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Abstract
In this paper, the author establishes a blow-up criterion of strong solutions to 3D
compressible viscous magneto-micropolar fluids. It is shown that if the density and
the velocity satisfy ‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls(0,T ;Lr ) <∞, where 2

s +
3
r ≤ 1 and 3 < r ≤ ∞,

then the strong solutions to the Cauchy problem can exist globally over R3 × [0, T ].
The initial density may vanish on open sets, that is, the initial vacuum is allowed.
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1 Introduction
In this paper, we consider the following D compressible viscous magneto-micropolar
fluids:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = ,

(ρu)t + div(ρu⊗ u) – (μ + ξ )�u – (μ + λ – ξ )∇ divu +∇P

= ξ∇ ×w + (∇ ×H)×H ,

(ρw)t + div(ρu⊗w) –μ′�w – (μ′ + λ′)∇ divw + ξw = ξ∇ × u,

Ht –∇ × (u×H) = –∇ × (σ∇ ×H),

divH = ,

(.)

where x = (x,x,x) ∈ R
 is the spacial coordinate and t ≥  is the time. The un-

known functions ρ = ρ(t,x), u = u(t,x) = (u,u,u)(t,x), w = w(t,x) = (w,w,w)(t,x),
H =H(t,x) = (H,H,H)(t,x) and P(ρ) = Aργ (A > , γ > ) are the fluid density, velocity,
micro-rotational velocity, magnetic field and pressure, respectively. The constants μ, λ, ξ ,
μ′, λ′ and σ are the viscosity coefficients of the fluid satisfying

μ,μ′, ξ ,σ > , μ + λ – ξ ≥ , and μ′ + λ′ ≥ . (.)

System (.)-(.) describing the motion of aggregates of small solid ferromagnetic par-
ticles relative to viscous magnetic fluids, such as water, hydrocarbon, ester, fluorocarbon,
etc., in which they are immersed, covers a wide range of heat and mass transfer phe-
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nomena, under the action of magnetic fields, and is of great importance in practical and
mathematics applications (see []). Indeed, (.) is composed of the balance laws of mass,
momentum, moment of momentum and magnetohydrodynamic, respectively. Due to its
importance in mathematics and physics, there is a lot of literature devoted to the mathe-
matical theory of the compressible viscous magneto-micropolar system (see [–]).
For the incompressible magneto-micropolar fluid models where ρ = Const., Rojas-

Medar [] established local existence and uniqueness of strong solutions by the Galerkin
method. Ortega-Torres and Rojas-Medar [] proved global existence of strong solutions
for small initial data. A BKM type blow-up criterion for smooth solution that relies on the
vorticity of velocity only was obtained by Yuan []. For regularity results, refer to Yuan []
and Gala [].
In particular, if the effect of angular velocity field of the particle’s rotation is omitted, i.e.,

w = , then (.) reduces to compressiblemagnetohydrodynamic equations (MHD). There
are numerous important progress on compressible MHD (see [–] and the references
therein). The local strong solutions to the compressible MHD with large initial data were
respectively obtained by Vol’pert-Khudiaev [] and Fan-Yu [] in cases that the initial
density is strictly positive and the initial densitymay vanish. Xu-Zhang [] proved a blow-
up criterion that if T∗ < ∞ is the maximal time of existence of a strong solution, then

sup
T→T∗

(‖ρ‖L∞(,T ;L∞) + ‖u‖Ls(,T ;Lrw)
)
= ∞,

where Lrw is the weak Lr space and r, s satisfy


s
+

r

≤ ,  < r ≤ ∞. (.)

If H = , (.) reduces to compressible micropolar fluid equations. Mujakovic [, ]
considered the one-dimensional motion of compressible viscous micropolar fluids and
studied the local/global existence. The global existence of strong solutions to the D
model with initial vacuum was also obtained in []. For multi-dimensional compressible
magneto-micropolar equations, Amirat andHamdache [] proved the global existence of
weak solutions with finite energy and the adiabatic constant for γ > /, which generalized
Lions’ pioneering work [] and the work by Feireisl et al. []. Chen [] established the
local existence and uniqueness of strong solutions under the assumption that the initial
density may vanish, and in [] Chen et al. proved a blow-up criterion that

sup
T→T∗

(‖ρ‖L∞(,T ;L∞) + ‖√ρu‖Ls(,T ;Lr )
)
= ∞,

where r, s satisfy (.).
If H =  and w = , (.) reduces to isentropic compressible Navier-Stokes equations. In

[], the authors established a Serrin-type blow-up criterion that

sup
T→T∗

(‖divu‖L(,T ;L∞) + ‖√ρu‖Ls(,T ;Lr )
)
= ∞,

or

sup
T→T∗

(‖ρ‖L∞(,T ;L∞) + ‖√ρu‖Ls(,T ;Lr )
)
= ∞,

where r, s satisfy (.).
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In this paper, our main purpose is to establish a blow-up criterion of strong solutions
for system (.) with the following conditions:

⎧⎨
⎩
(ρ,u,w,H)(x, ) = (ρ,u,w,H)(x) in R

,

(ρ,u,w,H)(x, t)→  as |x| → ∞.
(.)

To proceed, we introduce the following notations. For  ≤ r ≤ ∞, we denote the stan-
dard homogeneous and inhomogeneous Sobolev spaces as follows:

⎧⎨
⎩
Lr = Lr(R), Dk,r = {u ∈ Lloc(R

)|‖∇ku‖Lr < ∞}, ‖u‖Dk,r := ‖∇ku‖Lr ,
Wk,r = Lr ∩Dk,r, Hk =Wk,, Dk =Dk,, D = {u ∈ L|‖∇u‖L < ∞}.

To present the main result, we first give the following local existence and uniqueness
of strong solutions to the Cauchy problem (.), (.) and (.) with initial vacuum (with-
out proof ), which can be obtained by the same method developed by Choe-Kim in []
(see also Fan-Yu [] and Chen [] for MHD and compressible micropolar fluids, respec-
tively).

Theorem . Assume that for some q ∈ (, ], the initial data (ρ,u,w,H) satisfy

 ≤ ρ ∈ L ∩H ∩W ,q, u ∈D ∩D,

w ∈H, H ∈H, divH = ,
(.)

and the compatibility conditions

–(μ + ξ )�u – (μ + λ – ξ )∇ divu +∇P – ξ∇ ×w – (∇ ×H)×H

= ρ/
 g, (.)

–μ′�w –
(
μ′ + λ′)∇ divw – ξ∇ × u + ξw = ρ/

 g, (.)

with some (g, g) ∈ L. Then there exists a positive time T∗ ∈ (,∞) such that the problem
(.), (.) and (.) has a unique strong solution (ρ,u,w,H) in R

 × [,T∗] satisfying, for
some q ∈ (, ],

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ ∈ C([,T∗];L ∩H ∩W ,q ), ρt ∈ L∞(,T∗;L ∩ Lq ), ρ ≥ ,

(u,w,H) ∈ C([,T∗];D ∩D)∩ L(,T∗;D,q ), w ∈ C([,T∗];L),

H ∈ C([,T∗];H), (√ρut ,
√

ρwt ,Ht) ∈ L∞(,T∗;L),

(ut ,wt ,Ht) ∈ L(,T∗;D).

(.)

Motivated by [, ] and [], we have the main purpose in this paper to prove a blow-
up criterion for the problem (.), (.) and (.). More precisely, the main result in this
paper reads as follows.

Theorem . Assume that the initial data (ρ,u,w,H) satisfies (.)-(.). Let (ρ,u,
w,H) be a strong solution of the Cauchy problem (.), (.) and (.) with the regulari-
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ties (.). If T∗ ∈ (, +∞) is the maximal time of existence, then

lim
T→T∗

(‖ρ‖L∞(,T ;L∞) + ‖u‖Ls(,T ;Lr )
)
= ∞, (.)

for any r and s satisfying (.).

Remark . Theorem . proves that the strong solutions of (.), (.) and (.) can exist
only in a small time T∗, whichmeans that if T∗ is themaximal time of existence, then there
must be some component of the fluid mechanics blow-ups. Theorem . points out one
kind of blow-up mechanics.

Remark . There is no any additional growth condition on themicro-rotational velocity
w and magnetic field H . This reveals that the density and the linear velocity play a more
important role compared to the angular velocity of rotation of particles and the magnetic
field in the regularity theory of solutions to D compressible magneto-micropolar fluid
flows.

The rest of the paper is devoted to completing the proof of Theorem ..

2 Proof of Theorem 1.2
First, we give the following well-known Gagliardo-Nirenberg inequality that will be used
frequently.

Lemma . For p ∈ [, ], q ∈ (,∞) and r ∈ (,∞), there exists some generic constant
C > , which may depend on p, q and r, such that for any f ∈H and g ∈ Lq ∩D,r , we have

‖f ‖Lp ≤ C‖f ‖(–p)/pL ‖∇f ‖(p–)/pL , (.)

‖g‖L∞ ≤ C‖g‖q(r–)/(r+q(r–))Lq ‖∇g‖r/(r+q(r–))Lr . (.)

The following BKM’s type inequality whichwill be used to estimate ‖∇u‖L∞ and ‖∇ρ‖Lq
with q ∈ (, ] can be found in [].

Lemma . For  < q <∞, there is a constant C = C(q), depending only on q, such that the
following estimate holds for all ∇u ∈ L ∩D,q:

‖∇u‖L∞ ≤ C
(‖divu‖L∞ + ‖∇ × u‖L∞

)
log

(
e +

∥∥∇u
∥∥
Lq

)
+C‖∇u‖L +C. (.)

The proof of Theorem . is based on the contradiction arguments. Let (ρ,u,w,H) be a
strong solution of the problem (.), (.) and (.) as described in Theorem .. Suppose
that (.) is false, that is,

lim
T→T∗

(‖ρ‖L∞(,T ;L∞) + ‖u‖Ls(,T ;Lr )
) ≤ M <∞, (.)

where r, s satisfy (.) andM is a constant.
One can easily deduce from the following energy estimate (.), (.) and (.).

http://www.boundaryvalueproblems.com/content/2013/1/160
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Lemma . It holds that

sup
≤t≤T

(‖ρ‖L∩Lγ + ‖√ρu‖L + ‖√ρw‖L + ‖H‖L
)

+
∫ T



(‖∇u‖L + ‖w‖H + ‖∇H‖L
)
dt ≤ C. (.)

Here and hereafter, C denotes a generic positive constant which may depend on μ, μ′, λ, λ′,
ξ , σ , A, γ , ρ, u, w, H, g, g, T and M.

We denote the material derivative of f by ḟ = ft + u · ∇f and set

G := (μ + λ)divu – P(ρ) –


|H|, G :=

(
μ′ + λ′)divw,

V := ∇ × u, V :=∇ ×w.
(.)

Since (∇ ×H)×H =H · ∇H – 
∇|H| due to (.), we have from (.) and (.) that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�G = div(ρu̇ –H · ∇H),

�G – ξ

μ′+λ′G = div(ρẇ),

(μ + ξ )�V = ∇ × (ρu̇ –H · ∇H) – ξ∇ ×V,

μ′�V – ξV = ∇ × (ρẇ) – ξ∇ ×V.

(.)

Thus, from the standard Lp-estimate of an elliptic system, we have the following lemma.

Lemma . Under the condition (.), it holds that

‖∇G‖L + ‖∇V‖L + ‖G‖H + ‖V‖H

≤ C
(‖√ρu̇‖L + ‖√ρẇ‖L + ‖∇u‖L + ‖∇w‖L + ‖H∇H‖L

)
≤ C

(‖√ρut‖L + ‖√ρwt‖L + ‖u∇u‖L + ‖w∇w‖L + ‖∇u‖L + ‖∇w‖L
+ ‖H∇H‖L

)
, (.)

‖∇G‖L + ‖∇G‖L + ‖∇V‖L + ‖∇V‖L
≤ C

(‖∇u̇‖L + ‖∇ẇ‖L + ‖√ρu̇‖L + ‖√ρẇ‖L + ‖∇u‖L + ‖∇w‖L + ‖H∇H‖L
+ ‖H∇H‖L

)
. (.)

Proof In view of standard L-estimates of elliptic system (.), one immediately ob-
tains (.). By (.) and (.), we get that

‖∇G‖L + ‖∇G‖L + ‖∇V‖L + ‖∇V‖L
≤ C

(‖ρu̇‖L + ‖ρẇ‖L + ‖G‖L + ‖V‖L + ‖V‖L + ‖V‖L + ‖H∇H‖L
)

≤ C
(‖∇u̇‖L + ‖∇ẇ‖L + ‖G‖L + ‖∇V‖L + ‖V‖H + ‖H∇H‖L

)
,

which, combined with (.), yields (.) immediately. �
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The next lemma is concerned with the higher integrability of H under the assump-
tion (.).

Lemma . Under the condition (.), it holds for any  ≤ T ≤ T∗ that

‖H‖L∞(,T ;Lq) ≤ C(q) for any q ∈ [,∞), (.)

where C(q) is a positive constant depending on q.

The proof is similar to Lemma . in [] and is omitted here.
With the help of (.) and Lemmas .-., we can prove the following key lemma.

Lemma . Under the condition (.), it holds that for any ≤ T < T∗,

sup
≤t≤T

(‖∇u‖L + ‖w‖H + ‖∇H‖L
)

+
∫ T



(‖√ρut‖L + ‖√ρwt‖L + ‖Ht‖L + ‖∇H‖H
)
dt ≤ C. (.)

Proof Multiplying (.), (.) and (.) by ut ,wt andHt , respectively, and integrating the
resulting equations by parts, one obtains after summing up that



d
dt

∫ (
μ|∇u| + (μ + λ)(divu) +μ′|∇w| + (

μ′ + λ′)(divw) + σ |∇H|)dx
+


d
dt

∫
ξ
(|∇ × u| + |w|)dx +

∫ (
ρ|ut| + ρ|wt| + |Ht|

)
dx

=
∫

P divut dx + ξ
∫
(∇ ×w · ut +∇ × u ·wt) dx

–
∫
(ρu · ∇u · ut + ρu · ∇w ·wt) dx +

∫ (
H · ∇H –



∇|H|

)
· ut dx

+
∫

H · ∇u ·Ht dx –
∫

u · ∇H ·Ht dx –
∫

H ·Ht divudx :=
∑
i=

Ii. (.)

To estimate the first term on the right-hand side of (.), we observe that P satisfies

Pt + div(Pu) + (γ – )P divu = .

Hence, using (.), (.) and (.) yields that

I =
d
dt

∫
P divudx –

∫
Pu · ∇ divudx + (γ – )

∫
P(divu) dx

=
d
dt

∫
P divudx –


μ + λ

∫
Pu · ∇G dx +


(μ + λ)

∫
P divudx

–


(μ + λ)

∫
Pu · ∇|H| dx + (γ – )

∫
P(divu) dx

≤ d
dt

∫
P divudx +C

(‖P‖L‖u‖L‖∇G‖L + ‖P‖L∞‖P‖L‖∇u‖L

http://www.boundaryvalueproblems.com/content/2013/1/160
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+ ‖P‖L∞‖u‖L‖H‖L‖∇H‖L + ‖P‖L∞‖∇u‖L
)

≤ d
dt

∫
P divudx + ε‖∇G‖L +C(ε)

(‖∇u‖L + ‖∇H‖L + 
)
, (.)

where we have used Young’s inequality and (.).
For the second term, we have, after integration by parts, that

I = ξ
∫ (

w · (∇ × ut) + (∇ × u) ·wt
)
dx = ξ

d
dt

∫
w · (∇ × u) dx, (.)

and by the Cauchy-Schwarz inequality, we have

I ≤ 


(‖√ρut‖L + ‖√ρwt‖L
)
+C

(‖u∇u‖L + ‖u∇w‖L
)
. (.)

Similarly, integrating by parts and using the fact divH = , one has

I = –
∫ (

H · ∇ut ·H –


|H| divut

)
dx

= –
d
dt

∫ (
H · ∇u ·H –



|H| divu

)
dx

+
∫
(Ht · ∇u ·H +H · ∇u ·Ht –H ·Ht divu) dx

≤ –
d
dt

∫ (
H · ∇u ·H –



|H| divu

)
dx +




‖Ht‖L +C‖H∇u‖L . (.)

For the last three terms on the right-hand side of (.), one has from (.) that

∣∣∣∣∣
∑
i=

Ii

∣∣∣∣∣ ≤ 


‖Ht‖L +C
(‖u∇H‖L + ‖H∇u‖L

)
. (.)

Thus, putting (.)-(.) into (.) and choosing ε >  suitably small, we infer from (.)
that

d
dt

∫ (
μ|∇u| + (μ + λ)(divu) +μ′|∇w| + (

μ′ + λ′)(divw) + σ |∇H|)dx
+

d
dt

∫
ξ |∇ × u – w| dx +

∫ (
ρ|ut| + ρ|wt| + |Ht|

)
dx

≤ d
dt

∫ (
P divu + |H| divu – H · ∇u ·H)

dx +C
(‖∇u‖L + ‖∇w‖L + ‖∇H‖L

)

+C
(‖u∇u‖L + ‖u∇w‖L + ‖u∇H‖L + ‖H∇u‖L + ‖H∇H‖L

)
. (.)

For any r, s satisfying (.), we have by the Hölder and Sobolev inequalities that

‖fg‖L ≤ C‖f ‖Lr‖g‖
L

r
r–

≤ C‖f ‖Lr‖g‖
r–
r

L ‖g‖ 
r
L

≤ δ‖g‖L +C(δ)
(‖f ‖ s


Lr + 

)‖g‖L , r > , (.)

for some δ ∈ (, ).

http://www.boundaryvalueproblems.com/content/2013/1/160
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Taking f = u, H , g = ∇u, ∇w, ∇H into (.) and using (.), we obtain

‖u∇u‖L + ‖u∇w‖L + ‖u∇H‖L + ‖H∇u‖L + ‖H∇H‖L
≤ δ

(‖∇u‖L + ‖∇w‖L + ‖∇H‖L
)

+C(δ)
(‖u‖sLr + 

)(‖∇u‖L + ‖∇w‖L + ‖∇H‖L
)
. (.)

By the standard Lp-estimate, one can deduce from (.), (.), (.) and (.) that

‖∇u‖L + ‖∇w‖L
≤ C

(‖divu‖L + ‖∇ × u‖L + ‖divw‖L + ‖∇ ×w‖L
)

≤ C
(‖G‖L + ‖G‖L + ‖V‖L + ‖V‖L + ‖P‖L +

∥∥|H|∥∥L
)

≤ C
(
 + ‖∇G‖L + ‖∇G‖L + ‖∇V‖L + ‖∇V‖L

)
≤ C

(
 + ‖√ρut‖L + ‖√ρwt‖L

)
+C

(‖u∇u‖L + ‖u∇u‖L + ‖H∇H‖L
)
. (.)

Furthermore, it follows from (.) and Sobolev’s embedding inequality that

‖∇H‖L ≤ C‖∇H‖H ≤ C
(‖Ht‖L + ‖u∇H‖L + ‖H∇u‖L + ‖∇H‖L

)
, (.)

putting (.) and (.) into (.), such that

‖u∇u‖L + ‖u∇w‖L + ‖u∇H‖L + ‖H∇u‖L + ‖H∇H‖L
≤ Cδ

(‖√ρut‖L + ‖√ρwt‖L + ‖Ht‖L
)

+C(δ)
(‖u‖sLr + 

)(‖∇u‖L + ‖∇w‖L + ‖∇H‖L
)
, (.)

which, together (.) and (.), choosing δ >  suitably small, gives

d
dt

∫ (
μ|∇u| + (μ + λ)(divu) +μ′|∇w| + (

μ′ + λ′)(divw) + σ |∇H|)dx
+

d
dt

∫
ξ |∇ × u – w| dx +

∫ (
ρ|ut| + ρ|wt| + |Ht|

)
dx

≤ d
dt

∫ (
P divu + |H| divu – H · ∇u ·H)

dx

+C
(‖u‖sLr + 

)(‖∇u‖L + ‖∇w‖L + ‖∇H‖L
)
. (.)

It is easily seen that
∣∣∣∣
∫ (

P divu + |H| divu – H · ∇u ·H)
dx

∣∣∣∣ ≤ μ


‖∇u‖L +C.

Taking this into account, we conclude from (.), (.) and Gronwall’s inequality that
part of (.) holds for any  ≤ T < T∗. Note that the estimate of ‖∇H‖L(,T ;H) is a con-
sequence of (.), (.) and (.). The proof of this lemma is completed. �

Nextwe prove the boundedness of ‖√ρu̇‖L , ‖√ρẇ‖L , ‖Ht‖L and ‖∇H‖H by the com-
patibility conditions (.) and (.).
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Lemma . Under the condition (.), it holds that for any  ≤ T < T∗,

sup
≤t≤T

(‖√ρu̇‖L + ‖√ρẇ‖L + ‖Ht‖L + ‖∇H‖H
)

+
∫ T



(‖∇u̇‖L + ‖∇ẇ‖L + ‖∇Ht‖L
)
dt ≤ C. (.)

Proof Applying the operator u̇j[∂t + div(u·)] and u̇j[∂t + div(u·)] to both sides of (.) and
(.), respectively, and using (.), one can obtain, after a straightforward calculation,
that



d
dt

∫ (
ρ|u̇| + ρ|ẇ|)dx

= (μ + ξ )
∫
u̇j

[�ujt + div
(
u�uj

)]
dx + (μ + λ – ξ )

∫
u̇j

[
∂t∂j divu + div(u ∂j divu)

]
dx

+μ′
∫

ẇj[�wj
t + div

(
u�wj)]dx + (

μ′ + λ′)∫
ẇj[∂t∂j divw + div(u ∂j divw)

]
dx

–
∫

u̇j
[
∂jPt + div(u ∂jP)

]
dx + ξ

∫
u̇ · [∇ ×wt + ∂i

(
ui∇ ×w

)]
dx

+ ξ
∫

ẇ · [∇ × ut + ∂i
(
ui∇ × u

)]
dx – ξ

∫
ẇj[wj

t + div
(
uwj)]dx

–



∫
u̇j

[
∂t∂j|H| + div

(
u ∂j|H|)]dx +

∫
u̇j

[
∂t

(
H · ∇Hj) + div

(
u
(
H · ∇Hj))]dx

:=
∑
i=

Ji. (.)

We get after integration by parts that

J = –(μ + ξ )
∫ (∣∣∇u̇j

∣∣ – ∂iu̇j ∂iuk ∂kuj – ∂iu̇juk ∂k∂iuj + u · ∇u̇j�uj
)
dx

= –(μ + ξ )
∫ (∣∣∇u̇j

∣∣ – ∂iu̇j ∂iuk ∂kuj + ∂iu̇j ∂kuk ∂iuj – ∂iuk ∂ku̇j ∂iuj
)
dx

≤ –(μ + ξ )‖∇u̇‖L +C‖∇u̇‖L‖∇u‖L . (.)

Similarly, we also have

∑
j=

Jj ≤ –(μ + λ – ξ )‖div u̇‖L –μ′‖∇ẇ‖L –
(
μ′ + λ′)‖div ẇ‖L

+C‖∇u̇‖L‖∇u‖L +C‖∇ẇ‖L‖∇u‖L‖∇w‖L . (.)

After integration by parts, using (.) and (.), we obtain

J = –
∫ (

ρP′(ρ)divudiv u̇ – P(ρ) ∂k
(
uk ∂ju̇j

)
– P(ρ) ∂j

(
uk ∂ku̇j

))
dx

≤ C‖∇u‖L‖∇u̇‖L ≤ C‖∇u̇‖L . (.)
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Using the definition of the material derivation and integrating by parts, we deduce from
(.), (.) and (.) that

J = ξ
∫ [

wt · (∇ × u̇) – u · ∇u̇ · (∇ ×w)
]
dx

= ξ
∫

ẇ · (∇ × u̇) dx – ξ
∫ [

u · ∇w · (∇ × u̇) + u · ∇u̇ · (∇ ×w)
]
dx

≤ ξ
∫

ẇ · (∇ × u̇) dx +C‖u‖L‖∇w‖L‖∇u̇‖L

≤ ξ
∫

ẇ · (∇ × u̇) dx +C‖∇w‖L‖∇u̇‖L , (.)

and, similarly,

J = ξ
∫

ẇ · (∇ × u̇) dx – ξ
∫ [

u · ∇u · (∇ × ẇ) + u · ∇ẇ · (∇ × u)
]
dx

≤ ξ
∫

ẇ · (∇ × u̇) dx +C‖∇u‖L‖∇ẇ‖L , (.)

and

J = –ξ

∫
|ẇ| dx + ξ

∫
[u · ∇w · ẇ + u · ∇ẇ ·w] dx

= –ξ

∫
|ẇ| dx – ξ

∫
w · ẇdivudx

≤ –ξ

∫
|ẇ| dx +C‖∇u‖L‖w‖L‖ẇ‖L

≤ –ξ

∫
|ẇ| dx +C‖∇ẇ‖L . (.)

The ninth term on the right-hand side of (.) can be estimated as follows, integrating
by parts, using (.), (.), (.), (.) and Hölder’s inequality:

J =
∫ (

∂ju̇jH ·Ht + ∂ku̇juk ∂jH ·H)
dx

≤ C‖∇u̇‖L
(‖H‖L‖Ht‖L + ‖u‖L‖H‖L‖∇H‖L

)

≤ C‖∇u̇‖L
(‖Ht‖



L‖Ht‖



L + ‖∇u‖L‖∇H‖H

)
≤ δ‖∇u̇‖L +C(δ)

(‖Ht‖L + ‖∇Ht‖L + ‖∇H‖H
)
. (.)

In a similar manner, one also has

J =
∫

u̇j
(
Ht · ∇Hj +H · ∇Hj

t + div
(
u
(
H · ∇Hj)))dx

= –
∫ ((

Ht · ∇u̇j
)
Hj +

(
H · ∇u̇j

)
Hj

t + uk ∂ku̇j
(
H · ∇Hj))dx

≤ δ‖∇u̇‖L +C(δ)
(‖Ht‖L + ‖∇Ht‖L + ‖∇H‖H

)
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/160
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Putting (.)-(.) into (.), using the Cauchy-Schwarz inequality and choosing δ > 
suitably small, we get

d
dt

(‖√ρu̇‖L + ‖√ρẇ‖L
)
+

(‖∇u̇‖L + ‖∇ẇ‖L + ‖ẇ –∇ × u̇‖L
)

≤ C
(
 + ‖∇u‖L + ‖∇w‖L + ‖Ht‖L + ‖∇Ht‖L + ‖∇H‖H

)
. (.)

To estimate ‖Ht‖L , one can differentiate (.) with respect to t, multiply the resulting
equations by Ht in L, and integrate by parts over R to get



d
dt

∫
|Ht| dx + σ

∫
|∇Ht| dx

=
∫
(H · ∇ut – ut · ∇H –H divut) ·Ht dx

+
∫
(Ht · ∇u – u · ∇Ht –Ht divu) ·Ht dx := K +K. (.)

Integrating by parts and using (.), (.), (.) and (.), then we deduce

K =
∫
(H · ∇u̇ – u̇∇H –H div u̇) ·Ht dx +

∫ (
Hi ∂iH

j
t –Hk ∂jHk

t
)(
u · ∇uj

)
dx

≤ C‖H‖L‖Ht‖L‖∇u̇‖L +C‖u̇‖L‖∇H‖L‖Ht‖L
+C‖H‖L‖∇Ht‖L‖∇u‖L‖u‖L

≤ C
(‖Ht‖



L‖∇Ht‖



L‖∇u̇‖L + ‖∇Ht‖L‖∇u‖L

)
≤ ε‖∇Ht‖L + ε‖∇u̇‖L +C(ε, ε)

(‖Ht‖L + ‖∇u‖L
)

for some positive constants ε, ε ∈ (, ). For the second term on the right-hand side of
(.), integrating by parts and using (.) give

K =
∫ (

Ht · ∇u –


Ht divu

)
·Ht dx ≤ C‖∇u‖L‖Ht‖L

≤ C‖Ht‖


L‖∇Ht‖



L ≤ ε‖∇Ht‖L +C(ε)‖Ht‖L .

Putting the estimates of K, K into (.) and choosing ε >  small enough, one has



d
dt

∫
|Ht| dx + σ



∫
|∇Ht| dx ≤ ε‖∇u̇‖L +C(ε)

(‖Ht‖L + ‖∇u‖L
)
. (.)

Then, combining (.) and (.), usingYoung’s inequality, and choosing ε >  suitably
small yield that

d
dt

(‖√ρu̇‖L + ‖√ρẇ‖L + ‖Ht‖L
)

+
(‖∇u̇‖L + ‖∇ẇ‖L + ‖∇Ht‖L + ‖ẇ –∇ × u̇‖L

)
≤ C

(
 + ‖∇u‖L + ‖∇w‖L + ‖Ht‖L + ‖∇H‖H

)
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/160
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Firstly, we use (.)-(.), (.), (.), (.), (.) and (.) to infer from the standard
Lp-estimate that

‖∇u‖L + ‖∇w‖L ≤ C
(‖divu‖L + ‖∇ × u‖L + ‖divw‖L + ‖∇ ×w‖L

)
≤ C

(
 + ‖G‖L + ‖G‖L + ‖V‖L + ‖V‖L +

∥∥|H|∥∥L
)

≤ C
(
 + ‖∇G‖L + ‖∇G‖L + ‖∇V‖L + ‖∇V‖L

)
≤ C

(
 + ‖√ρu̇‖L + ‖√ρẇ‖L + ‖∇H‖H

)
, (.)

and

‖√ρu̇‖L + ‖√ρẇ‖L
≤ C

(‖√ρut‖L + ‖√ρwt‖L
)
+C

(‖√ρu · ∇u‖L + ‖√ρw · ∇w‖L
)

≤ C
(‖√ρut‖L + ‖√ρwt‖L

)
+C

(‖u‖L∞‖∇u‖L + ‖w‖L∞‖∇w‖L
)

≤ C
(‖√ρut‖L + ‖√ρwt‖L

)
+C

(‖∇u‖ 

L + ‖∇w‖ 


L

)
. (.)

Moreover, by the standard L-estimate of an elliptic system, we infer from (.), (.),
(.) and (.) that

‖∇H‖H ≤ C
(‖Ht‖L + ‖u∇H‖L + ‖H∇u‖L + ‖∇u‖L

)
≤ C

(‖Ht‖L + ‖u‖L‖∇H‖L + ‖H‖L∞‖∇u‖L + 
)

≤ C
(‖Ht‖L + ‖∇H‖ 


L‖∇H‖ 


L + 

)

≤ C
(‖Ht‖L + ‖∇H‖ 


H + 

)
,

and hence,

‖∇H‖H ≤ C
(‖Ht‖L + 

)
. (.)

Combining (.)-(.), we obtain

‖∇u‖L + ‖∇w‖L ≤ C
(
 + ‖√ρut‖L + ‖√ρwt‖L + ‖Ht‖L

)
. (.)

Now, putting (.) and (.) into (.), one has

d
dt

(‖√ρu̇‖L + ‖√ρẇ‖L + ‖Ht‖L
)

+
(‖∇u̇‖L + ‖∇ẇ‖L + ‖∇Ht‖L + ‖ẇ –∇ × u̇‖L

)
≤ C

(
 + ‖√ρu̇‖L + ‖√ρẇ‖L + ‖Ht‖L

)(
 + ‖√ρut‖L + ‖√ρwt‖L

)
,

from which and (.), we immediately obtain (.) by Gronwall’s inequality, (.) and
(.). As a result of (.), we can also deduce the boundedness of ‖∇H‖H . �

The next lemma is used to bound the density gradient and ‖∇u‖L(,T ;L∞).

http://www.boundaryvalueproblems.com/content/2013/1/160
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Lemma . Under the condition (.), it holds that for any  ≤ T < T∗,

sup
≤t≤T

(‖∇ρ‖L∩Lq + ‖∇u‖H + ‖∇w‖H
)

+
∫ T



(‖∇u‖L∞ + ‖∇u‖W ,q + ‖∇w‖W ,q
)
dt ≤ C (.)

for any q ∈ (, ].

Proof Differentiating (.) with respect to xi and multiplying it by |∂iρ|q– ∂iρ (q ≥ ) in
L, we obtain, after integrating by parts and summing up, that

d
dt

∫
|∇ρ|q dx ≤ C(q)

∫ (|∇u||∇ρ|q + ρ|∇ρ|q–|∇ divu|)dx
≤ C(q)

(‖∇u‖L∞‖∇ρ‖qLq + ‖∇ divu‖Lq‖∇ρ‖q–Lq
)
. (.)

It follows from (.), (.), (.)-(.), (.) and the interpolation inequality that for any
q ∈ (, ],

‖∇ divu‖Lq ≤ C
(‖∇G‖Lq + ‖∇P‖Lq + ‖H‖L∞‖∇H‖Lq

)
≤ C

(
 + ‖∇G‖L + ‖∇G‖L + ‖∇ρ‖Lq

)
≤ C

(
 + ‖∇u̇‖L + ‖∇ẇ‖L + ‖∇ρ‖Lq

)
,

where (.) and (.) were also used to get that ‖H‖L∞ ≤ C. So, putting this into (.)
yields

d
dt

‖∇ρ‖Lq ≤ C
(‖∇u‖L∞ + 

)‖∇ρ‖Lq +C
(
 + ‖∇u̇‖L + ‖∇ẇ‖L

)
. (.)

We now estimate ‖∇u‖L∞ . To do this, we first observe that

(μ + ξ )�u + (μ + λ – ξ )∇ divu = ρu̇ +∇P – ξ∇ ×w + (∇ ×H)×H .

Hence, using the standard Lp-estimate of an elliptic system leads to

∥∥∇u
∥∥
Lq ≤ C

(‖ρu̇‖Lq + ‖∇P‖Lq + ‖∇w‖Lq + ‖H∇H‖Lq
)

≤ C
(
 + ‖∇u̇‖L + ‖∇ρ‖Lq + ‖∇w‖H

)
.

From (.) and the standard L-estimate of the elliptic system, we have that

‖∇w‖H ≤ C
(‖w‖H + ‖√ρẇ‖L + ‖∇u‖L

) ≤ C, (.)

and then

∥∥∇u
∥∥
Lq ≤ C

(
 + ‖∇u̇‖L + ‖∇ρ‖Lq

)
. (.)
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This, together with Lemmas . and ., gives

‖∇u‖L∞ ≤ C
(‖∇u‖L + 

)
+C

(‖divu‖L∞ + ‖∇ × u‖L∞
)
log

(
e + ‖∇u‖Lq

)
≤ C +C

(‖divu‖L∞ + ‖∇ × u‖L∞
)
log

(
e + ‖∇u̇‖L

)
+C

(‖divu‖L∞ + ‖∇ × u‖L∞
)
log

(
e + ‖∇ρ‖Lq

)
. (.)

Now, if we set f (t) = e + ‖∇ρ‖Lq and let

g(t) =
(
 + ‖divu‖L∞ + ‖∇ × u‖L∞ + ‖∇u̇‖L + ‖∇ẇ‖L

)
log

(
e + ‖∇u̇‖L

)
,

then it is seen from (.) and (.) that

f ′(t) = Cg(t)f (t) +Cg(t)f (t) ln f (t)

due to f (t) > . Thus,

(
ln f (t)

)′ ≤ Cg(t) +Cg(t) ln f (t). (.)

On the other hand, since

g(t) ≤ C
(
 + ‖divu‖L∞ + ‖∇ × u‖L∞ + ‖∇u̇‖L + ‖∇ẇ‖L

)
,

we thus deduce from (.), (.), (.), (.), (.) and (.) that

∫ T


g(t) dt ≤ C

∫ T



(
 + ‖divu‖L∞ + ‖∇ × u‖L∞ + ‖∇u̇‖L + ‖∇ẇ‖L

)
dt

≤ C +C
∫ T



(‖divu‖L∞ + ‖∇ × u‖L∞
)
dt

≤ C +C
∫ T



(‖G‖L∞ + ‖V‖L∞ + ‖P‖L∞ + ‖H‖L∞
)
dt

≤ C +C
∫ T



(‖G‖L + ‖∇G‖L + ‖V‖L + ‖∇V‖L
)
dt

≤ C +C
∫ T



(‖∇u̇‖L + ‖∇ẇ‖L + ‖∇H‖H
)
dt ≤ C. (.)

As a result, it follows from (.) and Gronwall’s inequality that

f (t)≤ C for any  ≤ t ≤ T < T∗,

and consequently,

sup
≤t≤T

‖∇ρ‖Lq ≤ C for any q ∈ (, ]. (.)

From this and (.), (.), (.), one obtains

∫ T


‖∇u‖L∞ dt ≤ C. (.)

http://www.boundaryvalueproblems.com/content/2013/1/160
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Taking q =  in (.), we get, by using (.) and (.) and Gronwall’s inequality, that

sup
≤t≤T

‖∇ρ‖L ≤ C. (.)

Moreover, the standard L-estimate of an elliptic system and (.), together with (.),
(.) and (.), implies

∥∥∇u
∥∥
L ≤ C

(‖ρu̇‖L + ‖∇P‖L + ‖H∇H‖L + ‖∇u‖L + ‖∇w‖L
)

≤ C
(
 + ‖∇ρ‖L

) ≤ C. (.)

Similar to the proof of (.), there are

∥∥∇u
∥∥
Lq +

∥∥∇w
∥∥
Lq ≤ C

(
 + ‖∇u̇‖L + ‖ρẇ‖Lq + ‖∇u‖Lq + ‖w‖Lq

)
≤ C

(
 + ‖∇u̇‖L + ‖∇ẇ‖L

)
, ∀q ∈ (, ],

where we have used (.), (.), (.), (.) and (.). From this, together with (.),
(.) and (.)-(.), we can deduce (.). �

As a consequence of Lemmas .-., we have the following lemma.

Lemma . Under the condition (.), it holds that for any  ≤ T < T∗,

sup
≤t≤T

(‖√ρut‖L + ‖√ρwt‖L
)
+

∫ T



(‖∇ut‖L + ‖∇wt‖L
)
dt ≤ C. (.)

The proof is the same as that of Lemma . in [] and is omitted here.
With the help of Lemmas ., .-. and the local existence theorem, we can complete

the proof of Theorem . by the contradiction arguments. In fact, in view of Lemmas .,
.-., it is easy to see that the functions (ρ,u,w,H)(x,T∗) = limt→T∗ (ρ,u,w,H) have the
same regularities imposed on the initial data (.) at the time t = T∗. This implies that
the compatibility conditions (.) and (.) are satisfied at the time T∗. Thus, we can take
(ρ,u,w,H)(x,T∗) as the initial data and apply the local existence theorem to extend the
local strong solutions beyond T∗. This contradicts the assumption that T∗ is the maximal
time of existence.
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