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Abstract
In this work the Neumann boundary value problem for a non-homogeneous
polyharmonic equation is studied in a unit ball. Necessary and sufficient conditions
for solvability of this problem are found. To do this we first reduce the Neumann
problem to the Dirichlet problem for a different non-homogeneous polyharmonic
equation and then use the Green function of the Dirichlet problem.
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1 Introduction
Let � = {x ∈ Rn : |x| < } be a unit ball, ∂� = {x ∈ Rn : |x| = } be a unit sphere and m be a
positive integer.
Consider on the domain � the following Neumann boundary value problem:

(–�)mu(x) = g(x), x ∈ �, ()

∂ku
∂νk (x) = ϕk(x), k = , , . . . ,m,x ∈ ∂�, ()

where ν is the unit outer normal vector to sphere ∂�, g(x) and ϕk(x) are given functions;
we always suppose that these functions are sufficiently smooth, and from here on we do
not pay any attention to their smoothness.
A function u(x) ∈ Cm(�)∩ Cm+(�) is called a solution of problem (), () if it satisfies

(), () in a classical sense.
It is well known (see, for example, []) that even in case m =  the considered problem

(), () does not have solutions for arbitrary (even, as we supposed, smooth) functions
g(x) and ϕk(x); in the case of the Poisson equation, the necessary and sufficient solvability
condition for the Neumann problem is

∫
�

g(x)dx =
∫

∂�

ϕ(x)dSx.
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In the paper [] by Kanguzhin and Koshanov, in particular, it is shown that in casem = 
the necessary and sufficient condition for solvability of problem (), () has the form

∫
∂�

{
ϕ(x) – ϕ(x) +

∫
�

d,n( – n)

× [
( – n)|x – y|–n( – (x, y)

) + |x – y|–n(x, y)]g(y)dy}dSx = ,

where (x, y) is the scalar product in Rn and d,n =
�( n –)

π
n

.

The authors of the paper [] presented this condition in a different form, which could
be easily verified,

∫
�

 – |x|


g(x)dx =
∫

∂�

[
ϕ(x) – ϕ(x)

]
dSx.

In the above paper [] the authors found a solvability condition for Neumann problem
(), () for arbitrarym as well (see [], Theorem .). This condition follows from equality
to zero of the determinant of anm×mmatrix, one column of which consists of integrals∫
∂�
[ϕk(x) – ∂k/∂νk(εm,n ∗ g(x))]dSx, εm,n = dm,n|x|m–n and dm,n is a constant. Note that the

equation which one has as a result is very difficult to verify.
The main goal of the present paper is to find a solvability condition for problem (), ()

in a more simple form. It should be noted that in our study of problem (), () the Green
function of the Dirichlet problem for equation () is essentially used. In the paper [] a
similar method was used in the solution of the boundary value problem for the Poisson
equation with the boundary operator of fractional-order.
The paper is organized as follows. In the next section we study the properties of some

integro-differential operators, which we then use throughout the paper. In Section  we
investigate the Dirichlet problem for a polyharmonic equation, making use of the ex-
plicit form of the Green function found in [–]. Then, in the following section, reducing
Neumann problem (), () to the considered Dirichlet problem, we give the necessary and
sufficient solvability condition for problem (), () with homogeneous boundary condi-
tions. In the same way we consider in Section  the Neumann boundary value problem for
the homogeneous equation with non-homogeneous boundary conditions. Finally, in Sec-
tion  we study problem (), () in the general case. To present the necessary and sufficient
conditions for solvability, here we apply the Almansi formula for constructing solutions
to the Dirichlet problem.

2 Properties of some integro-differential operators
Let u(x) be a sufficiently smooth function in �. Consider the following operators:

�c[u](x) =
(
r

∂

∂r
+ c

)
u(x), �–

c [u](x) =
∫ 


tc–u(tx)dt, ()

where r = |x| and c≥  is a constant. Note that the operator�–
 is not defined for functions

u(x) with u() �= .
Note that in the class of harmonic functions in a ball the properties of operators �

c and
�–
c with c >  have previously been studied in the paper [].
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Lemma  Let u(x) be a smooth function. Then for any x ∈ � one has
() if c > , then

�c
[
�–
c [u]

]
(x) = �–

c
[
�c[u]

]
(x) = u(x); ()

() if c = , then

�–


[
�[u]

]
(x) = u(x) – u(); ()

() if c =  and u() = , then

�
[
�–
 [u]

]
(x) = u(x). ()

Proof Let c≥ . Then

∫ 



d
dt

[
tcu(tx)

]
dt =

∫ 


tc–

[
cu(tx) + t

d
dt

u(tx)
]
dt =

∫ 


tc–�c[u](tx)dt.

Therefore, if c > , then

u(x) =
∫ 


tc–�c[u](tx)dt = �–

c
[
�c[u]

]
(x),

and if c = , then

u(x) – u() =
∫ 


t–�[u](tx)dt. ()

Hence, equality () and the second equality of () are proved.
As we noted above, if u() = , then the expression �–

 [u](x) is defined. Now apply the
operator � to this expression. Then

�
[
�–
 [u]

]
(x) =

∫ 


t–�[u](tx)dt.

But due to equality () and the condition u() = , the last expression is equal to u(x).
Hence, equality () is proved. The first equality in () can be proved in the same way. �

The following statement can be proved by a direct calculation.

Lemma  Let u(x) be a smooth function. Then for any x ∈ � one has
() if c≥ , then

��c[u](x) = �c+[�u](x);

() if c > , then

��–
c [u](x) = �–

c+[�u](x);
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Turmetov and Ashurov Boundary Value Problems 2013, 2013:162 Page 4 of 15
http://www.boundaryvalueproblems.com/content/2013/1/162

() if c =  and u() = , then

��–
 [u](x) = �–

 [�u](x).

Corollary  Let u(x) be a smooth function. Then for any x ∈ � one has
() if c ≥ , then

�m�c[u](x) = �c+m
[
�mu

]
(x); ()

() if c > , or c =  and u() = , then

�m�–
c [u](x) = �–

c+m
[
�mu

]
(x). ()

3 Some properties of the solutions of the Dirichlet problem
Let v(x) be a solution of the Dirichlet problem

⎧⎨
⎩(–�)mv(x) = g(x), x ∈ �,

∂k–v
∂νk–

(x) = , k = , , . . . ,m,x ∈ ∂�.
()

It is known (see, for example, [–]) that if g(x) is a sufficiently smooth function, then
the solution of problem () exists, it is unique and has the form

v(x) =
∫

�

Gm,n(x, y)g(y)dy, ()

where Gm,n(x, y) is the Green function of Dirichlet problem ().
We make use of the following explicit form of the Green function []:
if n is odd, or even and n > m, then

Gm,n(x, y) = dm,n

[
|x – y|m–n –

∣∣∣∣x|y| – y
|y|

∣∣∣∣
m–n

–
m–∑
k=

(–)k

k!

(
m –

n


)
· · ·

(
m –

n

– k + 

)

×
∣∣∣∣x|y| – y

|y|
∣∣∣∣
m–n–k(

 – |x|)k( – |y|)k
]
,

where

dm,n =
(–)m�( n –m)
π

n
 m(m – )!

;

if n is even and n≤ m, then

Gm,n(x, y) = dm,n

[
|x – y|m–n

(
ln |x – y| – ln

∣∣∣∣x|y| – y
|y|

∣∣∣∣
)

+
m–∑
k=

∣∣∣∣x|y| – y
|y|

∣∣∣∣
m–n–k(

 – |x|)k( – |y|)k min(m–n/,k–)∑
j=max(k–n/,)

(–)j

k – j
Cj
m–n/

]
,
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where

dm,n =
(–)m–n/

π n
 m(m – n/)!(m – )!

.

Lemma  Let g(x) = �m[g](x) in Dirichlet problem (), and let v(x) be the unique solu-
tion of this problem. Then v() =  if and only if

∫
�

(
 – |x|)m–g(x)dx = . ()

Proof Let v(x) be the solution of problem (). Then it has the form (). To use the explicit
form of the Green function, we shall deal only with the case n is odd or even and n > m,
the other cases being exactly similar. So, if v() = , then from () one has

∫
�

[
|y|m–n –  –

m–∑
k=

(–)k

k!

(
m –

n


)
· · ·

(
m –

n

– k + 

)(
 – |y|)k

]
g(y)dy = .

If we denote ρ = |y| and ξ = y
|y| , then the last integral can be rewritten as

∫
|ξ |=

∫ 


ρn–

[
ρm–n –  –

m–∑
k=

(–)k

k!

(
m –

n


)
· · ·

(
m –

n

– k + 

)(
 – ρ)k]

× g(ρ, ξ )dρ dξ =
∫

|ξ |=
I(ξ )dξ .

Now we consider the inner integral I(ξ ). Noting that g(ρ, ξ ) = (ρ ∂
∂ρ

+ m)g(ρ, ξ ), we
introduce the following two integrals:

I(ξ ) =
∫ 


ρn–

[
mρm–n – m – m

m–∑
k=

(–)k

k!

(
m –

n


)
· · ·

(
m –

n

– k + 

)

× (
 – ρ)k]g(ρ, ξ )dρ,

I(ξ ) =
∫ 


ρn

[
ρm–n –  –

m–∑
k=

(–)k

k!

(
m –

n


)
· · ·

(
m –

n

– k + 

)(
 – ρ)k]

× ∂

∂ρ
g(ρ, ξ )dρ.

Obviously, I(ξ ) = I(ξ ) + I(ξ ).
Integrating by part in the integral I(ξ ), we obtain

I(ξ ) =
∫ 


ρn–

[
–nρm–n + n

+ n ·
[m–∑

k=

(–)k

k!

(
m –

n


)
· · ·

(
m –

n

– k + 

)(
 – ρ)k] – (m – n)ρm–n

– ρ

[m–∑
k=

(–)k

k!
k
(
m –

n


)
· · ·

(
m –

n

– k + 

)(
 – ρ)k–]]

g(ρ, ξ )dρ.
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Therefore

I(ξ ) + I(ξ ) =
∫ 


ρn–Sm–(ρ)g(ρ, ξ )dρ,

where

Sj(ρ) = n – m – ρ
j∑

k=

(–)k

(k – )!

(
m –

n


)
· · ·

(
m –

n

– k + 

)(
 – ρ)k–

+ (n – m)
j∑

k=

(–)k

k!

(
m –

n


)
· · ·

(
m –

n

– k + 

)(
 – ρ)k ,  ≤ j ≤ m – .

It is not hard to prove by induction that

Sj(ρ) =
(n – m) · · · (n – (m – j))

j
· ( – ρ)j

j!
. ()

Indeed, if j = , then

S(ρ) = n – m – ρ(–)
(
m –

n


)
+ (n – m)(–)

(
m –

n


)(
 – ρ)

= (n – m)
(
 – ρ) + (n – m) · n – m


(
 – ρ)

=
(n – m)(n – (m – ))


(
 – ρ).

Now let us suppose that () holds true for some j and prove it for j + . We have

Sj+(ρ) =
(n – m) · · · (n – (m – j))

j
· ( – ρ)j

j!

–

j!

· n – m


· · · n – (m – j)


(
 – ρ)jρ

+
n – m
(j + )!

· n – m


· · · n – (m – j)


(
 – ρ)j+

=
(n – m) · · · (n – (m – j))

j
· ( – ρ)j+

j!

+
n – m
(j + )

· (n – m) · · · (n – (m – j))
j

· ( – ρ)j+

j!

=
(n – m) · · · (n – (m – j))

j
· n – (m – j – )


· ( – ρ)j+

(j + )!
.

Thus equality () holds true for any j = , , . . . ,m – . In particular,

Sm–(ρ) =
(n – m) · · · (n – )

m– · ( – ρ)m–

(m – )!
= an,m

(
 – ρ)m–,

where

an,m =
(n – m) · · · (n – )
m– · (m – )!

.
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Therefore

 =
∫

|ξ |=
I(ξ )dξ = an,m

∫
|ξ |=

∫ 


ρn–( – ρ)m–g(ρ, ξ )dρ dξ ,

and going back to the Cartesian coordinate system, we have

∫
�

(
 – |x|)m–g(x)dx = . �

4 The Neumann problemwith homogeneous boundary conditions
In this section we study problem (), () with homogeneous boundary conditions.

Theorem  Let g(x) be sufficiently smooth. Then the necessary and sufficient solvability
condition for Neumann problem (), () has the form ().
If a solution exists, then it is unique up to a constant and can be represented as

u(x) = C + �–
 [v](x),

where v(x) is the solution of Dirichlet problem () with the right-hand side g(x) =
�m[g](x), which satisfies the additional condition v() = .

Proof Let a solution of problem (), () exist and let u(x) be this solution. We apply an
operator � to a function u(x) and denote v(x) = �[u](x). Now we obtain the conditions
for the function v(x).
Obviously, v() = . If we apply the operator (–�)m to v(x), then by virtue of () we have

(–�)mv(x) = �m
[
(–�)mu

]
(x) = �m[g](x) = g(x).

Further, since

r
∂u
∂r

(x) =
∂u
∂ν

(x), x ∈ ∂�,

then

v(x) =
∂u
∂ν

(x) = , x ∈ ∂�.

It is not hard to verify that for any k = , , . . . and all x ∈ ∂� one has []

∂kv
∂νk (x) = r

∂

∂r

(
r

∂

∂r
– 

)
· · ·

(
r

∂

∂r
– k + 

)
v(x) = rk

∂kv
∂rk

(x).

Therefore from homogeneous conditions () we finally have

∂kv
∂νk (x) = , k = , , . . . ,m – ,x ∈ ∂�.

http://www.boundaryvalueproblems.com/content/2013/1/162
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Thus, if u(x) is a solution of problem (), () with homogeneous boundary conditions,
then the function v(x) = �[u](x) is the solution of Dirichlet problem () with the right-
hand side

g(x) =
(
r

∂

∂r
+ m

)
g(x) = �m[g](x).

Moreover, the function v(x) satisfies the condition v() =  and according to Lemma ,
the necessary condition for this is (). Hence, if a solution of problem (), () exists, then
it is necessary for condition () to be satisfied.
Nowwe prove that if condition () is satisfied, then the solution of problem (), () with

homogeneous boundary conditions exists.
Indeed, if () is satisfied, then according to Lemma  the solution v(x) of Dirichlet prob-

lem () with g(x) = �m[g](x) exists and v() = .
Therefore, we may apply the operator �–

 to v(x) and consider the function u(x) = C +
�–
 [v](x). It is not hard to show that this function is the solution of problem (), ().
Indeed, by virtue of () one has

(–�)mu(x) = �–
m

[
(–�)mv

]
(x) = �–

m
[
�m[g]

]
(x) = g(x), x ∈ �.

Since �[u](x) = �[�–
 [v]](x) = v(x), then one can show as above that the function u(x)

satisfies all homogeneous boundary conditions. �

5 The Neumann problem for the homogeneous equation
In the present section we consider Neumann problem (), () with g(x) ≡ .
Let A be the following matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

   · · · 
 [] [] · · · (m – )[]

 [] [] · · · (m – )[]

· · · · · · · · · · · · · · ·
 [m–] [m–] · · · (m – )[m–]

⎞
⎟⎟⎟⎟⎟⎟⎠
, ()

where j[k] = j(j–) · · · (j–k+), j[] = j. Note that j[k] =  if k > j. Denote by�j, j = , , . . . ,m,
the determinant of thematrix obtained fromA by deleting the elements of the first column
and the jth row. Obviously, |A| = detA = �.
Letw(x) be a solution of the followingDirichlet problemwith sufficiently smooth bound-

ary functions fk(x):⎧⎨
⎩(–�)mw(x) = , x ∈ �,

∂k–w
∂νk–

(x) = fk(x), k = , , . . . ,m,x ∈ ∂�.
()

Theorem  Let g(x) ≡  and ϕk(x), k = , , . . . ,m, be sufficiently smooth functions. Then
the necessary and sufficient solvability condition for Neumann problem (), () has the form

m∑
k=

∫
∂�

(–)k+�k
[
ϕk(x) + (k – )ϕk–(x)

]
dSx = , ()

where ϕ(x) = .

http://www.boundaryvalueproblems.com/content/2013/1/162
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If a solution exists, then it is unique up to a constant and can be represented as

u(x) = C + �–
 [w](x),

where w(x) is the solution of Dirichlet problem () with boundary functions f(x) =
ϕ(x), fk(x) = ϕk(x) + (k – )ϕk–(x), k = , , . . . ,m, which satisfies the additional condition
w() = .

Proof Let a solution of problem (), () exist and let u(x) be this solution. We apply an
operator � to a function u(x) and denotew(x) = �[u](x). Nowwe prove that the function
w(x) is the solution of Dirichlet problem () with the additional condition w() = .
From the properties of the operator � we have (–�)mw(x) = , x ∈ �. By virtue of the

following formula []

∂ ju
∂ν j =

(
r

∂

∂r
– j + 

)
· · ·

(
r

∂

∂r
– 

)
r
∂u
∂r

, ()

one has for x ∈ ∂�

w(x) = ϕ(x),(
r

∂

∂r
– j + 

)
· · ·

(
r

∂

∂r
– 

)
w(x) = ϕj(x), j = , , . . . ,m.

We rewrite these conditions in a more convenient form. To do this we first consider the
last two of them:

(
r

∂

∂r
–m + 

)
· · ·

(
r

∂

∂r
– 

)(
r

∂

∂r
– (m – )

)
w(x) = ϕm(x), ()

(
r

∂

∂r
–m + 

)
· · ·

(
r

∂

∂r
– 

)
w(x) = ϕm–(x). ()

We multiply expression () bym–  and sum to (). Then, making use of (), we obtain

(
r

∂

∂r
–m + 

)
· · ·

(
r

∂

∂r
– 

)
r
∂w(x)

∂r

=
∂m–w(x)
∂νm– = ϕm(x) + (m – )ϕm–(x) = fm(x), x ∈ ∂�.

Further, by repeating this argument for all  ≤ j ≤ m – , we get

∂ jw(x)
∂ν j = ϕj+(x) + jϕj(x) = fj+(x), x ∈ ∂�.

Thus, if u(x) is the solution of Neumann problem (), (), then the function w(x) =
�[u](x) will be the solution of Dirichlet problem () with the additional condition
w() = . Note that, under the conditions of Theorem , the solution of problem () exists
and it is unique (see, for example, []).

http://www.boundaryvalueproblems.com/content/2013/1/162
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Next we find the conditions to the boundary functions ϕk(x), which guarantee the equal-
ity w() = .Making use of the Almansi formula (see, for example, [], p.) we write the
solution of problem () as

w(x) = w(x) + rw(x) + rw(x) + · · · + rm–wm–(x), ()

where wj(x) are harmonic functions in the ball �. Obviously, w() =  if and only if
w() = .
Substituting function () into the boundary condition of () and integrating over the

sphere, taking into account the equalities

∫
∂�

∂kwj(x)
∂νk dSx =

⎧⎨
⎩ωnwj(), k = ,

, k �= ,
ωn is the area of the unit sphere,

we get the system of equations

w() +w() +w() + · · · +wm–() = b,

 ·w() + w() + w() + · · · + (m – )wm–() = b,

 ·w() + w() +  · w() + · · · + (m – )(m – )wm–() = b,

· · ·
 ·w() + [m–]w() + [m–]w() + · · · + (m – )[m–]wm–() = bm,

where

bk =

ωn

∫
∂�

[
ϕk(x) + (k – )ϕk–(x)

]
dSx, k = , , . . . ,m,

and ϕ(x) ≡ . The matrix of this system is matrix A, defined by (). As we noted above,
|A| = detA = �. By reducing to the Vandermonde determinant, it is not hard to find the
value of this determinant; one has � = m–(m – )!(m – )!! · · ·!!!!.
Making use of Cramer’s rule, we find w() from the above system of equations: w() =

|B|
|A| , where |B| is the determinant of the following matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

b   · · · 
b [] [] · · · (m – )[]

b [] [] · · · (m – )[]

· · · · · · · · · · · · · · ·
bm [m–] [m–] · · · (m – )[m–]

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Obviously,

|B| =
m∑
k=

(–)k+bk�k ,

where determinants�k , k = , , . . . ,m, are defined above. Therefore, the equalityw() = 
holds if and only if

∑m
k=(–)k+bk�k = . But by the definition of bk , this condition is equiv-

alent to ().

http://www.boundaryvalueproblems.com/content/2013/1/162
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Thus, if the solution of the considered Neumann problem exists, then necessarily con-
dition () holds.
We now prove the converse, i.e., if () holds, then the solution of theNeumann problem

exists.
Let w(x) be the solution of Dirichlet problem (). If condition () holds, then w() = 

and we may consider the function

u(x) = C + �–
 [w](x) = C +

∫ 


s–w(srθ )ds, x = rθ ,

and prove that this function is in fact the solution of the Neumann problem.
Indeed, after changing of variable sr = ξ , the last integral can be written as

u(x) = C +
∫ r



w(ξθ )
ξ

dξ .

Therefore,

r
∂u(x)
∂r

= r
∂

∂r

(∫ r



w(ξθ )
ξ

dξ

)
= w(x). ()

In the subsequent discussions, we use formulas () and () and assume that x ∈ ∂�.
So, we have

∂u(x)
∂ν

= r
∂u(x)
∂r

= w(x) = f(x) = ϕ(x).

Further, for the second derivative one has

∂u(x)
∂ν =

(
r

∂

∂r
– 

)
r
∂u(x)
∂r

=
(
r

∂

∂r
– 

)
w(x).

Then

∂u(x)
∂ν +

∂u(x)
∂ν

=
(
r

∂

∂r
– 

)
r
∂u(x)
∂r

+ r
∂u(x)
∂r

= r
∂w(x)

∂r

=
∂w(x)
∂ν

= f(x) = ϕ(x) + ϕ(x).

Hence

∂u(x)
∂ν = ϕ(x) + ϕ(x) –

∂u(x)
∂ν

= ϕ(x).

Using the same argument, we have for any j = , , . . . ,m

∂ ju(x)
∂ν j =

(
r

∂

∂r
– j + 

)
· · ·

(
r

∂

∂r
– 

)
r
∂u(x)
∂r

=
(
r

∂

∂r
– j + 

)
· · ·

(
r

∂

∂r
– 

)
w(x).
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Consequently,

∂ ju(x)
∂ν j + (j – )

∂ j–u(x)
∂ν j– =

(
r

∂

∂r
– (j – )

)(
r

∂

∂r
– (j – )

)
· · ·

(
r

∂

∂r
– 

)
w(x)

+ (j – )
(
r

∂

∂r
– (j – )

)
· · ·

(
r

∂

∂r
– 

)
w(x)

=
∂ j–w(x)
∂ν j– = fj(x) = ϕj(x) + (j – )ϕj–(x).

Therefore, finally we have by induction

∂ ju(x)
∂ν j = ϕj(x) + (j – )ϕj–(x) – (j – )

∂ j–u(x)
∂ν j–

= ϕj(x) + (j – )ϕj–(x) – (j – )ϕj–(x) = ϕj(x). �

6 The Neumann problem in the general case
In this final section we consider Neumann problem (), () in the case when both the
equation and the conditions are non-homogeneous.
Let the solution of problem (), () exist and denote this solution by u(x). Apply the

operator � to u(x) and put z(x) = �[u](x). Then the function z(x) is a solution of the
following Dirichlet problem:

⎧⎨
⎩(–�)mz(x) = g(x), x ∈ �,

∂k–z
∂νk–

(x) = ϕk(x) + (k – )ϕk–(x), k = , , . . . ,m,x ∈ ∂�,
()

where g(x) = �m[g](x), ϕ(x) ≡ . Moreover, by definition z(x) satisfies the additional
condition z() = . Since functions g and ϕk are sufficiently smooth, then the solution of
problem () exists and it is unique.
Next we find the conditions to functions g(x) and ϕk(x), which guarantee the equality

z() = . To do this we present z(x) as

z(x) = v(x) +w(x),

where v(x) and w(x) are the considered above solutions of the corresponding Dirichlet
problems () and (). Obviously, z() =  if and only if v() +w() = .
We represent the functions v(x) and w(x), according to () and (), in the form

v(x) =
∫

�

Gm,n(x, y)g(y)dy,

w(x) = w(x) + rw(x) + rw(x) + · · · + rm–wm–(x).

Then

v() =
∫

�

Gm,n(, y)g(y)dy = Cn,m

∫
�

(
 – |y|)m–g(y)dy,

w() = w() = –


ωn|A|
m∑
k=

∫
∂�

(–)k�k
[
ϕk(x) + (k – )ϕk–(x)

]
dSx,
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where

Cn,m = dn,man,m =
(–)m�( n –m)
π

n
 m(m – )!

· (n – m) · · · (n – )
m–(m – )!

.

It is not hard to see that using the formula ωn = πn/

�(n/) we can simplify Cn,m and obtain

Cn,m =

ωn

· (–)m

(m–(m – )!)
.

Since |A| = � = m–(m – )!(m – )!! · · ·!!!!, the condition v() + w() =  has the
form∫

�

(
 – |x|)m–g(x)dx

=
m–(m – )!

(m – )!! · · ·!!!!
m∑
k=

∫
∂�

(–)k�k
[
ϕk(x) + (k – )ϕk–(x)

]
dSx, ()

where ϕ(x) = .
Thus, we proved the following statement on the necessary and sufficient solvability con-

dition for the general Neumann boundary value problem.

Theorem  Let ϕk(x), k = , , . . . ,m and g(x) be sufficiently smooth. Then the necessary
and sufficient solvability condition for Neumann boundary value problem (), () has the
form ().
If a solution exists, then it is unique up to a constant and can be represented as

u(x) = C + �–
 [z](x),

where z(x) is the solution of Dirichlet problem () with the right-hand side g(x) =
�m[g](x), which satisfies the additional condition z() = .

Example  Let us consider the biharmonic equation, i.e.,m = .

In this case

A =

(
 
 

)
, � = , � = .

Then

∑
k=

∫
∂�

(–)k�k
[
ϕk(x) + (k – )ϕk–(x)

]
dSx =

∫
∂�

[
ϕ(x) – ϕ(x)

]
dSx.

Therefore the solvability condition has the form

∫
�

(
 – |x|)g(x)dx = 

∫
∂�

[
ϕ(x) – ϕ(x)

]
dSx,

i.e., this condition coincides with the result of the paper [].
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Example  Let us consider the so-called three-harmonic equation, i.e.,m = .

In this case

A =

⎛
⎜⎝
  
  
  

⎞
⎟⎠ , � = , � = , � = .

Then

∑
k=

∫
∂�

(–)k�k
[
ϕk(x) + (k – )ϕk–(x)

]
dSx

= 
∫

∂�

[
ϕ(x) – ϕ(x) + ϕ(x)

]
dSx.

Therefore the solvability condition has the form

∫
�

(
 – |x|)g(x)dx = 

∫
∂�

[
ϕ(x) – ϕ(x) + ϕ(x)

]
dSx.

Remark  Let  < λ < . Obviously, if g(x) ∈ Cλ+(�), then g(x) = �m[g](x) ∈ Cλ(�).
Therefore, if we suppose that g(x) ∈ Cλ+(�) and ϕk(x) ∈ Cλ+m+–k(∂�), k = , , . . . ,m, then
all the considered boundary value problems have solutions and these solutions are unique
(see, for example, []).
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