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1 Introduction
In this paper, we study the following nonlinear impulsive differential equations with
Dirichlet boundary conditions

⎧⎪⎨
⎪⎩
–u′′(t) + a(t)u(t) = μ|u|p–u(t) + f (t,u(t)), a.e. t ∈ [,T],
�u′(tj) = u′(t+j ) – u′(t–j ) = Ij(u(tj)), j = , , . . . ,N ,
u() = u(T) = ,

(.)

where p > , T > , μ > , f : [,T] × R → R is continuous, a ∈ L∞[,T], N is a posi-
tive integer,  = t < t < t < · · · < tN < tN+ = T , �u′(tj) = u′(t+j ) – u′(t–j ) = limt→t+j u

′(t) –
limt→t–j u

′(t), Ij : R → R are continuous. With the help of the symmetric mountain-pass
lemma due to Kajikiya [], we prove that there are infinitely many small weak solutions for
equations (.) with the general nonlinearities f (t,u).
In recent years, a great deal of works have been done in the study of the existence of

solutions for impulsive boundary value problems, by which a number of chemotherapy,
population dynamics, optimal control, ecology, industrial robotics and physics phenom-
ena are described. For the general aspects of impulsive differential equations, we refer the
reader to the classical monograph []. For some general and recent works on the theory of
impulsive differential equations, we refer the reader to [–]. Some classical tools or tech-
niques have been used to study such problems in the literature. These classical techniques
include the coincidence degree theory [], the method of upper and lower solutions with
a monotone iterative technique [], and some fixed point theorems in cones [, ].
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On the other hand, in the last few years, many authors have used a variational method
to study the existence and multiplicity of solutions for boundary value problems without
impulsive effects [–]. For related basic information, we refer the reader to [, ].
For a second order differential equation u′′ = f (t,u,u′), one usually considers impulses in

the position u and the velocity u′. However, in themotion of spacecraft, one has to consider
instantaneous impulses depending on the position that result in jump discontinuities in
velocity, but with no change in the position [–].
A new approach via critical point and variational methods is proved to be very effective

in studying the boundary problem for differential equations. For some general and recent
works on the theory of critical point theory and variational methods, we refer the reader
to [–].
More precisely, in [] the authors studied the following equations with Dirichlet

boundary conditions:

⎧⎪⎨
⎪⎩
–ü(t) + λu(t) = f (t,u(t)), a.e. t ∈ [,T],
�u̇(tj) = Ij(u(tj)), j = , , . . . ,p,
u() = u(T) = .

(.)

They obtained the existence of solutions for problems by using the variational method.
Zhang and Yuan [] extended the results in []. They obtained the existence of solutions
for problem (.) with a perturbation term. Also, they obtained infinitely many solutions
for problem (.) under the assumption that the nonlinearity f is a superlinear case. Soon
after that, Zhou and Li [] extended problem (.). In all the above-mentioned works, the
information on the sequence of solutions was not given.
Motivated by the fact above, the aim of this paper is to show the existence of infinitely

many solutions for problem (.), and that there exists a sequence of infinitely many ar-
bitrarily small solutions, converging to zero, by using a new version of the symmetric
mountain-pass lemma due to Kajikiya []. Our main results extend the existing study.
Throughout this paper, we assume that Ij :R →R is continuous, and f (t,u) satisfies the

following conditions:

(I) Ij (j = , , . . . ,N ) are odd and satisfy

∫ u(tj)


Ij(s)ds –



Ij
(
u(tj)

)
u(tj) ≥ ,

∫ u(tj)


Ij(s)ds≥ ;

(I) There exist δj > , j = , , . . . ,N such that

∫ u(tj)


Ij(s)ds≤ δj|u|, for u ∈R \ {};

(H) f (t,u) ∈ C([,T]×R,R), f (t, –u) = –f (t,u) for all u ∈ R;
(H) lim|u|→∞ f (t,u)

|u|p– =  uniformly for t ∈ [,T];
(H) lim|u|→+

f (t,u)
u = ∞ uniformly for t ∈ [,T].

The main result of this paper is as follows.

Theorem . Suppose that (I)-(I) and (H)-(H) hold.Then problem (.) has a sequence
of nontrivial solutions {un} and un →  as n→ ∞.

http://www.boundaryvalueproblems.com/content/2013/1/200


Zhou et al. Boundary Value Problems 2013, 2013:200 Page 3 of 13
http://www.boundaryvalueproblems.com/content/2013/1/200

Remark . Without the symmetry condition (i.e., f (x, –u) = –f (x,u) and I(–s) = –I(s)),
we can obtain at least one nontrivial solution by the same method in this paper.

Remark . We should point out that Theorem . is different from the previous results
of [–] in three main directions:
() We do not make the nonlinearity f satisfy the well-known Ambrosetti-Rabinowitz

condition [];
() We try to use Lusternik-Schnirelman’s theory for Z-invariant functional. But since

the functional is not bounded from below, we could not use the theory directly. So,
we follow [] to consider a truncated functional.

() We can obtain a sequence of nontrivial solutions {un} and un →  as n→ ∞.

Remark . There exist many functions Ij and f (t,u) satisfying conditions (I)-(I) and
(H)-(H), respectively. For example, when p = , Ij(s) = s and f (t,u) = etu/.

2 Preliminary lemmas
In this section, we first introduce some notations and some necessary definitions.

Definition . Let E be a Banach space and J : E → R. J is said to be sequentially weakly
lower semi-continuous if limn→∞ inf J(un)≥ J(u) as un ⇀ u in E.

Definition . Let E be a real Banach space. For any sequence {un} ⊂ E, if {J(un)} is
bounded and J ′(un) →  as n → ∞ possesses a convergent subsequence, then we say J
satisfies the Palais-Smale condition (denoted by (PS) condition for short).

In the Sobolev space H
(,T), consider the inner product

〈u, v〉H
(,T)

=
∫ T


u′(t)v′(t)dt,

which induces the norm

‖u‖H
(,T)

=
(∫ T



(
u′(t)

) dt) 

.

It is a consequence of Poincaré’s inequality that

(∫ T



(
u(t)

) dt) 
 ≤ √

λ

(∫ T



(
u′(t)

) dt) 

.

Here, λ = π/T is the first eigenvalue of the Dirichlet problem

{
–u′′(t) = λu(t), t ∈ [,T],
u() = u(T) = .

(.)

In this paper, we will assume that inft∈[,T] a(t) =m > –λ. We can also define the inner
product

〈u, v〉 =
∫ T


u′(t)v′(t)dt +

∫ T


a(t)u(t)v(t)dt,

http://www.boundaryvalueproblems.com/content/2013/1/200
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which induces the equivalent norm

‖u‖ =
(∫ T



(
u′(t)

) dt + ∫ T


a(t)

(
u(t)

) dt) 

.

Lemma . [] If ess inft∈[,T] a(t) =m > –λ, then the norm ‖ · ‖ and the norm ‖ · ‖H
(,T)

are equivalent.

Lemma . [] There exists c∗ such that if u ∈ H
(,T), then

‖u‖∞ ≤ c∗‖u‖, (.)

where ‖u‖∞ =maxt∈[,T] |u(t)|.

For u ∈H(,T), we have that u and u′ are both absolutely continuous, and u′′ ∈ L(,T),
hence, �u′(tj) = u′(t+j ) – u′(t–j ) for any t ∈ [,T]. If u ∈ H

(,T), then u is absolutely con-
tinuous and u′ ∈ L(,T). In this case, the one-side derivatives u′(t+j ) and u′(t–j ) may not
exist. As a consequence, we need to introduce a different concept of solution. Suppose
that u ∈ C[,T] satisfies the Dirichlet condition u() = u(T) = . Assume that, for every
j = , , . . . ,N , uj = u|(tj ,tj+) and uj ∈H(tj, tj+). Let  = t < t < t < · · · < tN < tN+ = T .
Taking v ∈H

(,T) and multiplying the two sides of the equality

–u′′(t) + a(t)u(t) = μ|u|p–u(t) + f
(
t,u(t)

)
by v and integrating between  and T , we have

∫ T



[
–u′′(t) + a(t)u(t) –μ|u|p–u(t) – f

(
t,u(t)

)]
v(t)dt = . (.)

Moreover, since u() = u(T) = , one has

–
∫ T


u′′(t)v(t)dt

= –
N∑
j=

∫ tj+

tj
u′′(t)v(t)dt

= –
N∑
j=

u′(t)v(t)|t
–
j+
t+j

+
∫ T


u′(t)v′(t)dt

= –

(
–

N∑
j=

�u′(tj)v(tj) – u′()v() + u′(T)v(T)

)
+

∫ T


u′(t)v′(t)dt

=
N∑
j=

�u′(tj)v(tj) +
∫ T


u′(t)v′(t)dt

=
N∑
j=

Ij
(
u(tj)

)
v(tj) +

∫ T


u′(t)v′(t)dt.
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Combining (.), we get

∫ T


u′(t)v′(t)dt +

∫ T


a(t)u(t)v(t)dt –μ

∫ T


|u|p–u(t)v(t)dt

–
∫ T


f
(
t,u(t)

)
v(t)dt +

N∑
j=

Ij
(
u(tj)

)
v(tj) = .

Lemma . A weak solution of (.) is a function u ∈H
(,T) such that

∫ T


u′(t)v′(t)dt +

∫ T


a(t)u(t)v(t)dt –μ

∫ T


|u|p–u(t)v(t)dt

–
∫ T


f
(
t,u(t)

)
v(t)dt +

N∑
j=

Ij
(
u(tj)

)
v(tj) =  (.)

for any v ∈H
(,T).

Consider J :H
(,T) →R defined by

J(u) =


‖u‖ – μ

p

∫ T


|u|p dt –

∫ T


F
(
t,u(t)

)
dt +

N∑
j=

∫ u(tj)


Ij(s)ds, (.)

where F(t,u) =
∫ u
 f (t, s)ds. Using the continuity of f and Ij, j = , , . . . ,N , we obtain the

continuity and differentiability of J and J ∈ C(H
(,T),R). For any v ∈H

(,T), one has

J ′(u)v =
∫ T


u′(t)v′(t)dt +

∫ T


a(t)u(t)v(t)dt

–μ

∫ T


|u|p–u(t)v(t)dt

–
∫ T


f
(
t,u(t)

)
v(t)dt +

N∑
j=

Ij
(
u(tj)

)
v(tj). (.)

Thus, the solutions of problem (.) are the corresponding critical points of J .

Lemma . If u ∈H
(,T) is a weak solution of problem (.), then u is a classical solution

of problem (.).

Proof Obviously, we have u() = u(T) =  since u ∈ H
(,T). By the definition of weak

solution, for any v ∈H
(,T), one has

∫ T


u′(t)v′(t)dt +

∫ T


a(t)u(t)v(t)dt –μ

∫ T


|u|p–u(t)v(t)dt

–
∫ T


f
(
t,u(t)

)
v(t)dt +

N∑
j=

Ij
(
u(tj)

)
v(tj) = . (.)
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For j ∈ {, , , . . . ,N}, choose v ∈H
(,T) with v(t) =  for every t ∈ [, tj]∪ [tj+,T]. Then

∫ tj+

tj
u′(t)v′(t)dt +

∫ tj+

tj
a(t)u(t)v(t)dt

= μ

∫ tj+

tj
|u|p–u(t)v(t)dt +

∫ T


f
(
t,u(t)

)
v(t)dt.

By the definition of weak derivative, the equality above implies that

–u′′(t) + a(t)u(t) = μ|u|p–u(t) + f
(
t,u(t)

)
, a.e. t ∈ (tj, tj+). (.)

Hence uj ∈H(tj, tj+) and u satisfies the equation in (.) a.e. on [,T]. By integrating (.),
we have

–
N∑
j=

�u′(tj)v(tj) + u′(T)v(T) – u′()v() +
N∑
j=

Ij
(
u(tj)

)
v(tj)

+
∫ T



[
–u′′(t) + a(t)u(t) –μ|u|p–u(t) – f

(
t,u(t)

)]
v(t)dt = .

Combining this fact with (.), we get

N∑
j=

�u′(tj)v(tj) =
N∑
j=

Ij
(
u(tj)

)
v(tj) for any v ∈H

(,T).

Hence, �u′(tj) = Ij(u(tj)) for every j = , , . . . ,N , and the impulsive condition in (.) is
satisfied. This completes the proof. �

Lemma. If ess inft∈[,T] a(t) =m > –λ, then the functional J is sequentially weakly lower
semi-continuous.

Proof Let {un} be a weakly convergent sequence to u in H
(,T), then

‖u‖ ≤ lim
n→∞ inf‖un‖.

We have that {un} converges uniformly to u on C[,T]. Then

lim
n→∞ inf J(un)

= lim
n→∞

[


‖un‖ – μ

p

∫ T


|un|p dt –

∫ T


F
(
t,un(t)

)
dt +

N∑
j=

∫ un(tj)


Ij(s)ds

]

≥ 

‖u‖ – μ

p

∫ T


|u|p dt –

∫ T


F
(
t,u(t)

)
dt +

N∑
j=

∫ u(tj)


Ij(s)ds

= J(u).

This completes the proof. �
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Under assumptions (H) and (H), we have

f (t,u)u = o
(|u|p),

F(t,u) = o
(|u|p) as |u| → ∞,

which means that for all ε > , there exist a(ε),b(ε) >  such that

∣∣f (t,u)u∣∣ ≤ a(ε) + ε|u|p, (.)∣∣F(x,u)∣∣ ≤ b(ε) + ε|u|p. (.)

Hence, for every positive constant k, we have

F(x,u) – kf (x,u)u≤ c(ε) + ε|u|p, (.)

where c(ε) > .

Lemma . Suppose that (I)-(I) and (H)-(H) hold, then J(u) satisfies the (PS) condi-
tion.

Proof Let {un} be a sequence in H
(,T) such that {J(un)} is bounded and J ′(un) →  as

n→ ∞. First, we prove that {un} is bounded. By (.), (.) and (.), one has

J(un) –


J ′(un)un

=
(


–

p

)
μ

∫ T


|un|p dt +

∫ T



[


f
(
t,un(t)

)
un(t) – F

(
t,un(t)

)]
dt

+
N∑
j=

∫ un(tj)


Ij(s)ds –




N∑
j=

Ij
(
un(tj)

)
un(tj)

≥
(
(p – )μ

p
– ε

)∫ T


|un|p dt – c(ε)T +

N∑
j=

∫ un(tj)


Ij(s)ds

–



N∑
j=

Ij
(
un(tj)

)
un(tj).

By condition (I), we can deduce that

N∑
j=

∫ un(tj)


Ij(s)ds –




N∑
j=

Ij
(
un(tj)

)
un(tj)≥ .

Setting ε = (p–)μ
p , we get

∫ T


|un|p dt ≤ M + o()‖un‖, (.)

http://www.boundaryvalueproblems.com/content/2013/1/200
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where o() →  and M is a positive constant. On the other hand, by (I), (.) and (.),
we have

∞ > J(un) =


‖un‖ – μ

p

∫ T


|un|p dt –

∫ T


F
(
t,un(t)

)
dt +

N∑
j=

∫ un(tj)


Ij(s)ds

≥ 

‖un‖ –

(
μ

p
+ ε

)∫ T


|un|p dt – b(ε)T . (.)

Thus, (.) and (.) imply that {un} is bounded in H
(,T). Going if necessary to a

subsequence, we can assume that there exists u ∈H
(,T) such that

un ⇀ u weakly in H
(,T),

un → u strongly in C
(
[,T],R

)
,

as n→ ∞. Hence,

(
J ′(un) – J ′(u)

)
(un – u) → ,∫ T



[
f
(
t,un(t)

)
– f

(
t,u(t)

)](
un(t) – u(t)

)
dt → ,

∫ T



(|un|p–un(t) – |u|p–u(t))(un(t) – u(t)
)
dt → ,

N∑
j=

[
Ij
(
un(tj)

)
– Ij

(
u(tj)

)](
un(tj) – u(tj)

) → ,

as n→ ∞. Moreover, one has

(
J ′(un) – J ′(u)

)
(un – u) = ‖un – u‖ –

∫ T



(|un|p–un(t) – |u|p–u(t))(un(t) – u(t)
)
dt

–
∫ T



[
f
(
t,un(t)

)
– f

(
t,u(t)

)](
un(t) – u(t)

)
dt

–
N∑
j=

[
Ij
(
un(tj)

)
– Ij

(
u(tj)

)](
un(tj) – u(tj)

)
.

Therefore, ‖un – u‖ →  as n → +∞. That is {un} converges strongly to u in H
(,T).

That is J satisfies the (PS) condition. �

3 Existence of a sequence of arbitrarily small solutions
In this section, we prove the existence of infinitely many solutions of (.), which tend to
zero. Let X be a Banach space and denote

� :=
{
A⊂ X \ {} : A is closed in X and symmetric with respect to the orgin

}
.

For A ∈ �, we define genus γ (A) as

γ (A) := inf
{
m ∈N : ∃ϕ ∈ C

(
A,Rm \ {}, –ϕ(x) = ϕ(–x)

)}
.

http://www.boundaryvalueproblems.com/content/2013/1/200
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If there is no mapping ϕ as above for anym ∈N , then γ (A) = +∞. We list some properties
of the genus (see []).

Proposition . Let A and B be closed symmetric subsets of X , which do not contain the
origin. Then the following hold.
() If there exists an odd continuous mapping from A to B, then γ (A) ≤ γ (B);
() If there is an odd homeomorphism from A to B, then γ (A) = γ (B);
() If γ (B) < ∞, then γ (A \ B) ≥ γ (A) – γ (B);
() Then n-dimensional sphere Sn has a genus of n +  by the Borsuk-Ulam theorem;
() If A is compact, then γ (A) < +∞ and there exists δ >  such that Uδ(A) ∈ � and

γ (Uδ(A)) = γ (A), where Uδ(A) = {x ∈ X : ‖x –A‖ ≤ δ}.

Let �k denote the family of closed symmetric subsets A of X such that  /∈ A and
γ (A) ≥ k. The following version of the symmetric mountain-pass lemma is due to Ka-
jikiya [].

Lemma . Let E be an infinite-dimensional space and I ∈ C(E,R), and suppose the fol-
lowing conditions hold.

(C) I(u) is even, bounded from below, I() =  and I(u) satisfies the Palais-Smale condition;
(C) For each k ∈N , there exists an Ak ∈ �k such that supu∈Ak

I(u) < .

Then either (R) or (R) below holds.

(R) There exists a sequence {uk} such that I ′(uk) = , I(uk) <  and {uk} converges to zero;
(R) There exist two sequences {uk} and {vk} such that I ′(uk) = , I(uk) < , uk �= ,

limk→∞ uk = , I ′(vk) = , I(vk) < , limk→∞ vk = , and {vk} converges to a nonzero
limit.

Remark . From Lemma ., we have a sequence {uk} of critical points such that I(uk) ≤
, uk �=  and limk→∞ uk = .

In order to get infinitely many solutions, we need some lemmas. Under the assumptions
of Theorem ., let ε = μ

p , we have

J(u) =


‖u‖ – μ

p

∫ T


|u|p dt –

∫ T


F
(
t,u(t)

)
dt +

N∑
j=

∫ u(tj)


Ij(s)ds

≥ 

‖u‖ –

(
μ

p
+ ε

)∫ T


|u|p dt – b(ε)T

≥ 

‖u‖ –

(
μ

p
+ ε

)
cp∗T‖u‖p – b(ε)T

=


‖u‖ – μ

p
cp∗T‖u‖p – b

(
μ

p

)
T

= A‖u‖ – B‖u‖p –C,

where

A =


, B =

μ
p
cp∗T , C = b

(
μ

p

)
T .

http://www.boundaryvalueproblems.com/content/2013/1/200
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Let P(t) = At –Btp–C. As P(s) attains a local but not a global minimum (P is not bounded
below), we have to perform some sort of truncation. To this end, let R, R be such that
m < R <M < R, wherem is the local minimum of P(s), andM is the local maximum and
P(R) > P(m). For these values R and R, we can choose a smooth function χ (t) defined
as follows

χ (t) =

⎧⎪⎨
⎪⎩
,  ≤ t ≤ R,
, t ≥ R,
C∞,χ (t) ∈ [, ], R ≤ t ≤ R.

Then it is easy to see χ (t) ∈ [, ] and χ (t) is C∞. Let ϕ(u) = χ (‖u‖) and consider the
perturbation of J(u):

G(u) =


‖u‖ – ϕ(u)μ

p

∫ T


|u|p dt

– ϕ(u)
∫ T


F
(
t,u(t)

)
dt +

N∑
j=

∫ u(tj)


Ij(s)ds. (.)

Then

G(u) ≥ A‖u‖ – Bϕ(u)‖u‖p –C

= P
(‖u‖),

where P(t) = At – Bχ (t)tp –C and

P(t) =

{
P(t),  ≤ t ≤ ρ,
m∗, t ≥ ρ.

From the arguments above, we have the following.

Lemma . Let G(u) is defined as in (.). Then
(i) G ∈ C(H

(,T),R) and G is even and bounded from below;
(ii) If G(u) <m, then P(‖u‖) <m, consequently, ‖u‖ < ρ and J(u) =G(u);
(iii) Suppose that (I)-(I) and (H)-(H) hold, then G(u) satisfies the (PS) condition.

Proof It is easy to see (i) and (ii). (iii) are consequences of (ii) and Lemma .. �

Lemma . Assume that (I) and (H) hold. Then for any k ∈ N , there exists δ = δ(k) > 
such that γ ({u ∈H

(,T) :G(u) ≤ –δ(k)} \ {}) ≥ k.

Proof Firstly, by (H) of Theorem ., for any fixed u ∈H
(,T), u �= , we have

F(x,ρu)≥ M(ρ)(ρu) withM(ρ) → ∞ as ρ → .

Secondly, from Lemma  of [], we have that for any finite dimensional subspace Ek of
H

(,T) and any u ∈ Ek , there exists a constant d >  such that

|u|s =
(∫ T



∣∣u(t)∣∣s dt) 
s
≥ d‖u‖, s ≥ ,∀u ∈ Ek .
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Therefore, for any u ∈ Ek with ‖u‖ =  and ρ small enough, we have

G(ρu) = J(ρu)≤ 

ρ –

μ

p
ρp

∫ T


|u|p dt –M(ρ)ρ

∫ T


|u| dt + ρ

N∑
j=

δjc∗

≤
(


+

N∑
j=

δjc∗ –M(ρ)d

)
ρ

= –δ(k) < ,

since lim|ρ|→M(ρ) = +∞. That is,

{u ∈ Ek : ‖u‖ = ρ} ⊂ {
u ∈H

(,T) :G(u) ≤ –δ(k)
} \ {}.

This completes the proof. �

Now, we give the proof of Theorem . as following.

Proof of Theorem . Recall that

�k =
{
A ∈H

(,T) \ {} : A is closed and A = –A,γ (A) ≥ k
}

and define

ck = inf
A∈�k

sup
u∈A

G(u).

By Lemma .(i) and Lemma ., we know that –∞ < ck < . Therefore, assumptions (C)
and (C) of Lemma . are satisfied. This means that G has a sequence of solutions {un}
converging to zero. Hence, Theorem . follows by Lemma .(ii). �
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