
Shen and He Boundary Value Problems 2013, 2013:170
http://www.boundaryvalueproblems.com/content/2013/1/170

RESEARCH Open Access

Bifurcation from interval and positive
solutions for a class of fourth-order two-point
boundary value problem
Wenguo Shen* and Tao He

*Correspondence:
shenwg1963@126.com
Department of Basic Courses,
Lanzhou Institute of Technology,
Lanzhou, 730050, People’s Republic
of China

Abstract
We consider the fourth-order two-point boundary value problem
x′′′′ + kx′′ + lx = f (t, x), 0 < t < 1, x(0) = x(1) = x′(0) = x′(1) = 0, which is not necessarily
linearizable. We give conditions on the parameters k, l and f (t, x) that guarantee the
existence of positive solutions. The proof of our main result is based upon topological
degree theory and global bifurcation techniques.
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1 Introduction
The deformations of an elastic beam in an equilibrium state with fixed both endpoints can
be described by the fourth-order boundary value problem

x′′′′ + lx = λh(t)f (x),  < t < ,

x() = x() = x′() = x′() = ,
(.)

where f :R →R is continuous, λ ∈R is a parameter and l is a given constant. Since prob-
lem (.) cannot transform into a system of second-order equations, the treatmentmethod
of the second-order system does not apply to it. Thus, the existing literature on problem
(.) is limited. When l = , the existence of positive solutions of problem (.) has been
studied by several authors, see [–]. Especially, when l �= , Xu and Han [] studied the
existence of nodal solutions of problem (.) by applying disconjugate operator theory and
bifurcation techniques.
Recently, motivated by [], when k, l satisfy (A), Shen [] studied the existence of nodal

solutions of a general fourth-order boundary value problem by applying disconjugate op-
erator theory [, ] and Rabinowitz’s global bifurcation theorem

x′′′′ + kx′′ + lx = f (t,x),  < t < ,

x() = x() = x′() = x′() = ,
(.)

where

© 2013 Shen and He; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2013/1/170
mailto:shenwg1963@126.com
http://creativecommons.org/licenses/by/2.0


Shen and He Boundary Value Problems 2013, 2013:170 Page 2 of 12
http://www.boundaryvalueproblems.com/content/2013/1/170

(A) one of following conditions holds:
(i) k, l satisfying (k, l) ∈ {(k, l)|k ∈ (–∞, ], l ∈ (,∞)} \ {(, π

 )} ∪ {(k, l)|k ∈
(–∞,π), l ∈ (–∞, ]} are given constants with

π(k – π) < l ≤ 


(
k –

π



)

; (.)

(ii) k, l satisfying (k, l) ∈ {(k, l)|k ∈ (, π

 ), l ∈ (,∞)} are given constants with




(
πk –

π



)
< l ≤ 


k. (.)

In this paper, we consider bifurcation from interval and positive solutions for problem
(.). In order to prove ourmain result, condition (A) and the followingweaker conditions
are satisfied throughout this paper:
(H) f : [, ]× [,∞) → [,∞) is continuous and there exist functions a(t), a(t),

b∞(t), and b∞(t) ∈ C([, ], [,∞)) such that

a(t)x – ξ(t,x)≤ f (t,x)≤ a(t)x + ξ(t,x) (.)

for some functions ξ, ξ defined on [, ]× [,∞) with

ξ(t,x) = o(x), ξ(t,x) = o(x) as x →  (.)

uniformly for t ∈ [, ], and

b∞(t)x – ζ(t,x)≤ f (t,x)≤ b∞(t)x + ζ(t,x) (.)

for some functions ζ, ζ defined on [, ]× [,∞) with

ζ(t,x) = o(x), ζ(t,x) = o(x) as x→ ∞ (.)

uniformly for t ∈ [, ].
(H) f (t,x) >  for t ∈ [, ] and x ∈ (,∞).
(H) There exists a function c(t) ∈ C([, ], [,∞)) with c(t) �≡  in any subinterval of

[, ] such that

f (t,x)≥ c(t)x, (t,x) ∈ [, ]× [,∞). (.)

It is the purpose of this paper to study the existence of positive solutions of (.) un-
der conditions (A), (H), (H) and (H). The main tool we use is the following global
bifurcation theorem for the problem which is not necessarily linearizable.

Theorem A (Rabinowitz []) Let V be a real reflexive Banach space. Let F :R×V → V
be completely continuous such that F(λ, ) = , ∀λ ∈ R. Let a,b ∈ R (a < b) be such that
u =  is an isolated solution of the following equation:

u – F(λ,u) = , u ∈ V (.)

http://www.boundaryvalueproblems.com/content/2013/1/170
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for λ = a and λ = b, where (a, ), (b, ) are not bifurcation points of (.). Furthermore,
assume that

d
(
I – F(a, ·),Br(), 

) �= d
(
I – F(b, ·),Br(), 

)
, (.)

where Br() is an isolating neighborhood of the trivial solution. Let

S =
{
(λ,u) : (λ,u) is a solution of (.) with u �= 

} ∪ (
[a,b]× {}).

Then there exists a continuum (i.e., a closed connected set) C of S containing [a,b] × {},
and either

(i) C is unbounded in V ×R, or
(ii) C ∩ [(R \ [a,b])× {}] �= ∅.

Remark . For other results on the existence and multiplicity of positive solutions and
nodal solutions for boundary value problems of fourth-order ordinary differential equa-
tions based on bifurcation techniques, see [–].

2 Hypotheses and lemmas
Let

L[x] := x′′′′ + kx′′ + lx. (.)

Theorem . (see [, Theorem .]) Let (A) hold. Then
(i) L[x] =  is disconjugate on [, ], and L[x] has a factorization

L[x] := ρ
(
ρ

(
ρ

(
ρ(ρx)′

)′)′)′, (.)

where ρk ∈ C–k[, ] with ρk >  (k = , , , , );
(ii) x() = x() = x′() = x′() =  if and only if

(Lx)() = (Lx)() = (Lx)() = (Lx)() = , (.)

where

Lx = ρx,

Lix = ρi(Li–x)′, i = , , , .
(.)

Theorem . (see [, Theorem .]) Let (A) hold and h ∈ C([, ], [,∞)) with h(t) �≡ 
on any subinterval of [, ]. Then

(i) the problem
⎧⎨
⎩x′′′′(t) + kx′′(t) + lx(t) = λh(t)x,  < t < ,

x() = x() = x′() = x′() = 
(.)

has an infinite sequence of positive eigenvalues

 < λ(h) < λ(h) < · · · < λk(h) < λk+(h) < · · · ; (.)

http://www.boundaryvalueproblems.com/content/2013/1/170
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(ii) λk(h) → +∞ as k → +∞;
(iii) to each eigenvalue λk(h), there corresponds an essential unique eigenfunction ψk

which has exactly k –  simple zeros in (, ) and is positive near ;
(iv) given an arbitrary subinterval of [, ], an eigenfunction that belongs to a sufficiently

large eigenvalue changes its sign in that subinterval;
(v) for each k ∈N, the algebraic multiplicity of λk(h) is .

Theorem . (see [, Theorem .]) (Maximum principle) Let (A) hold. Let e ∈ C[, ]
with e≥  on [, ] and e �≡  in [, ]. If x ∈ C[, ] satisfies

⎧⎨
⎩x′′′′(t) + kx′′(t) + lx = e(t),  < t < ,

x() = x() = x′() = x′() = ,
(.)

then x >  on (, ).

Let Y = C[, ] with the norm ‖x‖∞ =maxt∈[,] |x|. Let E = C[, ] with its usual norm
‖x‖ =max{‖x‖∞,‖x′‖∞,‖x′′‖∞}. By a positive solution of (.), we mean x is a solution of
(.) with x >  (i.e., x≥  in (, ) and x �≡ ).
Let H := L(, ) with the inner product 〈·, ·〉 and the norm ‖ · ‖L . Further, define the

linear operator L̂ :D(̂L) ⊂ E → Y

L̂x = x′′′′ + kx′′ + lx, x ∈D(̂L) (.)

with

D(̂L) =
{
x ∈ C[, ]|x() = x() = x′() = x′() = 

}
. (.)

Then L̂ is a closed operator and L̂– : Y → E is completely continuous.

Lemma . Let ψ be the first eigenfunction of (.). Then, for all x ∈D(̂L), we get

〈̂Lx,ψ〉 = 〈x, L̂ψ〉. (.)

Proof Obviously, ∀x ∈D(̂L), we have

ψ() =ψ() =ψ ′
() =ψ ′

() = , x() = x() = x′() = x′() = .

Integrating by parts, we obtain

〈̂Lx,ψ〉 =
∫ 



[
x′′′′(t) + kx′′(t) + lx(t)

]
ψ(t)dt

=
∫ 


x(t)

[
ψ ′′′′

 (t) + kψ ′′
 (t) + lψ(t)

]
dt = 〈x, L̂ψ〉. �

Let � ⊂R
+ × E be the closure of the set of positive solutions of the problem

L̂x = λf (t,x). (.)

http://www.boundaryvalueproblems.com/content/2013/1/170
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We extend the function f to a continuous function f̄ defined on [, ]×R by

f̄ (t,x) =

⎧⎨
⎩f (t,x), (t,x) ∈ [, ]× [,∞],

f (t, ), (t,x) ∈ [, ]× (–∞, ].
(.)

Then f̄ (t,x)≥  for (t,x) ∈ [, ]×R. For λ ≥ , let x be an arbitrary solution of the problem

L̂x = λf̄ (t,x). (.)

Since λf̄ (t,x(t)) ≥  for t ∈ [, ], we have x ≥  for t ∈ [, ]. Thus x is a nonnegative
solution of (.), and the closure of the set of nontrivial solutions (λ,x) of (.) inR

+ ×E
is exactly �.
Let N : E → Y be the Nemytskii operator associated with the function f̄

N(x)(t) = f̄ (t,x), x ∈ E. (.)

Then (.), with λ ≥ , is equivalent to the operator equation

x = λ̂L–N(x), x ∈ E. (.)

In the following,we shall apply the Leray-Schauder degree theory,mainly to themapping
	λ : E → E,

	λ(x) = x – λ̂L–N(x). (.)

For R > , let BR = {x ∈ E : ‖x‖ ≤ R}, and let deg(	λ,BR, ) denote the degree of 	λ on BR

with respect to .

Lemma . Let 
 ⊂ R
+ be a compact interval with [λ(a),λ(a)] ∩ 
 = ∅. Then there

exists a number δ >  with the property

	λ(x) �= , ∀x ∈ E :  < ‖x‖ ≤ δ,∀λ ∈ 
. (.)

Proof Suppose to the contrary that there exist sequences {μn} ⊂ 
 and {xn} in E : μn →
μ∗ ∈ 
, xn →  in E, such that 	μn (xn) =  for all n ∈ N, then xn ≥  in [, ].
Set yn = xn/‖xn‖. Then Lyn = μn‖xn‖–N(xn) = μn‖xn‖–f (t,xn) and ‖yn‖ = . Now, from

condition (H), we have the following:

a(t)xn – ξ(t,xn)≤ f (t,xn) ≤ a(t)xn + ξ(t,xn), (.)

and, accordingly,

μn

(
a(t)yn –

ξ(t,xn)
‖xn‖

)
≤ μn

f (t,xn)
‖xn‖ ≤ μn

(
a(t)yn +

ξ(t,xn)
‖xn‖

)
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/170
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Let ϕ and ϕ denote the nonnegative eigenfunctions corresponding to λ(a) and
λ(a), respectively. Then we have, from the first inequality in (.),

〈
μn

(
a(t)yn –

ξ(t,xn)
‖xn‖

)
,ϕ

〉
≤

〈
μn

f (t,xn)
‖xn‖ ,ϕ

〉
= 〈̂Lyn,ϕ〉. (.)

From Lemma ., we have

〈̂Lyn,ϕ〉 = 〈yn, L̂ϕ〉 = λ(a)
〈
yn,a(t)ϕ

〉
. (.)

Since xn →  in E, from (.) we have

ξ(t,xn)
‖xn‖ →  as ‖xn‖ → . (.)

By the fact that ‖yn‖ = , we conclude that yn → y in E. Thus,

〈
yn,a(t)ϕ

〉 → 〈
y,a(t)ϕ

〉
. (.)

Combining this and (.) and letting n→ ∞ in (.), we get

〈
μ∗a(t)y,ϕ

〉 ≤ λ(a)
〈
a(t)ϕ, y

〉
, (.)

and consequently

μ∗ ≤ λ(a). (.)

Similarly, we deduce from the second inequality in (.) that

λ
(
a

) ≤ μ∗. (.)

Thus, λ(a) ≤ μ∗ ≤ λ(a). This contradicts μ∗ ∈ 
. �

Corollary . For λ ∈ (,λ(a)) and δ ∈ (, δ), deg(	λ,Bδ , ) = .

Proof Lemma ., applied to the interval
 = [,λ], guarantees the existence of δ >  such
that for δ ∈ (, δ),

x – τ λ̂L–N(x) �= , x ∈ E :  < ‖x‖ ≤ δ, τ ∈ [, ]. (.)

Hence, for any δ ∈ (, δ),

deg(	λ,Bδ , ) = deg(I,Bδ , ) = , (.)

which ends the proof. �

http://www.boundaryvalueproblems.com/content/2013/1/170
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Lemma. Suppose λ > λ(a).Then there exists δ >  such that ∀x ∈ E with  < ‖x‖ ≤ δ,
∀τ ≥ ,

	λ(x) �= τϕ, (.)

where ϕ is the nonnegative eigenfunction corresponding to λ(a).

Proof We assume to the contrary that there exist τn ≥  and a sequence {xn}, with ‖xn‖ > 
and ‖xn‖ →  in E, such that 	λ(xn) = τnϕ for all n ∈N. As

L̂xn = λN(xn) + τnλ(a)a(t)ϕ (.)

and τnλ(a)a(t)ϕ ≥  in (, ), it follows that

xn ≥ , t ∈ [, ]. (.)

Notice that xn ∈D(L̂) has a unique decomposition

xn = ωn + snϕ, (.)

where sn ∈R and 〈ωn,a(t)ϕ〉 = . Since xn ≥  on [, ] and ‖xn‖ ≥ , we have from (.)
that sn > .
Choose σ >  such that

σ <
λ – λ(a)

λ
. (.)

By (H), there exists r >  such that

∣∣ξ(t,x)∣∣ ≤ σa(t)x, t ∈ [, ],x ∈ [, r]. (.)

Therefore, for t ∈ [, ], x ∈ [, r],

f (t,x)≥ a(t)x – ξ(t,x)≥ ( – σ )a(t)x. (.)

Since ‖xn‖ → , there exists N∗ >  such that

 ≤ xn ≤ r, ∀n≥ N∗, (.)

and consequently

f (t,xn) ≥ ( – σ )a(t)xn, ∀n≥ N∗. (.)

Applying Lemma . and (.), it follows that

snλ(a)
〈
ϕ,a(t)ϕ

〉
= 〈xn, L̂ϕ〉 = 〈̂Lxn,ϕ〉 (.)

= λ
〈
N(xn),ϕ

〉
+ τnλ(a)

〈
a(t)ϕ,ϕ

〉

http://www.boundaryvalueproblems.com/content/2013/1/170
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≥ λ
〈
N(xn),ϕ

〉 ≥ λ
〈
( – σ )a(t)xn,ϕ

〉
= λ

〈
( – σ )a(t)ϕ,xn

〉
= λ( – σ )sn

〈
a(t)ϕ,ϕ

〉
. (.)

Thus,

λ(a)≥ λ( – σ ). (.)

This contradicts (.). �

Corollary . For λ > λ(a) and δ ∈ (, δ), deg(	λ,Bδ , ) = .

Proof Let  < δ ≤ δ, where δ is the number asserted in Lemma .. As 	λ is bounded in
B̄δ , there exists c >  such that 	λ(x) �= cϕ for all x ∈ B̄δ . By Lemma ., one has

	λ(x) �= τcϕ, x ∈ ∂Bδ , τ ∈ [, ]. (.)

Hence

deg(	λ,Bδ , ) = deg(	λ – cϕ,Bδ , ) = . (.)
�

Now, using Theorem A, we may prove the following.

Proposition. [λ(a),λ(a)] is a bifurcation interval from the trivial solution for (.).
There exists an unbounded component C of a positive solution of (.), which meets
[λ(a),λ(a)]× {}.Moreover,

C ∩ [(
R \ [

λ
(
a

)
,λ(a)

]) × {}] = ∅. (.)

Proof For fixed n ∈ N with λ(a) – 
n > , let us take that an = λ(a) – 

n , bn = λ(a) + 
n

and δ̄ =min{δ, δ}. It is easy to check that for  < δ < δ̄, all of the conditions of Theorem A
are satisfied. So, there exists a connected component Cn of solutions of (.) containing
[an,bn]× {}, and either

(i) Cn is unbounded, or
(ii) Cn ∩ [(R \ [an,bn])× {}] �= ∅.
By Lemma ., the case (ii) cannot occur. Thus Cn is unbounded bifurcated from

[an,bn] × {} in R × E. Furthermore, we have from Lemma . that for any closed in-
terval I ⊂ [an,bn] \ [λ(a),λ(a)], if x ∈ {x ∈ E|(λ,x) ∈ �,λ ∈ I}, then ‖x‖ →  in E is
impossible. So, Cn must be bifurcated from [λ(a),λ(a)]× {} in R× E. �

3 Main results
Theorem . Let (A), (H), (H), (H) hold. Assume that either

λ(b∞) <  < λ
(
a

)
(.)

http://www.boundaryvalueproblems.com/content/2013/1/170
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or

λ(a) <  < λ
(
b∞)

, (.)

then problem (.) has at least one positive solution.

Proof of Theorem . It is clear that any solution of (.) of the form (,x) yields a solution
x of (.). We will show that C crosses the hyperplane {} × E in R × E. To do this, it is
enough to show that C joins [λ(a),λ(a)]×{} to [λ(b∞),λ(b∞)]×{∞}. Let (μn,xn) ∈
C satisfy

μn + ‖xn‖ → ∞. (.)

We note that μn >  for all n ∈ N since (, ) is the only solution of (.) for λ =  and
C ∩ ({} × E) = ∅.
Case . λ(b∞) <  < λ(a).
In this case, we show that

(
λ(b∞),λ

(
a

)) ⊆ {
λ ∈R|(λ,x) ∈ C

}
.

We divide the proof into two steps.
Step . We show that {μn} is bounded.
Since (μn,xn) ∈ C, Lxn = μnf (t,xn). From (H), we have

Lxn ≥ μnc(t)xn. (.)

Let ϕ̄ denote the nonnegative eigenfunction corresponding to λ(c).
From (.), we have

〈Lxn, ϕ̄〉 ≥ μn
〈
c(t)xn, ϕ̄

〉
. (.)

By Lemma ., we have

λ(c)
〈
xn, c(t)ϕ̄

〉
= 〈xn,Lϕ̄〉 ≥ μn

〈
c(t)ϕ̄,xn

〉
. (.)

Thus

μn ≤ λ(c). (.)

Step . We show that C joins [λ(a),λ(a)]× {} to [λ(b∞),λ(b∞)]× {∞}.
From (.) and (.), we have that ‖xn‖ → ∞. Notice that (.) is equivalent to the

integral equation

xn(t) = μn

∫ 


G(t, s)f

(
s,xn(s)

)
ds, (.)

http://www.boundaryvalueproblems.com/content/2013/1/170
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which implies that

μn

∫ 


G(t, s)

[
b∞(s)xn(s) – ζ

(
s,xn(s)

)]
ds

≤ xn(t)

≤ μn

∫ 


G(t, s)

[
b∞(s)xn(s) + ζ

(
s,xn(s)

)]
ds. (.)

We divide both of (.) by ‖xn‖ and set yn = xn
‖xn‖ . Since yn is bounded in E, there exists

a subsequence of {yn} and y∗ ∈ E, with y∗ ≥  and y∗ �≡  on (, ), such that

μn → μ∗, yn → y∗ in E, (.)

relabeling if necessary. Thus, (.) yields that

μ∗
∫ 


G(t, s)b∞(s)y∗(s)ds≤ y∗(t)≤ μ∗

∫ 


G(t, s)b∞(s)y∗(s)ds, (.)

which implies that

μ∗b∞(t)y∗ ≤ Ly∗ ≤ μ∗b∞(t)y∗ ≤ Ly∗. (.)

Let ϕ∞ and ϕ∞ denote the nonnegative eigenfunction corresponding to λ(b∞) and
λ(b∞), respectively. Then we have, from the first inequality in (.),

〈
μ∗b∞(t)y∗,ϕ∞

〉 ≤ 〈
Ly∗,ϕ∞

〉
.

From Lemma ., integrating by parts, we obtain that

μ∗〈b∞(t)y∗,ϕ∞
〉 ≤ 〈

Ly∗,ϕ∞
〉
=

〈
Lϕ∞, y∗〉 = λ(b∞)

〈
b∞(t)ϕ∞, y∗〉,

and consequently

μ∗ ≤ λ(b∞). (.)

Similarly, we deduce from the second inequality in (.) that

λ
(
b∞) ≤ μ∗. (.)

Thus

λ
(
b∞) ≤ μ∗ ≤ λ(b∞). (.)

So, C joins [λ(a),λ(a)]× {} to [λ(b∞),λ(b∞)]× {∞}.
Case . λ(a) <  < λ(b∞).
In this case, if (μn,xn) ∈ C is such that

lim
n→∞

(
μn + ‖xn‖

)
= ∞

http://www.boundaryvalueproblems.com/content/2013/1/170
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and

lim
n→∞μn = ∞,

then

(
λ(a),λ

(
b∞)) ⊆ {

λ ∈ (,∞)|(λ,x) ∈ C
}

(.)

and, moreover,

({} × E
) ∩C �= ∅. (.)

Assume that {μn} is bounded; applying a similar argument to that used in Step  of
Case , after taking a subsequence and relabeling if necessary, we obtain

μn → μ∗ ∈ [
λ(a),λ

(
b∞)]

, ‖xn‖ → ∞ as n→ ∞. (.)

Again C joins [λ(a),λ(a)]× {} to [λ(b∞),λ(b∞)]× {∞} and the result follows. �
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