this paper, for any intervals J and X of R, we denote by C(J ,X) the set of all

continuous functions defined on J with values in X. Let r be a nonnegative real number.
If t is a point in the interval [,∞) and x is a continuous real-valued function defined at
least on [t – r, t], the notation xt will be used for the function in C([–r, ],R) defined by

xt(σ ) = x(t + σ ) for –r ≤ σ ≤ .

We notice that the set C([–r, ],R) is a Banach space equipped with the usual sup-norm
‖ · ‖ given by

‖ψ‖ = max
–r≤σ≤

∣∣ψ(σ )
∣∣ for ψ ∈ C

(
[–r, ],R

)
.

In this paper we consider the delay differential equation with p-Laplacian

(
φp

(
x′(t)

))′ + f
(
t,xt ,x′(t)

)
= , t ≥ , (.)

subject to

x(t) = ξ (t), –r ≤ t ≤  (.)

and

lim
t→∞x′(t) = , (.)

where p > , φp(s) = |s|p–s, ξ ∈ C([–r, ],R) with ξ () = , and f is a real-valued func-
tion defined on the set [,∞)×C([–r, ],R)×R, which satisfies the following continuity
condition: f (t,xt ,x′(t)) is continuous with respect to t in [,∞) for each given function
x ∈ C([–r,∞),R) which is continuously differentiable on the interval [,∞).
We are interested in global solutions of the p-Laplacian delay boundary value problem

(.)-(.). By a solution on [,∞) of (.)-(.), wemean a function x ∈ C([–r,∞),R) which
is continuously differentiable on the interval [,∞) such that (.) is satisfied for all t ≥ 
and the conditions (.) and (.) are also fulfilled.
The main results of this paper are stated in Section . In Theorem ., sufficient condi-

tions are established in order that (.)-(.) has at least one solution on [,∞), whereas
Theorem . provides sufficient conditions for (.)-(.) to have a unique solution on
[,∞). The proof of Theorem . and Theorem . is presented in Section , where we
employ the Schauder fixed point theorem and the well known Banach contraction princi-
ple. In Section , we include an example to illustrate our main results.

2 Main results
A useful integral representation of the boundary value problem (.)-(.) is given by the
following lemma.Wenote that φp(s) = |s|p–s has the inverse φ–

p (s) = φq(s), where 
p +


q = .
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Lemma . Let x be a function in C([–r,∞),R) that is continuously differentiable on
[,∞). Then x is a solution on [,∞) of the boundary value problem (.)-(.) if and only
if

x(t) =

⎧⎨
⎩

ξ (t) for –r ≤ t ≤ ,∫ t
 φq(

∫ ∞
θ

f (s,xs,x′(s))ds)dθ for t ≥ .
(.)

Proof Let x be a function in C([–r,∞),R) that is continuously differentiable on [,∞).
Assume that x is given by (.). Then (.) is fulfilled. Moreover, we immediately obtain

x′(t) = φq

(∫ ∞

t
f
(
s,xs,x′(s)

)
ds

)
, t ≥ , (.)

which implies that limt→∞ x′(t) = , i.e., (.) holds. Furthermore, from (.) we get

φp
(
x′(t)

)
=

∫ ∞

t
f
(
s,xs,x′(s)

)
ds, t ≥  (.)

and we have

(
φp

(
x′(t)

))′ = –f
(
t,xt ,x′(t)

)
, t ≥ , (.)

which means that x satisfies (.). Thus, x is a solution on [,∞) of the boundary value
problem (.)-(.).
Conversely, suppose that x is a solution on [,∞) of the boundary value problem (.)-

(.). In view of (.), we have x(t) = ξ (t) for –r ≤ t ≤ . Furthermore, from (.) it follows
that x satisfies (.). Taking into account the fact that limt→∞ x′(t) =  and φp() = , con-
sequently we have

φp
(
x′(t)

)
=

∫ ∞

t
f
(
s,xs,x′(s)

)
ds, t ≥ . (.)

It follows that

x′(t) = φq

(∫ ∞

t
f
(
s,xs,x′(s)

)
ds

)
, t ≥ . (.)

By integrating (.) and taking into account the fact that x() = ξ () = , we obtain for
every t ≥ ,

x(t) =
∫ t


φq

(∫ ∞

θ

f
(
s,xs,x′(s)

)
ds

)
dθ .

We have thus proved that x has the expression (.). The proof of the lemma is complete.
�

The first main result of this paper is the following theorem which provides sufficient
conditions for (.)-(.) to have at least one solution on [,∞).
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Theorem . Suppose that

∣∣f (t,ψ , z)
∣∣ ≤ F

(
t, |ψ |, |z|) for (t,ψ , z) ∈ [,∞)×C

(
[–r, ],R

) ×R, (.)

where F is a nonnegative real-valued function defined on [,∞) × C([–r, ], [,∞)) ×
[,∞) which satisfies the continuity condition:
(C) F(t, |xt|, |x′(t)|) is continuous with respect to t in [,∞) for each given function x in

C([–r,∞),R) which is continuously differentiable on [,∞).
We also assume that
(A) for each t > , the function F(t, ·, ·) is increasing on C([–r, ], [,∞))× [,∞) in the

sense that F(t,ψ , z)≤ F(t,ω, v) for any ψ ,ω ∈ C([–r, ], [,∞)) with ψ ≤ ω (i.e.,
ψ(τ )≤ ω(τ ) for –r ≤ τ ≤ ) and any z, v ∈ [,∞) with z ≤ v.Moreover, there exists
a real number c >  so that

∫ ∞


F(t,ηt , c)dt ≤ φp(c) = cp–, (.)

where the function η ∈ C([–r,∞), [,∞)) depends on ξ , c and is defined by

η(t) =

⎧⎨
⎩

|ξ (t)| for –r ≤ t ≤ ,

ct for t ≥ .
(.)

Then the boundary value problem (.)-(.) has at least one solution x on [,∞) such that

–ct ≤ x(t)≤ ct for t ≥  (.)

and

–c≤ x′(t) ≤ c for t ≥ . (.)

The secondmain result is the following theorem that establishes conditions underwhich
the boundary value problem (.)-(.) has a unique solution on [,∞).

Theorem. Let all the conditions of Theorem . be satisfied, i.e., (.), (C) and (A) hold.
Moreover, suppose that

∣∣∣∣φq

(∫ ∞

t
f (s,ψ , z)ds

)
– φq

(∫ ∞

t
f (s,ω, v)ds

)∣∣∣∣
≤ K(t)max

{‖ψ –ω‖, |z – v|}
for (t,ψ , z), (t,ω, v) ∈ [,∞)×C

(
[–r, ],R

) ×R, (.)

where K is a nonnegative continuous real-valued function on the interval [,∞) satisfying

K(t)max{t, } < . (.)

Then the boundary value problem (.)-(.) has a unique solution x on [,∞) satisfying
(.) and (.).
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Wei and Wong Boundary Value Problems 2013, 2013:141 Page 5 of 13
http://www.boundaryvalueproblems.com/content/2013/1/141

3 Proof of main results
To prove Theorem ., we shall use the fixed point technique by applying the Schauder
fixed point theorem [], whereas Theorem . is established by the Banach contraction
principle []. We state our main tools below.

Schauder fixed point theorem [] Let E be a Banach space and 
 be any nonempty
convex and closed subset of E. If M is a continuous mapping of 
 into itself and M
 is
relatively compact, then the mapping M has at least one fixed point, i.e., there exists an
x ∈ 
 such that x =Mx.

Let BC([,∞),R) be the Banach space of all bounded continuous real-valued functions
on [,∞), endowed with the sup-norm ‖ · ‖ given by

‖ψ‖ = sup
t≥

∣∣ψ(t)
∣∣ for ψ ∈ BC

(
[,∞),R

)
.

We need the following compactness criterion for a subset of BC([,∞),R), which is a
consequence of the well-known Arzela-Ascoli theorem. This compactness criterion is an
adaptation of a lemma due to Avramescu []. In order to formulate this criterion, we note
that a set U of real-valued functions defined on [,∞) is said to be equiconvergent at ∞ if
all the functions in U are convergent in R at the point ∞ and, in addition, for each ε > ,
there existsT ≡ T(ε) >  such that, for any functionψ ∈U , we have |ψ(t)– lims→∞ ψ(s)| <
ε for t ≥ T .

Compactness criterion [] Let U be an equicontinuous and uniformly bounded subset of
the Banach space BC([,∞),R). If U is equiconvergent at ∞, it is also relatively compact.

Banach contraction principle [] Let E be a Banach space and 
 be any nonempty
closed subset of E. If M is a contraction of 
 into itself, then the mapping M has a unique
fixed point, i.e., there exists a unique x ∈ 
 such that x =Mx.

Throughout this section, letE denote the set of all functions x inC([–r,∞),R), which are
continuously differentiable on the interval [,∞) and have bounded continuous deriva-
tives on [,∞). The set E is a Banach space endowed with the norm ‖ · ‖E given by

‖x‖E =max
{
max
–r≤t≤

∣∣x(t)∣∣, sup
t≥

∣∣x′(t)
∣∣} for x ∈ E.

We shall first establish a lemma which will be needed to prove the main results.

Lemma. Suppose that (.)holds,where F is a nonnegative real-valued function defined
on [,∞)×C([–r, ], [,∞))× [,∞),which satisfies the continuity condition (C).Assume
that (A) is satisfied. Let 
 be the subset of the Banach space E defined by


 =
{
x ∈ E : x(t) = ξ (t) for –r ≤ t ≤ ,–c ≤ x′(t) ≤ c for t ≥ 

}
.

For x ∈ 
, define a mapping M on 
 by

(Mx)(t) =

⎧⎨
⎩

ξ (t) for –r ≤ t ≤ ,∫ t
 φq(

∫ ∞
θ

f (s,xs,x′(s))ds)dθ for t ≥ .
(.)

http://www.boundaryvalueproblems.com/content/2013/1/141
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Then M maps 
 into E.Moreover, M
 is relatively compact and the mapping M : 
 → E
is continuous.

Proof Since the condition (A) is satisfied, from (.) we have

∫ ∞


F(t,ηt , c)dt ≤ φp(c) = cp– < ∞. (.)

First, we shall show thatM is amapping from
 into E, i.e.,M
 ⊆ E. Let x be an arbitrary
function in
. By the definition of
, the function x satisfies (.) and (.). Since ξ () = ,
it follows from (.) that x() = . By taking into account this fact and using (.), we can
easily obtain

∣∣x(t)∣∣ ≤ ct for t ≥ . (.)

By virtue of (.), (.) and (.), it follows that |x(t)| ≤ η(t) for all t ≥ –r, which ensures
that

|xt| ≤ ηt for t ≥ . (.)

In view of (.), (.) and the condition (A), we get

F
(
t, |xt|,

∣∣x′(t)
∣∣) ≤ F(t,ηt , c) for t ≥ .

On the other hand, (.) guarantees that

∣∣f (t,xt ,x′(t)
)∣∣ ≤ F

(
t, |xt|,

∣∣x′(t)
∣∣) for t ≥ .

Thus, we have

∣∣f (t,xt ,x′(t)
)∣∣ ≤ F(t,ηt , c) for t ≥ . (.)

From (.) and (.) it follows that

∫ ∞



∣∣f (t,xt ,x′(t)
)∣∣dt < ∞ (.)

and consequently,

∫ ∞


f
(
t,xt ,x′(t)

)
dt exists in R. (.)

Furthermore, we can conclude that

∫ t


φq

(∫ ∞

θ

f
(
s,xs,x′(s)

)
ds

)
dθ exists in R. (.)

Since (.) holds for any function x ∈ 
, we immediately see that the formula (.) makes
sense for any x ∈ 
, and this formula defines a mappingM from 
 into C([–r,∞),R).

http://www.boundaryvalueproblems.com/content/2013/1/141
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Next, using (.) and (.), from (.) we obtain for t ≥ ,

∣∣(Mx)′(t)
∣∣ =

∣∣∣∣φq

(∫ ∞

t
f
(
s,xs,x′(s)

)
ds

)∣∣∣∣
≤ φq

(∫ ∞

t

∣∣f (s,xs,x′(s)
)∣∣ds

)

≤ φq

(∫ ∞



∣∣f (s,xs,x′(s)
)∣∣ds

)

≤ φq

(∫ ∞


F(s,ηs, c)ds

)

≤ φq
(
φp(c)

)
= c. (.)

Inequality (.) means that (Mx)′ is bounded on the interval [,∞) and so Mx belongs
to E. We have thus proved thatM
 ⊆ E.
Now, we shall prove that M
 is relatively compact. We observe that, for any function

x ∈ 
, we have (Mx)(t) = ξ (t) for –r ≤ t ≤ . By taking into account this fact as well as the
definition of the norm ‖ · ‖E , we can easily conclude that it suffices to show that the set

U =
{
(Mx)′(t)|t∈[,∞) : x ∈ 


}

is relatively compact in the Banach space BC([,∞),R). Using (.), for any x ∈ 
 and any
t, t with  ≤ t ≤ t, we obtain

∣∣φp
(
(Mx)′(t)

)
– φp

(
(Mx)′(t)

)∣∣ =
∣∣∣∣
∫ ∞

t
f
(
s,xs,x′(s)

)
ds –

∫ ∞

t
f
(
s,xs,x′(s)

)
ds

∣∣∣∣
=

∣∣∣∣
∫ t

t
f
(
s,xs,x′(s)

)
ds

∣∣∣∣
≤

∫ t

t

∣∣f (s,xs,x′(s)
)∣∣ds

≤
∫ t

t
F(s,ηs, c)ds.

In view of (.), this means that (Mx)′(t) → (Mx)′(t) as t → t, and we can easily verify
that U is equicontinuous. Moreover, each function x ∈ 
 satisfies (.), where c is inde-
pendent of x. This guarantees that U is uniformly bounded. Furthermore, for any x ∈ 
,
we have

∣∣(Mx)′(t)
∣∣ =

∣∣∣∣φq

(∫ ∞

t
f
(
s,xs,x′(s)

)
ds

)∣∣∣∣ ≤ φq

(∫ ∞

t

∣∣f (s,xs,x′(s)
)∣∣ds

)
for t ≥ 

and hence, noting (.), it follows that

∣∣(Mx)′(t)
∣∣ ≤ φq

(∫ ∞

t
F(s,ηs, c)ds

)
for t ≥ . (.)

Now (.) together with (.) implies that

lim
t→∞(Mx)′(t) = .

http://www.boundaryvalueproblems.com/content/2013/1/141
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By using (.) and (.) again, we immediately see that U is equiconvergent at ∞. It
now follows from the given compactness criterion that the set U is relatively compact
in BC([,∞),R).
Finally, we shall prove that themappingM :
 → E is continuous. Let x, {xn}n≥ ∈ 
with

‖xn – x‖E →  as n → ∞. It is not difficult to verify that limn→∞ xn(t) = x(t) uniformly for
t ∈ [–r,∞) and limn→∞(xn)′(t) = x′(t) uniformly for t ∈ [,∞). On the other hand, using
(.) we have

∣∣f (t,xnt , (xn)′(t)
)∣∣ ≤ F(t,ηt , c) for t ≥  and n ≥ .

Thus, by taking into account the fact that

∫ t


φq

(∫ ∞

θ

F(s,ηs, c)ds
)
dθ <∞,

we can apply the Lebesgue dominated convergence theorem to obtain, for every t ≥ ,

lim
n→∞

∫ t


φq

(∫ ∞

θ

f
(
s,xns ,

(
xn

)′(s)
)
ds

)
dθ =

∫ t


φq

(∫ ∞

θ

f
(
s,xs,x′(s)

)
ds

)
dθ .

This, together with the fact that

(
Mxn

)
(t) = (Mx)(t) = ξ (t) for –r ≤ t ≤  and n≥ ,

guarantees the pointwise convergence

lim
n→∞

(
Mxn

)
(t) = (Mx)(t) for t ≥ –r.

It remains to show that this convergence is also convergence in the sense of ‖ · ‖E , i.e.,

lim
n→∞

∥∥Mxn –Mx
∥∥
E = . (.)

For this purpose, we consider an arbitrary subsequence {Mxk} of {Mxn}. SinceM
 is rel-
atively compact, there exists a subsequence {Mxj} of the sequence {Mxk} and a function
u in E so that limj→∞ ‖Mxj – u‖E = . As the convergence in the sense of ‖ · ‖E implies the
pointwise convergence to the same limit function, we must have u =Mx, therefore (.)
holds. Consequently,M is continuous. The proof is complete. �

Proof of Theorem . We shall apply the Schauder fixed point theorem. Let 
 be the sub-
set of the Banach space E defined as in Lemma .. Clearly, 
 is a nonempty convex and
closed subset of E. By Lemma ., the mappingM : 
 → E is continuous andM
 is rela-
tively compact. We shall show thatM maps 
 into itself, i.e.,M
 ⊆ 
. Let us consider an
arbitrary function x ∈ 
. Following the argument in the proof of Lemma ., we see that
x satisfies (.), which together with (.) provides

∣∣(Mx)′(t)
∣∣ ≤ φq

(∫ ∞

t
F(s,ηs, c)ds

)
≤ φq

(
φp(c)

)
= c for t ≥ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/141
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Now, (.) and the fact that (Mx)(t) = ξ (t) for –r ≤ t ≤  imply that Mx ∈ 
. We have
thus proved thatM
 ⊆ 
.
By the Schauder fixed point theorem, there exists an x ∈ 
 such that x =Mx. Hence, x

has the expression (.), which coincides with (.). It follows from Lemma . that x is
a solution on [,∞) of the boundary value problem (.)-(.). Also, since x ∈ 
, clearly
x satisfies (.). Moreover, since x() = ξ () = , it follows from (.) that x also fulfills
(.). This completes the proof of Theorem .. �

Proof of Theorem . We shall employ the Banach contraction principle. Let 
 be the
subset of the Banach space E defined in Lemma .. Clearly,
 is a nonempty closed subset
of E. Following the argument in the proof of Theorem ., we haveM :
 → 
.
Now, we shall prove that the mapping M is a contraction. For this purpose, let us con-

sider two arbitrary functions x and x̃ in 
. From (.), we have (Mx)(t) = (Mx̃)(t) = ξ (t) for
–r ≤ t ≤ , and consequently,

max
–r≤t≤

∣∣(Mx)(t) – (Mx̃)(t)
∣∣ = . (.)

Furthermore, by using (.), from (.) we obtain for t ≥ 

∣∣(Mx)′(t) – (Mx̃)′(t)
∣∣ =

∣∣∣∣φq

(∫ ∞

t
f
(
s,xs,x′(s)

)
ds

)
– φq

(∫ ∞

t
f
(
s, x̃s, x̃′(s)

)
ds

)∣∣∣∣
≤ K(t)max

{‖xs – x̃s‖,
∣∣x′(s) – x̃′(s)

∣∣}.
This gives

sup
t≥

∣∣(Mx)′(t) – (Mx̃)′(t)
∣∣ ≤ sup

t≥
K(t)max

{‖xt – x̃t‖,
∣∣x′(t) – x̃′(t)

∣∣}.

By the definition of the norm ‖ · ‖E , the last inequality and (.) imply

‖Mx –Mx̃‖E ≤ sup
t≥

K(t)max
{‖xt – x̃t‖,

∣∣x′(t) – x̃′(t)
∣∣}. (.)

Next, from the definition of 
, we have x(t) = x̃(t) = ξ (t) for –r ≤ t ≤ , and so

∣∣x(t) – x̃(t)
∣∣ =  for –r ≤ t ≤ . (.)

Moreover, in view of the fact that x() = x̃() = ξ () = , we get, for t ≥ ,

∣∣x(t) – x̃(t)
∣∣ =

∣∣∣∣
∫ t



(
x′(s) – x̃′(s)

)
ds

∣∣∣∣ ≤
∫ t



∣∣x′(s) – x̃′(s)
∣∣ds. (.)

But, by the definition of the norm ‖ · ‖E , we have
∣∣x′(t) – x̃′(t)

∣∣ ≤ ‖x – x̃‖E for t ≥ . (.)

Thus, using (.) in (.) yields

∣∣x(t) – x̃(t)
∣∣ ≤ t‖x – x̃‖E for t ≥ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/141
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Combining (.) and (.), we get

∣∣x(t) – x̃(t)
∣∣ ≤ μ(t)‖x – x̃‖E for t ≥ –r, (.)

where the function μ is defined by

μ(t) =

⎧⎨
⎩
 for –r ≤ t ≤ ,

t for t ≥ .

We can rewrite (.) as

∣∣x(t + τ ) – x̃(t + τ )
∣∣ ≤ μ(t + τ )‖x – x̃‖E for t ≥  and –r ≤ τ ≤ ,

i.e.,

∣∣xt(τ ) – x̃t(τ )
∣∣ ≤ μ(t + τ )‖x – x̃‖E for t ≥  and –r ≤ τ ≤ .

It follows that

max
–r≤τ≤

∣∣xt(τ ) – x̃t(τ )
∣∣ ≤

[
max

–r≤τ≤
μ(t + τ )

]
‖x – x̃‖E for t ≥ . (.)

But, since μ is nondecreasing on [–r,∞), we have

max
–r≤τ≤

μ(t + τ ) = μ(t) = t for t ≥ .

So, from (.) we have

‖xt – x̃t‖ ≤ t‖x – x̃‖E for t ≥ . (.)

Now, using (.) and (.) in (.), we get

‖Mx –Mx̃‖E ≤ sup
t≥

K(t)max
{
t‖x – x̃‖E ,‖x – x̃‖E

}

= sup
t≥

K(t)max{t, }‖x – x̃‖E

< ‖x – x̃‖E ,

where the last inequality is due to (.). Hence, we have shown that themappingM : 
 →

 is a contraction.
Finally, by the Banach contraction principle, the mapping M : 
 → 
 has a unique

fixed point x ∈ 
 having the expression (.), which coincides with (.). It follows from
Lemma . that x is the unique solution on [,∞) of the boundary value problem (.)-
(.). Furthermore, as in the proof of Theorem ., we conclude that this unique solution
x of the boundary value problem (.)-(.) satisfies (.) and (.). The proof of Theo-
rem . is now complete. �
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4 Application
Let us consider the delay boundary value problem with the p-Laplacian operator

⎧⎪⎪⎨
⎪⎪⎩
(φp(x′(t)))′ + h(t,x(t – T(t)),x′(t)) = ,  ≤ t < ∞,

x(t) = ξ (t), –r ≤ t ≤ ,

limt→∞ x′(t) = ,

(.)

where p = , (φp(x′(t)))′ = x′′(t), and h is a continuous real-valued function on [,∞) ×
R

, and T(t) is a nonnegative continuous real-value function on the interval [,∞) with
supt≥T(t) = r.
If the boundary value problem (.)-(.) is to be equivalent to the boundary value

problem (.), we must define f (t,ψ , z) = h(t,ψ(–T(t)), z) for (t,ψ , z) ∈ [,∞)×C([–r, ],
R)×R. Hence, by applying Theorem . to the boundary value problem (.), we can be
led to the following result.

Corollary . Assume that

∣∣h(t, y, z)∣∣ ≤ H
(
t, |y|, |z|) for (t, y, z) ∈ [,∞)×R×R,

where H is a nonnegative continuous real-valued function on [,∞) × [,∞) × [,∞).
Suppose that for each t ≥ , the function H(t, ·, ·) is increasing on [,∞) × [,∞) in the
sense that H(t, y, z) ≤ H(t,w, v) for any (y, z), (w, v) ∈ [,∞)× [,∞) with y≤ w and z ≤ v.
Moreover, let there exist a real number c >  so that

∫ ∞


H

(
t,ρ(t), c

)
dt ≤ c,

where the function ρ(t) in C([,∞), [,∞)) depends on ξ , c and is defined by

ρ(t) =

⎧⎨
⎩

|ξ (t – T(t))| for  ≤ t ≤ T(t),

c · (t – T(t)) for t ≥ T(t).

Then the boundary value problem (.) has at least one solution x such that (.) and
(.) hold.

Note that an interesting particular case is the one where the delay T(t) is a nonnegative
real constant.

Example Consider the second-order nonlinear delay differential equation of Emden-
Fowler type

⎧⎪⎪⎨
⎪⎪⎩
x′′(t) + a(t)|x(t – r)|γ sgnx(t – r) + b(t)|x′(t)|β sgnx′(t) = ,  ≤ t < ∞,

x(t) = ξ (t), –r ≤ t ≤ ,

limt→∞ x′(t) = ,

(.)

where a(t) and b(t) are continuous real-valued functions on [,∞), and γ , β are positive
real numbers. An application of Corollary . to the boundary value problem (.) leads

http://www.boundaryvalueproblems.com/content/2013/1/141


Wei and Wong Boundary Value Problems 2013, 2013:141 Page 12 of 13
http://www.boundaryvalueproblems.com/content/2013/1/141

us to conclude that if there exists a real number c >  such that

∫ r



∣∣ξ (t – r)
∣∣γ ∣∣a(t)∣∣dt + cγ

∫ ∞

r
(t – r)γ

∣∣a(t)∣∣dt + cβ
∫ ∞



∣∣b(t)∣∣dt ≤ c, (.)

then the boundary value problem (.) has at least one solution x satisfying (.) and
(.).

For illustration purpose, suppose in (.) we have r = , γ = , β = ,

ξ (t) = t, a(t) =


(t + )
and b(t) =


(t + )

.

In this case, (.) is reduced to

∫ 



(t – )

(t + )
dt + c

∫ ∞



(t – )

(t + )
dt + c

∫ ∞




(t + )

dt ≤ c.

It is not difficult to verify that this inequality is equivalent to




+



c +


c ≤ c,

which is satisfied if and only if . ≤ c ≤ .. By taking c = , we can conclude that the
boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
x′′(t) + 

(t+) [x(t – )] sgnx(t – ) + 
(t+) x

′(t) = ,  ≤ t <∞,

x(t) = t, – ≤ t ≤ ,

limt→∞ x′(t) = ,

has at least one solution x satisfying

–t ≤ x(t)≤ t and – ≤ x′(t)≤  for t ≥ .
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