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1 Introduction
We consider the initial value problem (IVP) for the following Stokes equation with small
parameter:

∂u
∂t

–�εu +Au +∇ϕ = f (x, t), x ∈ Rn, t ∈ (,T), (.)

divu = , u(x, ) = a(x), (.)

where �εu =
∑n

k= εk
∂u
∂xk

, A is a linear operator in a Banach space E and εk are a small pos-
itive parameters. Here u = (u(x, t),u(x, t), . . . ,un(x, t)), ϕ = ϕ(x, t) are E-valued unknown
solutions, f = (f(x, t), f(x, t), . . . , fn(x, t)) is a given function and a = (a(x),a(x), . . . ,an(x))
is an initial date. This problem is characterized by the presence of an abstract operator A
and small terms εk which correspond to the inverse of Reynolds number Re very large.We
prove that problem (.)-(.) has a unique strong maximal regular solution u on a time
interval [,T] independent of εk . For εk = , E =C, A = b, problem (.)-(.) is reduced to
the Stokes problem

∂u
∂t

–�u + bu +∇ϕ = f (x, t), divu = , (.)

u(x, ) = a(x), x ∈ Rn, t ∈ (,T), (.)

where C is the set of complex numbers and b is a positive constant.
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Note that the existence of weak or strong solutions and regularity properties for the
classical Stokes problems has been extensively studied, e.g., in [–]. There is an extensive
literature on the solvability of the IVPs for the Stokes equation (see, e.g., [, , ] and
further papers cited there). Solonnikov [] proved that for every f ∈ Lp(� × (,T);R) =
B(p), p ∈ (,∞), the time-dependent Stokes problem

∂u
∂t

–�u +∇ϕ = f (x, t), divu = , u|∂� = , (.)

u(x, ) = , x ∈ �, t ∈ (,T)

has a unique solution (u,∇ϕ) so that

∥∥∥∥∂u
∂t

∥∥∥∥
B(p)

+
∥∥∇u

∥∥
B(p) + ‖∇ϕ‖B(p,q) ≤ C‖f ‖B(p,q).

Then Giga and Sohr [] improved the result of Solonnikov for spaces with different expo-
nents in space and time, i.e., they proved that for f ∈ Lp(,T ; (Lq(�))n) = B(p,q) there is a
unique solution (u,∇ϕ) of problem (.) so that

∥∥∥∥∂u
∂t

∥∥∥∥
B(p,q)

+
∥∥∇u

∥∥
B(p,q) + ‖∇ϕ‖B(p,q) ≤ C‖f ‖B(p,q), p,q ∈ (,∞). (.)

Moreover, the estimate obtained was global in time, i.e., the constant C = C(�,p,q) is
independent of T and f . To derive global Lp – Lq estimates (.), Giga and Sohr used the
abstract parabolic semigroup theory in UMD-type Banach spaces. Estimate (.) allows
to study the existence of a solution and regularity properties of the corresponding Navier-
Stokes problem (see, e.g., []).
In this paper, first we consider the following differential operator equation (DOE) with

small parameters:

–�εu + (A + λ)u = f (x), x ∈ Rn, (.)

where A is a linear operator in a Banach space E, εk are positive and λ is a complex pa-
rameter.
We show that for f ∈Wm,q(Rn;E), λ ∈ Sψ , problem (.) has a unique solution u belong-

ing toW +m,q(Rn;E(A),E) and the uniform coercive estimate holds

n∑
k=

m+∑
i=

ε
i

m+
k |λ|– i

m+

∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Lq(Rn ;E)

+ ‖Au‖Lq(Rn ;E) ≤ C‖f ‖Wm,q(Rn ;E),

where C(q) is independent of ε, ε, . . . , εn, λ and f .
We consider, then, the stationary abstract Stokes problem with small parameters

–�εu +Au +∇ϕ = f (x), divu = , x ∈ Rn, (.)

where f = (f(x), f(x), . . . , fn(x)) is data and u = (u(x),u(x), . . . ,un(x)) is a solution. By ap-
plying the projection transformation P, equation (.) can be reduced to the following
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problem:

–P�εu +Au = f (x), x ∈ Rn. (.)

Let Oε,q denote the operator generated by problem (.), i.e., Oε,q is a Stokes operator in
solenoidal space Lqσ (Rn;E) defined by

D(Oε,q) =
(
W ,q

σ

(
Rn;E(A),E

))n = {
u ∈ (

W ,q(Rn;E(A),E
))n,divu = 

}
,

Oε,qu = –P�εu +Au.

We prove that the operatorOε,q is uniformly positive and also is a generator of an analytic
semigroup in Lqσ (Rn;E). Finally, the instationary Stokes problem (.)-(.) is considered
and the well-posedness of this problem is derived. In application we show the separability
properties of the anisotropic stationary Stokes operator in mixed Lp spaces and maximal
regularity properties of infinity system of instationary Stokes equations in Lp spaces.

2 Notations and background
Let E be a Banach space and let Lp(�;E) denote the space of strongly measurable E-valued
functions that are defined on the measurable subset � ⊂ Rn with the norm

‖f ‖Lp = ‖f ‖Lp(�;E) =
(∫

�

∥∥f (x)∥∥p
E dx

) 
p
,  ≤ p < ∞.

The Banach space E is called a UMD-space if the Hilbert operator

(Hf )(x) = lim
ε→

∫
|x–y|>ε

f (y)
x – y

dy

is bounded in Lp(R,E), p ∈ (,∞) (see, e.g., []). UMD spaces include, e.g., Lp, lp spaces
and Lorentz spaces Lpq, p,q ∈ (,∞).
Let E and E be two Banach spaces. B(E,E) denotes the space of bounded linear oper-

ators from E into E endowed with the usual uniform operator topology. For E = E = E,
it is denoted by B(E). Now (E,E)θ ,p,  < θ < ,  ≤ p ≤ ∞, denotes interpolation spaces
defined by the K method [, §..].
Let

Sψ =
{
λ ∈C, | argλ| ≤ ϕ ∪ {}, ≤ ψ < π

}
.

A linear operator A is said to be ψ-positive in a Banach space E with boundM >  if the
domain D(A) is dense on E and ‖(A + λI)–‖B(E) ≤ M( + |λ|)– for any λ ∈ Sψ ,  ≤ ψ < π ,
where I is the identity operator in E. It is known [, §..] that there exist the fractional
powers Aθ of the positive operator A. Let E(Aθ ) denote the space D(Aθ ) with the norm

‖u‖E(Aθ ) =
(‖u‖p + ∥∥Aθu

∥∥p) 
p ,  ≤ p < ∞,  < θ < ∞.

N denotes the set of natural numbers. A set G ⊂ B(E,E) is called R-bounded (see, e.g.,
[]) if there is a positive constant C such that for all T,T, . . . ,Tm ∈G and u,u, . . . ,um ∈

http://www.boundaryvalueproblems.com/content/2013/1/172
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E,m ∈N,

∫
�

∥∥∥∥∥
m∑
j=

rj(y)Tjuj

∥∥∥∥∥
E

dy≤ C
∫

�

∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy,

where {rj} is a sequence of independent symmetric {–, }-valued random variables on �.
The smallest C, for which the estimate above holds, is called an R-bound of the collection
G and denoted by R(G).
A set Gh ⊂ B(E,E) depending of parameter h ∈ Q is called uniform R-bounded

with respect to h if there is a constant C, independent of h ∈ Q such that for all
T(h),T(h), . . . ,Tm(h) ∈Gh and u,u, . . . ,um ∈ E,m ∈N,

∫
�

∥∥∥∥∥
m∑
j=

rj(y)Tj(h)uj

∥∥∥∥∥
E

dy ≤ C
∫

�

∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy.

It implies that suph∈Q R(Gh) ≤ C.
The ψ-positive operator A is said to be R-positive in a Banach space E if the set LA =

{ξ (A + ξ )– : ξ ∈ Sψ },  ≤ ψ < π , is R-bounded.
The operator A(t) is said to be ψ-positive in E uniformly with respect to t with bound

M >  if D(A(t)) is independent of t,D(A(t)) is dense in E and ‖(A(t) +λ)–‖ ≤ M( + |λ|)–
for all λ ∈ Sψ ,  ≤ ψ < π , whereM does not depend of t and λ.
Let E and E be two Banach spaces and let E be continuously and densely embedded

into E. Let � be a measurable set in Rn andm be a positive integer.Wp,m(�;E,E) denotes
the class of all functions u ∈ Lp(�;E) that have the generalized derivatives ∂mu

∂xmk
∈ Lp(�;E)

with the norm

‖u‖Wp,m(�;E,E) = ‖u‖Lp(�;E) +
n∑
k=

∥∥∥∥∂mu
∂xmk

∥∥∥∥
Lp(�;E)

<∞.

For n = , � = (a,b), a,b ∈ R, the space Wp,m(�;E,E) is denoted by Wp,m(a,b;E,E).
For E = E the spaceWp,m(�;E,E) is denoted byWp,m(�;E).
Let Hq,s(Rn;E), –∞ < s < ∞ denote an E-valued Liouville space of order s, i.e.,

Hq,s(Rn;E
)
=

{
u ∈ Lq

(
Rn;E

)
,‖u‖Hq,s(Rn ;E) =

∥∥F–( + |ξ |) s
 Fu

∥∥
Lq(Rn ;E) < ∞}

,

where F and F– denote the Fourier and inverse Fourier transforms, respectively.
Let Hq,s(Rn;E,E) be a Liouville-Lions type space, i.e.,

Hq,s(Rn;E,E
)
=

{
u ∈Hq,s(Rn;E

) ∩ Lq
(
Rn;E

)
,

‖u‖Hq,s(Rn ;E,E) = ‖u‖Lq(Rn ;E) + ‖u‖Hq,s(Rn ;E) <∞}
.

For ε = (ε, ε, . . . , εn) we define the parameter-dependent norm in Hq,s(Rn;E,E) such
that

‖u‖Hq,s
ε (Rn ;E,E) = ‖u‖Lq(Rn ;E) +

∥∥∥∥∥F–

(
 +

n∑
k=

εkξ

k

) s


Fu

∥∥∥∥∥
Lq(Rn ;E)

<∞.
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Sometimes we use one and the same symbol C without distinction to denote positive
constants which may differ from each other even in a single context. When we want to
specify the dependence of such a constant on a parameter, say α, we write Cα .

3 Boundary value problems for abstract elliptic equations
In this section, we derive the maximal regularity properties of problem (.).
BVPs for DOEs were studied, e.g., in [, , –]. For references, see, e.g., []. From

[, Theorem .] we have the following result.

Theorem. Let E be aUMD space and let A be an R-positive operator in E for ≤ ψ < π .
Then problem (.) has a unique solution u ∈Wq,(Rn;E(A),E) for f ∈ Lq(Rn;E) and λ ∈ Sψ .
Moreover, the following uniform coercive estimate holds:

n∑
k=

∑
i=

ε
i

k |λ|– i



∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Lq(Rn ;E)

+ ‖Au‖Lq(G;E) ≤ C‖f ‖Lq(Rn ;E) (.)

with C(q) independent of ε, ε, . . . , εn, λ and f .

Consider the differential operator Qε =Qεq in Lq(Rn;E) generated by problem (.), i.e.,

D(Qε) =Wq,(Rn), Qεu = –�εu +Au.

Let Bq = B(Lq(Rn;E)). From Theorem . we obtain the following.

Result . For λ ∈ Sψ , there is a resolvent (Qε + λ)– satisfying the uniform estimate

n∑
k=

∑
i=

|λ|– i
 ε

i

k

∥∥∥∥ ∂ i

∂xik
(Qε + λ)–

∥∥∥∥
Bq

+
∥∥A(Qε + λ)–

∥∥
Bq

≤ C.

Next we show the smoothness of problem (.). The main result is the following.

Theorem . Assume that E is a UMD space, A is an R-positive operator in E, q ∈ (,∞)
and m is a positive integer.
Then, for all f ∈ Wq,m(Rn;E), λ ∈ Sψ , problem (.) has a unique solution u that belongs

to Wq,+m(Rn;E(A),E) and the following uniform coercive estimate holds:

n∑
k=

m+∑
i=

ε
i

m+
k |λ|– i

m+

∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Wq,m(Rn ;E)

+ ‖Au‖Lq(Rn ;E) ≤ C‖f ‖Wq,m(Rn ;E) (.)

with C = C(q,A) independent of ε, ε, . . . , εn, λ and f .

Proof A solution of equation (.) is given by

u(x) = F–L–(λ, ε, ξ )Ff =


(π )n/

∫
Rn
eiξxL–(λ, ε, ξ )f̂ (ξ )dξ ,

http://www.boundaryvalueproblems.com/content/2013/1/172
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where L(λ, ε, ξ ) = A +
∑n

k= εkξ

k + λ and f̂ (ξ ) = Ff . It follows from the expression above

that

n∑
k=

m+∑
i=

ε
i

m+
k |λ|– i

m+

∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Lq(Rn ;E)

+ ‖Au‖Lq(Rn ;E)

=
n∑
k=

m+∑
i=

ε
i

m+
k |λ|– i

m+
∥∥F–ξ i

kL
–(λ, ε, ξ )f̂

∥∥
Lq(Rn ;E)

+
∥∥F–AL–(λ, ε, ξ )f̂

∥∥
Lq(Rn ;E). (.)

It is sufficient to show that the operator-functions

�ξλ(ξ ) = AL–(λ, ε, ξ )

(
 +

n∑
k=

|ξk|m
)–

,

σελ(ξ ) =
n∑
k=

m+∑
i=

ε
i

m+
k |λ|– i

m+ ξ i
k

(
 +

n∑
k=

|ξk|m
)–

L–(λ, ε, ξ )

are uniform Fourier multipliers in Lq(Rn;E). Actually, due to positivity of A, we have

∥∥L–(λ, ε, ξ )∥∥ ≤ M

(
 +

n∑
k=

εkξ

k + |λ|

)–

,

∥∥�ε,λ(ξ )
∥∥ =

∥∥AL–(λ, ε, ξ )∥∥
(
 +

n∑
k=

|ξk|m
)–

≤ C

(
 +

n∑
k=

|ξk|m
)–

.

(.)

It is clear to observe that

ξk
∂

∂ξk
�ελ(ξ ) = –εkξ 

k AL
–(λ, ε, ξ )

=
[
–εkξ 

k L
–(λ, ε, ξ )

]
AL–(λ, ε, ξ ), k = , , . . . ,n.

Due to R-positivity of the operator A, the sets

{[
–εkξ 

k L
–(λ, ε, ξ )

]
: ξ ∈ Rn\{}}, {

AL–(λ, ε, ξ ) : ξ ∈ Rn\{}}
are R-bounded. So, in view of Kahane’s contraction principle and from the product prop-
erties of the collection of R-bounded operators (see, e.g., [], Lemma ., Proposition .),
we obtain

R
{
ξk

∂

∂ξk
�ελ(ξ ): ξ ∈ Rn\{}

}
≤ Ck .

Namely, the R-bounds of sets {ξk ∂
∂ξk

�ελ(ξ ): ξ ∈ Rn\{}} are independent of ε and λ. Next,
let us consider σελ(ξ ). It is clear to see that

∥∥σελ(ξ )
∥∥
B(E) ≤ C|λ|

n∑
k=

m+∑
i=

[
ε


m+
k |ξk||λ|– 

m+
]i( + n∑

k=

|ξk|m
)–∥∥L–(λ, ε, ξ )∥∥B(E).

http://www.boundaryvalueproblems.com/content/2013/1/172
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By using the well-known inequality

n∏
k=

yαk
k ≤ C

(
 +

n∑
k=

ylk

)
, αk , yk ≥ , |α| ≤ l

for yk = (ε


k |λ|– 

 |ξk|) and l =m + , we get the uniform estimate

∣∣∣∣∣
n∑
k=

m+∑
i=

[
ε

i
m+
k |ξk||λ|– i

m+
]∣∣∣∣∣ ≤ C|λ|

(
 +

n∑
k=

|ξk|m
)(

 + |λ|–
n∑
k=

εk|ξk|m+

)–

. (.)

From (.) and (.) we have the uniform estimate

∥∥σελ(ξ )
∥∥
B(E) ≤ C|λ|

(
 + |λ|–

n∑
k=

εk|ξk|m+

)(
 +

n∑
k=

|ξk|m
)–∥∥L–(λ, ε, ξ )∥∥ ≤ C.

Due to R-positivity of the operator A, the set

{(
|λ| +

n∑
k=

εkξ

k

)
L–(λ, ε, ξ ) : ξ ∈ Rn\{}

}

is R-bounded. By using this fact, in view of (.) and Kahane’s contraction principle, we
obtain the R-boundedness of the set {σελ(ξ ) : ξ ∈ R\{}}. In a similar way, we obtain the
uniform estimates

∥∥∥∥ ∂

∂ξk
�ε,λ(ξ )

∥∥∥∥
B(E)

≤ C,
∥∥∥∥ ∂

∂ξk
σελ(ξ )

∥∥∥∥
B(E)

≤ C.

Let

σkελ(ξ ) =
{
ξk

∂

∂ξk
σελ(ξ ) : ξ ∈ Rn\{}

}
,

�kελ(ξ ) =
{
ξk

∂

∂ξk
�ελ(ξ ) : ξ ∈ Rn\{}

}
.

By the aid of the estimates above, due to R-positivity of the operator A, in view of esti-
mate (.), by virtue of Kahane’s contraction principle, from the additional and product
properties of the collection of R-bounded operators, for ξ, ξ, . . . , ξμ ∈ R, u,u, . . . ,uμ ∈ E
and independent symmetric {–, }-valued random variables rj(y), j = , , . . . ,μ,μ ∈N, we
obtain the uniform estimate

∫
�

∥∥∥∥∥
μ∑
j=

rj(y)σkελ
(
ξ (j))uj

∥∥∥∥∥
E

dy

≤ C
n∑
k=

∫
�

∥∥∥∥∥
μ∑
j=

σkελ
(
ξ (j))rj(y)uj

∥∥∥∥∥
E

dy

≤ C sup
ε,λ

R
({

ξk
∂

∂ξ
σkελ(ξ ) : ξ ∈ R\{}

})∫
�

∥∥∥∥∥
μ∑
j=

rj(y)uj

∥∥∥∥∥
E

dy≤ Ck .

http://www.boundaryvalueproblems.com/content/2013/1/172
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The same estimates are obtained for �kελ(ξ ) in a similar way. Hence, by virtue of [, The-
orem .] it follows that �ε,λ(ξ ) and σελ(ξ ) are the uniform collection of multipliers in
Lp(Rn;E). Then, by using equality (.), we obtain the assertion. �

4 The stationary Stokes systemwith small parameters
In this section we derive the maximal regularity properties of the stationary abstract
Stokes problem (.).
Let Hq,s(Rn;E), –∞ < s < ∞ denote the E-valued Liouville space of order s such that

Hq,(Rn;E) = Lq(Rn;E). It is known that if E is aUMD space, thenHq,m(Rn;E) =Wq,m(Rn;E)
for a positive integer m (see, e.g., [, §]). For q ∈ (,∞) let Xq = (Lq(Rn;E))n denote the
space of an E-valued system of functions f = (f(x), f(x), . . . , fn(x)) with the norm

‖f ‖Xq =
( n∑

i=

‖fi‖qLq(Rn ;E)
) 

q

.

Xqσ = Lqσ (Rn;E) denotes the E-valued solenoidal space, i.e., closure of (C∞
σ (Rn;E))n in

(Lq(Rn;E))n, where

C∞
σ

(
Rn;E

)
=

{
u ∈ C∞


(
Rn;E

)
,divu = 

}
.

Let

Xq,s =
(
Hq,s(Rn;E

))n, Xq,s(A) =
(
Hq,s(Rn;E(A),E

))n.
Let E be a Banach space. Consider the space

Yq =
{
u ∈ Xq,divu ∈ Lq

(
Rn;E

)}
,

‖u‖Yq =
(‖u‖qXq + ‖divu‖qLq(Rn ;E)

) 
q .

Yq becomes a Banach space with this norm.
It is known that (see, e.g., Fujiwara and Morimoto []) the vector field u ∈ (Lq(Rn))n has

a Helmholtz decomposition. In the following theorem we generalize this result for an E-
valued function space Xq.

Theorem . Let E be a UMD space and q ∈ (,∞). Then u ∈ Xq has a Helmholtz decom-
position, i.e., there exists a bounded linear projection operator Pq from Xq onto Xqσ with
the null space N(Pq) = {∇ϕ ∈ Xq : ϕ ∈ Lqloc(R

n;E)}. In particular, all u ∈ Xq has the unique
decomposition u = u +∇ϕ with u ∈ Xqσ , u = Pqu so that

‖∇ϕ‖Lq(B;E) + ‖u‖Xq ≤ C‖u‖Xq , (.)

for any open ball B ⊂ Rn.Moreover, (Xqσ )∗ = Xq′
σ
, 
q +


q′ = .

To prove Theorem ., we need some lemmas. Consider the problem

–�εu + (A + λ)u = f (x), x ∈ Rn. (.)

http://www.boundaryvalueproblems.com/content/2013/1/172
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Lemma . Let E be a UMD space, let A be an R-positive operator in E, q ∈ (,∞)
and – < s < ∞. Then, for f ∈ Hq,s(Rn;E), λ ∈ Sψ , problem (.) has a unique solution
u ∈ Hq,+s(Rn;E(A),E) and the following uniform coercive estimate holds:

‖u‖Hq,s+
ε (Rn ;E(A),E) + ‖Au‖Lq(Rn ;E) + |λ|‖u‖Lq(Rn ;E) ≤ C‖f ‖Hq,s(Rn ;E). (.)

Proof By using the Fourier transform, we see that estimate (.) is equivalent to the fol-
lowing estimate:

∥∥∥∥∥F–

(
 +

n∑
k=

εkξ

k

) s+


L–(λ, ε, ξ )f̂

∥∥∥∥∥
Lq(Rn ;E)

+
∥∥F–AL–(λ, ε, ξ )f̂

∥∥
Lq(Rn ;E) + |λ|∥∥F–L–(λ, ε, ξ )f̂

∥∥
Lq(Rn ;E)

≤ C
∥∥F–( + |ξ |) s

 f̂
∥∥
Lq(Rn ;E). (.)

To prove (.) it is sufficient to show that the operator functions

(
 +

n∑
k=

εkξ

k

)
L–(λ, ε, ξ ), A

(
 + |ξ |)– s

 L–(λ, ε, ξ ), |λ|( + |ξ |)– s
 L–(λ, ε, ξ )

aremultipliers in Lq(Rn;E) uniformly in λ and ε. This fact is derived as the step in the proof
of Theorem .. �

Now consider the system of equations

–�εu +Au + λu = f (x), x ∈ Rn, (.)

where f = (f(x), f(x), . . . , fn(x)) ∈ Xq and u = (u(x),u(x), . . . ,un(x)) is a solution of (.).
We define in Xq,s the following parameter-dependent norm:

‖u‖Xε,q,s =

∥∥∥∥∥F–

(
 +

n∑
k=

εkξ

k

) s


Fu

∥∥∥∥∥
Xq

< ∞.

Lemma . Let E be a UMD space, let A be an R-positive operator in E, – < s < ∞ and
q ∈ (,∞). Then, for f ∈ Xq,s, λ ∈ Sψ , problem (.) has a unique solution u ∈ Xq,s+ and the
following coercive uniform estimate holds:

‖u‖Xε,q,s+ + ‖Au‖Xq + |λ|‖u‖Xq ≤ C‖f ‖Xq,s . (.)

Proof Problem (.) can be expressed as the following system:

–�εuj +Auj + λuj = fj, x ∈ Rn, j = , , . . . ,n. (.)

By Lemma . we obtain that for fj ∈Hq,s(Rn;E), λ ∈ Sψ , equation (.) has a unique so-
lution u = (u,u, . . . ,un) ∈ (Xq,s+(A))n and the following uniform coercive estimate holds:

‖uj‖Xε,q,s+ + ‖Auj‖Xq + |λ|‖uj‖Xq ≤ C‖fj‖Xq,s .

http://www.boundaryvalueproblems.com/content/2013/1/172
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Hence, we get that u = (u,u, . . . ,un) is a unique solution of problem (.) and (.)
implies (.). �

By reasoning as in [, Lemma ], we get the following lemma.

Lemma . C∞(Rn;E) is dense in Yp.

Consider the problem

–�ϕ +Aϕ + λϕ = div f (x), x ∈ Rn. (.)

From Lemma . we obtain the following results.

Result . Let E be a UMD space, let A be an R-positive operator in E and q ∈ (,∞).
Then, for f ∈ Lq(Rn;E), λ ∈ Sψ , problem (.) has a unique solution ϕ ∈ Hq,(Rn;E(A),E)
and the following coercive uniform estimate holds:

‖u‖Xε,q, + ‖Au‖Xq + |λ|‖u‖Xq ≤ C‖div f ‖Xq,– .

Consider the operator P = Pq defined by

D(P) = Lq
(
Rn;E

)
, Pf = f – gradϕ,

where ϕ is a solution of problem (.).

Result . Let E be a UMD space, let A be an R-positive operator in E and q ∈ (,∞).
Then PqXq is a closed subspace of Xq.

Lemma . Let E be a UMD space, let A be an R-positive operator in E and q ∈ (,∞).
Then the operator Pq is a bounded linear operator in Xq and Pf = f if div f (x) = .

Proof The linearity of the operator P is clear by construction. Moreover, by Result . we
have

‖Pf ‖Xq ≤ ‖f ‖Xq + ‖gradϕ‖Xq ≤ C‖f ‖Xq . (.)

If div f (x) = , then by Lemma . we get that ϕ = , i.e., Pf = f . �

Let E∗ denote the dual space of E.

Lemma . Assume that E is a UMD space and q ∈ (,∞). Then the conjugate of Pq is
defined as P∗

q = Pq′ , 
q +


q′ =  and is bounded linear in (Lq′ (Rn;E∗))n.

Proof It is known (see, e.g., [, ]) that the dual space of Lq(Rn;E) is Lq′ (Rn;E∗).
Since C∞

 (Rn;E∗) is dense in Lq′ (Rn;E∗), we only have to show P∗
qϕ = Pq′ ϕ for any

ϕ ∈ (C∞
 (Rn;E∗))n. But this is derived by reasoning as in [, Lemma ]. Moreover, by

Lemma ., the dual operator P∗
q is bounded linear in Lq′ (Rn;E∗).

http://www.boundaryvalueproblems.com/content/2013/1/172
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Let

Gq =
{∇ϕ : ϕ ∈ Wq,(Rn;E(A);E

)}
,

(PqXq)⊥ =
{
f ∈ (

Lq
′(
Rn;E∗))n, 〈f ,υ〉 =  for any υ ∈ PqXq

}
. �

From Lemmas ., . we obtain the following result.

Result . Assume that E is aUMD space,A is an R-positive operator in E and q ∈ (,∞).
Then any element f ∈ Xq uniquely can be expressed as the sum of elements of PqXq and
Gq.

In a similar way to Lemmas ,  of [] we obtain, respectively, the following lemmas.

Lemma . Assume E is a UMD space and q ∈ (,∞). Then

(PqXq)⊥ =Gq′ ,

q
+


q′ = .

Lemma . Assume E is a UMD space and q ∈ (,∞). Then

X⊥
qσ =Gq′ ,


q
+


q′ = .

Now we are ready to prove Theorem ..

Proof of Theorem . From Lemmas ., . we get that Xqσ = (PqXq)⊥. Then, by con-
struction of Pq, we have Xq = Xqσ ⊕ Gq. By Lemmas ., ., we obtain estimate (.).
Moreover, by Result .,Gq is a close subspace of Xq. It is known that the dual space of the
quotient space Xq/Gq isG⊥

q . By the first assertion we have Xq/Gq = Xqσ , and by Lemma .
we obtain the second assertion. �

Theorem. Let E be a UMD space, let A be an R-positive operator in E, q ∈ (,∞).Then,
for f ∈ Xq, ϕ ∈ Xq,, λ ∈ Sψ , problem (.) has a unique solution u ∈ Xq, and the uniform
coercive estimate holds

n∑
k=

∑
i=

ε
i

k |λ|– i



∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Xq

+ ‖Au‖Xq + ‖∇ϕ‖Xq ≤ C‖f ‖Xq (.)

with C = C(q,A) independent of ε, ε, . . . , εn, λ and f .

Proof By applying the operator Pq to equation (.), we get problem (.). It is clear to see
that

D(Qεq) =D(Bε)∩Xqσ ,

where Qεq is the Stokes operator and Bε is an operator in Xq generated by problem (.)
for λ = , i.e.,

D(Bε) = Xq,, Bεu = –�u +Au. �

http://www.boundaryvalueproblems.com/content/2013/1/172
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Then by Lemma . we obtain the assertion.

Result . From Theorem . we get thatQε =Qεq is a positive operator in Xq and it also
generates a bounded holomorphic semigroup Sε(t) = exp(–Qεt) for t > .

In a similar way to that in [] we show the following.

Proposition . The following estimate holds

∥∥Qα
ε Sε(t)

∥∥ ≤ Ct–α

uniformly in ε = (ε, ε, . . . , εn) for α ≥  and t > .

Proof From Theorem . we obtain that the operator Qε is uniformly positive in Xq, i.e.,
the following estimate holds

∥∥(Qε + λ)–
∥∥ ≤ M|λ|–

for λ ∈ Sψ ,κ ,  < ψ < π , where the constantM is independent of λ and ε. Hence, by using
Danford integral and operator calculus (see, e.g., in []) we obtain the assertion. �

5 Well-posedness of the instationary parameter-dependent Stokes problem
In this section, we show the uniform well-posedness of problem (.)-(.).

Theorem . Assume that E is a UMD space, A is an R-positive operator in E and  <
εk ≤ . Then, for f ∈ Lp(,T ;Xq) = B(p,q) and a ∈ (Xq,(A),Xq) p ,p = G(p,q), p,q ∈ (,∞),
there is a unique solution (u,∇ϕ) of problem (.)-(.) and the following uniform estimate
holds:

∥∥∥∥∂u
∂t

∥∥∥∥
B(p,q)

+
n∑
k=

∥∥∥∥εk
∂u
∂xk

∥∥∥∥
B(p,q)

+ ‖Au‖B(p,q) + ‖∇ϕ‖B(p,q)

≤ C
(‖f ‖B(p,q) + ‖a‖G(p,q)

)
(.)

with C = C(T ,p,q) independent of f and ε.

Proof Problem (.)-(.) can be expressed as the following parabolic problem:

du
dt

+Qεu = f (t), u() = a. (.)

If we put E = Xq, then by Proposition . operatorQε is uniformly positive and generates
a bounded holomorphic semigroup in Xq uniformly in ε. Moreover, by using [, Theo-
rem .] we get that the operator Qε is R-positive in E uniformly in ε. Since E is a UMD
space, in a similar way to that in [, Theorem .] we obtain that for f ∈ Lp(,T ;E) and
a ∈ (D(Qε),E) p ,p, there is a unique solution u ∈W ,p(,T ,D(Qε),E) of problem (.) such

http://www.boundaryvalueproblems.com/content/2013/1/172
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that the following uniform estimate holds:

∥∥∥∥dudt
∥∥∥∥
Lp(,T ;E)

+ ‖Qεu‖Lp(,T ;E) ≤ C
(‖f ‖Lp(,T ;E) + ‖a‖(D(Aε),E) 

p ,p

)
. (.)

�

From estimates (.) and (.) we obtain the assertion.

Result . It should be noted that if ε = ε = · · · = εn = , then we obtain maximal regu-
larity properties of an abstract Stokes problem without any parameters in principal part.

Remark . There are a lot of positive operators in concrete Banach spaces. Therefore,
putting in (.) and (.) concrete Banach spaces instead of E and concrete positive differ-
ential, pseudo differential operators, or finite, infinite matrices, etc. instead of A, by virtue
of Theorem . and Theorem ., we can obtain the maximal regularity properties of a
different class of stationary and instationary Stokes problems which occur in numerous
physics and engineering problems.

6 Separability properties of anisotropic Stokes equations
Let � ⊂ Rm be an open connected set with compact Cl-boundary ∂�. Consider the BVP
for the following anisotropic Stokes equations with parameters:

(L + λ)u = �εu +∇ϕ +
∑

|α|≤l

aα(y)Dα
y u + λu = f , (.)

divx u = , x ∈ Rn, y ∈ �, (.)

Bju =
∑
|β|≤lj

bjβ (y)Dβ
y u(x, y) = , y ∈ ∂�, j = , , . . . , l, (.)

where aα and bjβ are complex-valued functions,

u = u(x, y) =
(
u(x, y),u(x, y), . . . ,un(x, y)

)
, ϕ = ϕ(x)

are unknown solutions and

f = f (x, y) =
(
f(x, y), f(x, y), . . . , fn(x, y)

)
is a given function;

�εu =
n∑
k=

εk
∂u
∂xk

, Dj = –i
∂

∂yj
, y = (y, . . . , ym), x = (x, . . . ,xn),

ε = (ε, ε, . . . , εn), εk are positive and λ is a complex parameter.
If G = Rn × �, p =(p,p), Lp(G) will denote the space of all p-summable scalar-valued

functions with mixed norm (see, e.g., [, §], i.e., the space of all measurable functions f
defined on G, for which

‖f ‖Lp(G) =
(∫

Rn

(∫
�

∣∣f (x, y)∣∣p dy)
p
p
dx

) 
p
<∞.

http://www.boundaryvalueproblems.com/content/2013/1/172
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Analogously, W p,,l(G) denotes the anisotropic Sobolev space with a corresponding
mixed norm [, §]. LetXp = (Lp(G))n. FromTheorem.we obtain the following result.

Theorem . Let the following conditions be satisfied:
() aα ∈ C(�̄) for each |α| = l and aα ∈ [L∞ + Lγk ](�) for each |α| = k < l with rk ≥ q

and l – k > m
rk
;

() bjβ ∈ Cl–lj (∂�) for each j, β and lj < l,
∑l

j= bjβ (y′)σj �= , for |β| = lj, y′ ∈ ∂G, where
σ = (σ,σ, . . . ,σm) ∈ Rm is normal to ∂�;

() for y ∈ �̄, ξ ∈ Rm, ν ∈ S(ϕ), ϕ ∈ (,π ), |ξ | + |ν| �=  let ν +
∑

|α|=l aα(y)ξα �= ;
() for each y ∈ ∂�, the local BVP in local coordinates corresponding to y

ν +
∑
|α|=l

aα(y)Dαϑ(y) = ,

Bjϑ =
∑
|β|=lj

bjβ (y)Dβu(y) = hj, j = , , . . . , l,

has a unique solution ϑ ∈ C(R+) for all h = (h,h, . . . ,hm) ∈ Rm, and for ξ ′ ∈ Rm–

with |ξ ′| + |ν| �= . Then for f ∈ Xp, λ ∈ S(ϕ) with sufficiently large |λ| problem
(.)-(.) has a unique solution u belonging toW p,,l(G;Rn) and the uniform
coercive estimate holds

n∑
k=

∑
i=

ε
i

k |λ|– i



∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Xp

+
∑

|β|=m

∥∥Dβ
y u

∥∥
Lp(G) + ‖∇ϕ‖Xq ≤ C‖f ‖Xp .

Proof Let E = Lp (�). By virtue of [, Theorem .], E is a UMD space. Consider the
operator A in Lp (�) defined by

D(A) =Wp,l(�;Bju = ), Au =
∑

|α|≤l

aα(y)Dαu(y).

Problem (.)-(.) can be rewritten in the form (.), where u(x, y) = u(x, ·), f (x, y) =
f (x, ·) are vector-functions with values in E = Lp (�). By virtue of [, Theorem .] the
problem

νu(y) +
∑

|α|≤l

aα(y)Dα
y u(y) = f (y),

Bju =
∑
|β|≤lj

bjβ (y)Dβ
y u(y) = , j = , , . . . , l

has a unique solution for f ∈ Lp (�) and for ν ∈ S(ϕ), |ν| → ∞. Moreover, the operator
A is R-positive in Lp (�), i.e., all the conditions of Theorem . hold. So, we obtain the
assertion. �
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7 Infinite system of Stokes equations with small parameters
Consider the IVB for the following infinite system of instationary Stokes equations with
small parameters:

∂um
∂t

–
n∑
k=

εk
∂um
∂xk

+
∞∑
j=

gjuj +∇ϕm = fm(x, t), (.)

divu = , um(x, ) = , x ∈ Rn, t ∈ (,T),m = , , . . . ,∞,

where εk are positive parameters.Hereum = (um(x, t),um(x, t), . . . ,umn(x, t)),ϕm = ϕm(x, t)
are unknown solutions, and f = (fm(x, t), fm(x, t), . . . , fmn(x, t)) is a given function. Let

G = {gm}, gm > , u = {um}, Gu = {gmum}, m = , , . . . ,

lq(G) =

{
u: u ∈ lσ ,‖u‖lσ (G) = ‖Gu‖lσ =

( ∞∑
m=

|gmum|σ
) 

σ

< ∞
}
,  < σ < ∞.

Xp,q,σ = Lp(,T ;Lq(Rn; lσ )) is a class of functions

f =
(
f(x, t), f(x, t), . . . , fn(x, t)

)

with the norm

‖f ‖Xp,q,σ =

( ∞∑
i=

‖fi‖σ
Lp(,T ;Lq(Rn))

) 
σ

<∞.

Let X
p,q,σ =Wp,(,T ;Lq(Rn; lσ )). From Theorem . we obtain the following.

Theorem . Let  < εk ≤  and gj > . Then for f ∈ Xp,q,σ , p,q,σ ∈ (,∞) there is a unique
solution (um,∇ϕm) of problem (.) belonging to X

p,q,σ × X
p,q,σ and the following uniform

coercive estimate holds:

∥∥∥∥∂u
∂t

∥∥∥∥
Xp,q,σ

+
n∑
k=

∥∥∥∥εk
∂u
∂xk

∥∥∥∥
Xp,q,σ

+ ‖Gu‖Xp,q,σ + ‖∇ϕ‖Xp,q,σ ≤ C‖f ‖Xp,q,σ

with C = C(T ,p,q) independent of f and ε.

Proof Really, let E = lσ , A and be an infinite matrix, defined by

A = [gmδjm], m, j = , , . . . ,∞.

It is easy to see that

B(λ) = λ(A + λ)– =
[
λ(gm + λ)–δjm

]
, m, j = , , . . . ,∞.

http://www.boundaryvalueproblems.com/content/2013/1/172
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For all u,u, . . . ,uμ ∈ lq, λ,λ, . . . ,λμ ∈ C, λi �= –gm,m = , , . . . ,∞ and independent sym-
metric {–, }-valued random variables ri(y), j = , , . . . ,μ, μ ∈N, we have

∫
�

∥∥∥∥∥
μ∑
i=

ri(y)B(λi)ui

∥∥∥∥∥
σ

lσ

dy≤ C
∫

�

∞∑
m=

∣∣∣∣∣
μ∑
i=

λi(gm + λi)–ri(y)ui

∣∣∣∣∣
σ

dy

≤ sup
m,i

∣∣λi(gm + λi)–
∣∣σ ∫

�

∞∑
m=

∣∣∣∣∣
μ∑
i=

ri(y)ui

∣∣∣∣∣
σ

dy.

Since supm,i |λi(gm + λi)–|σ ≤ C for λi �= –gm, from the above we get

∫
�

∥∥∥∥∥
μ∑
i=

ri(y)B(λi)ui

∥∥∥∥∥
σ

lσ

dy≤ C
∫

�

∥∥∥∥∥
μ∑
i=

ri(y)ui

∥∥∥∥∥
σ

lσ

,

i.e., the operator A is R-positive in lσ . Therefore, all the conditions of Theorem . hold
and we obtain the assertion. �
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