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Abstract
In this paper, we deal with the boundary value problems without initial condition for
Schrödinger systems in cylinders. We establish several results on the existence and
uniqueness of solutions.
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Introduction
The initial boundary value for the Schrödinger equation in cylinders with base containing
conical points was established in []. Such a problem for parabolic systems was studied in
Sobolev spaces with weights []. The boundary value problem without initial condition
for parabolic equation was investigated in [].
In the present paper, we consider the boundary value problem without initial condition

for Schrödinger systems in cylinders. Firstly, following the method in [], we prove the
existence of solutions uh of problems with initial conditions t = h. Then, by letting h →
–∞, the solvability of a problem without initial condition is obtained.
This paper is organized as follows. In the first section, we state the problem. In Sec-

tion , we present the results on the unique solvability of problems with initial condition
for Schrödinger systems in cylinders. The well-posedness of the problem without initial
condition is dealt with in Sections  and .

1 Setting the problem
Let � be a bounded domain in R

n (n ≥ ) with boundary S = ∂�. For a < b, set �b
a =

� × (a,b), Sba = S × (a,b). If (a,b) = R, we use �R to refer to �∞
–∞ and SR to refer to S∞

–∞.
For each multi-index α = (α, . . . ,αn) ∈Nn, set |α| = α + · · · + αn and ∂α = ∂

α
x · · · ∂αn

xn .
Denote u(x, t) = (u(x, t), . . . ,us(x, t)), Dαu = (Dαu, . . . ,Dαus), |Dαu| = ∑s

i= |Dαui| and
utj = ( ∂ ju

∂tj , . . . ,
∂ jus
∂tj ) , |utj | =

∑s
i= | ∂ jui

∂tj |.
Let us introduce some functional spaces (see []) used in this paper.
We use Hk(�) to be the space of s-dimensional vector functions defined in � with the

norm

‖u‖Hk (�) =

( k∑
|α|=

∫
�

∣∣Dαu
∣∣ dx

) 


.
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Denote by Hk,l(�b
a) the space consisting of all vector functions u :�b

a −→ C
s satisfying

‖u‖Hk,l(�b
a) =

(∫
�b
a

k∑
|α|=

∣∣Dαu
∣∣ + l∑

j=

|utj | dxdt
) 



,

and Hk,l(–γ ,�b
a) is the space of vector functions with the norm

‖u‖Hk,l(–γ ,�b
a) =

(∫
�b
a

( k∑
|α|=

∣∣Dαu
∣∣ + l∑

j=

|utj |
)
e–γ t dxdt

) 


.

In particular,

‖u‖Hk,(–γ ,�b
a) =

( k∑
|α|=

∫
�b
a

∣∣Dαu
∣∣e–γ t dxdt

) 


.

Especially, we set L(–γ ,�b
a) =H,(–γ ,�b

a).
Denote by

◦
Hk,l(–γ ,�b

a) the completion of infinitely differentiable vector functions van-
ishing near Sba with respect to Hl,k(–γ ,�b

a) norm.
Now we introduce a differential operator of order m

L(x, t,D) =
m∑

|p|,|q|=
(–)|p|Dp(apq(x, t)Dq),

where apq are s× s matrices with the bounded complex-valued components in �R, apq =
a∗
qp (a∗

qp is the transposed conjugate matrix to apq). Set

B(t,u, v) =
m∑

|p|,|q|=

∫
�

apqDquDpvdx, t ∈R.

We assume further that the form B(t, ·, ·) is ◦
Hm-elliptic uniformly with respect to t ∈ R,

which means there exists a constant μ >  independent of t and u such that

B(t,u,u) ≥ μ
∥∥u(·, t)∥∥

Hm(�) (.)

for all u ∈ ◦
Hm(�) and a.e. t ∈ R, where

◦
Hm(�) is a subspace of Hm(�), the dense subset

of infinitely differentiable complex s-dimensional vector functions with compact support
in �.
Now we consider the following problem in the cylinder �R:

(–)m–iL(x, t,D)u – ut = f (x, t) in �R, (.)

∂ ju
∂ν j

∣∣∣
SR
= , j = , . . . ,m – , (.)

where ν is the unit vector of outer normal to the surrounding surface SR.
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Let f ∈ L(–γ ,�R), a complex vector-valued function u ∈ ◦
Hm,(–γ ,�R) is called a gen-

eralized solution of problem (.)-(.) if and only if, for any T > , the equality

(–)m–i
∫ T

–∞
B(t,u,η)dt +

∫
�T
–∞

uηt dxdt =
∫

�T
–∞

f ηdxdt (.)

holds for all η ∈ ◦
Hm,(γ ,�R), η(x, t) =  with t ≥ T .

2 The unique solvability of problems with initial condition
Firstly, for any h ∈R, we study the following problem in the cylinder �∞

h :

(–)m–iL(x, t,D)v – vt = f (x, t) in �∞
h , (.)

v |t=h= , x ∈ �, (.)

∂ jv
∂ν j

∣∣∣
S∞
h
= , j = , . . . ,m – , (.)

where ν is the unit vector of outer normal to the surrounding surface S∞
h .

The solution v(x, t) is surveyed in the generalized sense. That means v ∈ ◦
Hm,(–γ ,�∞

h )
is a generalized solution if and only if, for any T > , we have

(–)m–i
∫ T

h
B(t, v,η)dt +

∫
�T
h

vηt dxdt =
∫

�T
h

f ηdxdt (.)

for all η ∈ ◦
Hm,(γ ,�∞

h ), η(x, t) =  for all t ≥ T .
In [], the unique solvability of problem (.)-(.) is studied in the case h =  and f , ft ∈

L∞(,∞;L(�)). Now, by the same method, we consider that problem in the case h ∈ R

and f , ft ∈ L(–γ ,�∞
h ).

Theorem . Assume that
(i) sup{| ∂apq

∂t | : (x, t) ∈ �∞
h , ≤ |p|, |q| ≤ m} = μ < ∞;

(ii) ft , f ∈ L(–γ ,�∞
h ).

Then, for all γ > γ = m�μ

μ
, m� =

∑
|α|≤m , there exists a uniquely generalized solution v ∈

◦
Hm,(–γ ,�∞

h ) of problem (.)-(.) satisfying

‖v‖Hm,(–γ ,�∞
h ) ≤ C

[‖f ‖L(–γ ,�∞
h ) + ‖ft‖L(–γ ,�∞

h )
]
, (.)

where C is a nonnegative constant independent of h, v, and f .

Proof The uniqueness is proved in a similar way as in []. We omit the details here. Now
we prove the existence by the Galerkin approximating method. Suppose that {ϕk}∞k= is an
orthogonal basis of Hm(�) which is orthonormal in L(�). For any N ∈ N, we consider
the function vN (x, t) =

∑N
k=CN

k (t)ϕk(x), where (CN
k (t))

N
k= is the solution of the ordinary

differential system

(–)m–iB
(
t, vN ,ϕk

)
–

∫
�

vNt ϕk dx =
∫

�

f ϕk dx, (.)

CN
k (h) = , k = , . . . ,N .
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So, multiplying both sides of (.) by d
dt (C

N
k (t)) and taking the sum with respect to k from

 to N , we arrive at

(–)m
m∑

|p|,|q|=

∫
�

apqDqvNDpvNt dx – i
∫

�

vNt vNt dx = i
∫

�

f vNt dx.

Adding this equation to its complex conjugate, integrating with respect to t from h to T ,
and then integrating by parts, we get

(–)m
m∑

|p|,|q|=

∫
�

apq(x,T)DqvN (x,T)DpvN (x,T)dx

= (–)m
m∑

|p|,|q|=

∫
�T
h

∂apq
∂t

DqvNDpvN dxdt

–  Im
(∫

�

f (x,T)vN (x,T)dx –
∫

�T
h

ftvN dxdt
)
. (.)

Using (.) and the Cauchy inequality, we receive from (.) that

∥∥vN (·,T)∥∥
Hm(�) ≤

m�μ + ε

μ – ε

∫ T

h

∥∥vN (·, t)∥∥
Hm(�) dt

+


ε(μ – ε)

(∥∥f (·,T)∥∥
L(�) +

∫ T

h

∥∥ft(·, t)∥∥
L(�) dt

)
. (.)

Using the Gronwall-Bellman inequality, put α = m�μ+ε

μ–ε
, from (.) we obtain

∥∥vN (·,T)∥∥
Hm(�) ≤ α

∫ T

h
eα(T–t)

(∥∥f (·, t)∥∥
L(�) +

∫ T

h

∥∥fs(·, s)∥∥
L(�) ds

)
dt

+


ε(μ – ε)

(∥∥f (·,T)∥∥
L(�) +

∫ T

h

∥∥ft(·, t)∥∥
L(�) dt

)
.

Multiplying both sides of this equation by e–γT and integrating with respect to T from h
to ∞, we get

∥∥vN∥∥
Hm,(–γ ,�∞

h ) ≤


ε(μ – ε)

∫ ∞

h
e–γT

∥∥f (·,T)∥∥
L(�) dT

+


ε(μ – ε)

∫ ∞

h
e–γT

∫ T

h

∥∥ft(·, t)∥∥
L(�) dt dT

+ α
∫ ∞

h
e–γT

∫ T

h
eα(T–t)

∥∥f (·, t)∥∥
L(�) dt dT

+ α
∫ ∞

h
e–γT

∫ T

h
eα(T–t)

∫ t

h

∥∥fs(·, s)∥∥
L(�) dsdt dT . (.)

We denote by I , II , III , IV the terms from the first, second, third, fourth, respectively, of
the right-hand sides of (.). We will give estimations for these terms. Firstly

I =


ε(μ – ε)
‖f ‖L(–γ ,�∞

h ),
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and

II =


ε(μ – ε)

∫ ∞

h

∥∥ft(·, t)∥∥
L(�)

∫ ∞

t
e–γT dT dt =


γ ε(μ – ε)

‖ft‖L(–γ ,�∞
h ).

Because of inf<ε<μ
m�μ+ε

μ–ε
= m�μ

μ
= γ, for any γ > γ, we can choose ε >  satisfying α =

m�μ+ε

μ–ε
< γ . Next, the term III can be estimated by

III = α
∫ ∞

h
e–αt

∥∥f (·, t)∥∥
L(�)

∫ ∞

t
e(α–γ )T dT dt =

α

γ – α
‖f ‖L(–γ ,�∞

h ).

The last term, IV , is equal to

IV = α
∫ ∞

h

∥∥fs(·, s)∥∥
L(�)

∫ ∞

s
e–αt

∫ ∞

t
e(α–γ )T dT dt ds =

α

γ (γ – α)
‖ft‖L(–γ ,�∞

h ).

Combining the above estimations, we get from (.) that

∥∥vN∥∥
Hm,(–γ ,�∞

h ) ≤ C
[‖f ‖L(–γ ,�∞

h ) + ‖ft‖L(–γ ,�∞
h )

]
, (.)

where the constant C is independent of h, N . �

From this inequality, by standard weakly convergent arguments (see []), we can con-
clude that the sequence {vN }∞N= possesses a subsequence convergent to a vector function
v ∈ ◦

Hm,(–γ ,�∞
h ), which is a generalized solution of problem (.)-(.). Moreover, it fol-

lows from (.) that (.) holds.

3 The uniqueness of generalized solution of problem (1.2)-(1.3)
Theorem . If γ >  and | ∂apq

∂t | < μeγ t , ∀t ∈ R, ∀|p|, |q| ≤ m, problem (.)-(.) has no
more than one solution.

Proof Assume that u(x, t) and u(x, t) are two generalized solutions of problem (.)-(.),
set u(x, t) = u(x, t) – u(x, t). For any T > , b ≤ T , denote

η(x, t) =

⎧⎨
⎩

∫ t
b u(x, τ )dτ , –∞ ≤ t ≤ b,

, b ≤ t ≤ T .

Then η(x,T) = , η ∈ ◦
Hm,(γ ,�T

–∞) and ηt(x, t) = u(x, t), –∞ ≤ t ≤ b.
From the definition of generalized solution, we obtain

(–)m
m∑

|p|,|q|=

∫
�b
–∞

apqDpηtDqηdxdt + i
∫

�b
–∞

|ηt| dxdt = . (.)

Adding (.) to its complex conjugate, we discover

(–)m
m∑

|p|,|q|=

∫
�b
–∞

apq
∂(DpηDpη)

∂t
dxdt = ,

http://www.boundaryvalueproblems.com/content/2013/1/156
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which leads to

–
m∑

|p|,|q|=

∫
�b
–∞

∂apq
∂t

DpηDqηdxdt

= lim
τ→–∞

m∑
|p|,|q|=

∫ τ

b

∫
�

apq(x, τ )Dpu(x, τ )Dqu(x, τ )dxdτ . (.)

Using the assumption of Theorem . and the Cauchy inequality, the left-hand sides of
(.) can be estimated by

m∑
|p|,|q|=

∫
�b
–∞

∂apq
∂t

DpηDqηdxdt ≤ μ

m∑
|p|,|q|=

∫
�b
–∞

∣∣DqηDp
∣∣eγ t dxdt

≤ μ



m∑
|p|,|q|=

∫
�b
–∞

(∣∣Dqη
∣∣eγ t + ∣∣Dpη

∣∣eγ t)dxdt
≤ μm�‖η‖Hm,(γ ,�b

–∞).

From (.) we have

B(τ ,η,η) =
m∑

|p|,|q|=

∫
�

apq(x, τ )Dpη(x, τ )Dqη(x, τ )dx≥ μ
∥∥η(·, τ )∥∥

Hm(�),

which implies

lim
τ→–∞

m∑
|p|,|q|=

∫
�

apq(x, τ )Dpη(x, τ )Dqη(x, τ )dx ≥ μ lim
τ→–∞

∥∥η(·, τ )∥∥
Hm(�).

Thus

lim
τ→–∞

∥∥η(·, τ )∥∥
Hm(�) ≤ C‖η‖Hm,(γ ,�b

–∞). (.)

Set

vp(x, t) =
∫ –∞

t
Dpu(x, τ )dτ , –∞ ≤ t ≤ b,

then

Dpη(x, t) =
∫ t

b
Dpu(x, τ )dτ = vp(x,b) – vp(x, t).

Replacing them into (.), noting that limτ→–∞ vp(x, t) = , yields

m∑
|p|=

∫
�

∣∣vp(x,b)∣∣ dx

≤ C
m∑

|p|=

∫
�b
–∞

eγ t
∣∣Dpη(x, t)

∣∣ dxdt

http://www.boundaryvalueproblems.com/content/2013/1/156
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≤ C
m∑

|p|=

∫
�b
–∞

eγ t
(∣∣vp(x,b)∣∣ + ∣∣vp(x, t)∣∣)dxdt

≤ Ceγ b
m∑

|p|=

∫
�

∣∣vp(x,b)∣∣ dx +C
m∑

|p|=

∫
�b
–∞

eγ t
∣∣vp(x, t)∣∣ dxdt.

Setting

J(t) =
m∑

|p|=

∫
�

∣∣vp(x, t)∣∣ dx,
we have

(
 –Ceγ b

)
J(b) ≤ C

∫ b

–∞
eγ tJ(t)dt.

So

J(b) ≤ C
∫ b

–∞
eγ tJ(t)dt, ∀b ∈

(
–∞,


γ

ln

C

]
,

where the positive constant C depends only on μ and μ.
Using the Gronwall-Bellman inequality, we get

J(t) ≡  on
(
–∞,


γ

ln

C

]
.

So u(x, t) =  almost everywhere t ∈ (–∞, 
γ ln 

C ]. Because of the uniqueness of the so-
lution of the problem with initial condition (.)-(.), we imply u(x, t) = u(x, t) almost
everywhere t ∈ R. �

4 The existence of generalized solution
The generalized solution of problem (.)-(.) can be approximated by a sequence of so-
lutions of problems with initial condition (.)-(.).
It is known that there is a smooth function χ (t) which is equal to  on [,∞), is equal

to  on (–∞, ] and assumes value in [, ] on [; ] (see [, Th. .] for more details).
Moreover, we can suppose that all derivatives of χ (t) are bounded. Let h ∈ (–∞, ] be an
integer. Setting f h(x, t) = χ (t – h)f (x, t), we then get

f h(x, t) =

⎧⎨
⎩f (x, t) if t ≥ h + ,

 if t ≤ h.

Moreover, if f , ft ∈ L(–γ ,�R), f h, f ht ∈ L(–γ ,�R) and

∥∥f h∥∥
L(–γ ,�R)

≤ ‖f ‖L(–γ ,�R), (.)∥∥f ht ∥∥
L(–γ ,�R)

≤ C
(‖ft‖L(–γ ,�R) + ‖f ‖L(–γ ,�R)

)
, (.)

where the constant C is independent of f , h.

http://www.boundaryvalueproblems.com/content/2013/1/156
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Let us consider generalized solution uh and uk of problems (.)-(.) in cylinders �∞
h

and �∞
k with f (x, t) is replaced by f h(x, t) and f k(x, t) respectively. With h > k, uh can be

understood in
◦
Hm,(–γ ,�∞

k ) with uh(x, t) = , ∀k ≤ t ≤ h.
Define ukh(x, t) = uk(x, t) – uh(x, t), then ukh(x, t) is the generalized solution of problem

(.)-(.) in cylinder �∞
k with f (x, t) is replaced by f kh(x, t) = f k(x, t) – f h(x, t). According

to (.),

∥∥ukh∥∥◦
Hm,(–γ ,�R)

=
∥∥ukh∥∥◦

Hm,(–γ ,�∞
k )

≤ C
[∥∥f h – f k

∥∥
L(–γ ,�∞

k ) +
∥∥f ht – f kt

∥∥
L(–γ ,�∞

k )

]
.

Because

∥∥f h – f k
∥∥
L(–γ ,�R)

=
∥∥f h – f k

∥∥
L(–γ ,�∞

k ) =
∫ h+

k
e–γ t

∥∥f h – f k
∥∥
L(�) dt

=
∫ h+

k
e–γ t

∣∣χ (t – h) – χ (t – k)
∣∣ · ‖f ‖L(�) dt

≤ 
∫ h+

k
e–γ t‖f ‖L(�) dt.

Because of the fact that f ∈ L(–γ ,�R), lim
∫ h+
k e–γ t‖f ‖L(�) dt =  when h,k → –∞. So

lim‖f h – f k‖L(–γ ,�R)
=  when h,k → –∞. Repeating this argument, we discover lim‖f ht –

f kt ‖L(–γ ,�R) =  when h,k → –∞. It follows that {uh}–∞
h= is a Cauchy sequence and uh is

convergent to u in
◦
Hm,(–γ ,�R).

In conclusion, we have uh ∈ ◦
Hm,(–γ ,�R) satisfying

(–)m–i
∫ T

h
B
(
t,uh,η

)
dt +

∫
�T
h

uhηt dxdt =
∫

�T
h

f hηdxdt (.)

for all T > , η ∈ ◦
Hm,(γ ,�∞

h ), η(x, t) =  with t ≥ T .
Because of the fact that uh(x, t) = , f h(x, t) = , ∀t ≤ h, (.) leads to

(–)m–i
∫ T

–∞
B
(
t,uh,η

)
dt +

∫
�T
–∞

uhηt dxdt =
∫

�T
–∞

f ηdxdt (.)

for all T > , η ∈ ◦
Hm,(γ ,�R), η(x, t) =  for all t ≥ T .

For f (x, t) ∈ L(–γ ,�R), sending h→ –∞, (.) is written as

(–)m–i
∫ T

–∞
B(t,u,η)dt +

∫
�T
–∞

uηt dxdt =
∫

�T
–∞

f ηdxdt (.)

for all T > , η ∈ ◦
Hm,(γ ,�R), η(x, t) =  for all t ≥ T .

That means u(x, t) is a generalized solution of problem (.)-(.). We obtain our main
result.

Theorem . Assume that:
(i) sup{| ∂apq

∂t | : (x, t) ∈ �R,  ≤ |p|, |q| ≤ m} = μ <∞;

http://www.boundaryvalueproblems.com/content/2013/1/156
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(ii) | ∂apq
∂t | ≤ μ · eγ t , for all (x, t) ∈ �R,  ≤ |p|, |q| ≤ m;

(iii) f , ft ∈ L(–γ ,�R).
Then, for all γ > γ = m�μ

μ
, m� =

∑
|α|≤m , there exists a uniquely generalized solution

u(x, t) ∈ ◦
Hm,(–γ ,�R) of problem (.)-(.) satisfying

‖u‖◦
Hm,(–γ ,�R)

≤ C
[‖f ‖L(–γ ,�R) + ‖ft‖L(–γ ,�R)

]
.
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