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Abstract
We study the following elliptic equations with variable exponents

–div(φ(x, |∇u|)∇u) = λf (x,u) in R
N .

Under suitable conditions on φ and f , we show the existence of positivity of the
infimum of all eigenvalues for the problem above, and then give an example to
demonstrate our main result.
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1 Introduction
The variable exponent problems appear in a lot of applications, for example, elastic me-
chanics, electro-rheological fluid dynamics and image processing, etc. The study of vari-
able mathematical problems involving p(x)-growth conditions has attracted interest and
attention in recent years. We refer the readers to [–] and references therein.
In this paper, we are concerned with the eigenvalue problem of a class of equations of

p(x)-Laplacian type

–div
(
φ
(
x, |∇u|)∇u

)
= λf (x,u) in R

N , (E)

where the function φ(x, t) is of type |t|p(x)– with continuous nonconstant function p :
R

N → (,∞) and f : RN × R → R satisfies a Carathéodory condition. Recently, the au-
thors in [] obtained the positivity of the infimum of all eigenvalues for the p(x)-Laplacian
type subject to the Dirichlet boundary condition. As far as the authors know, there are
no results concerned with the eigenvalue problem for a more general p(x)-Laplacian type
problem in the whole space RN .
When φ(x, t) = |t|p(x)–, the operator involved in (E) is called the p(x)-Laplacian, i.e.,

�p(x)u := div(|∇u|p(x)–∇u). The studies for p(x)-Laplacian problems have been extensively
performed by many researchers in various ways; see [–]. In particular, by using the
Ljusternik-Schnirelmann critical point theory, Fan et al. [] established the existence of
the sequence of eigenvalues of the p(x)-Laplacian Dirichlet problem; see [] for Neu-
mann problems. Mihăilescu and Rădulescu in [] obtained the existence of a continuous
family of eigenvalues in a neighborhood of the origin under suitable conditions.
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The p(x)-Laplacian is a natural generalization of the p-Laplacian, where p >  is a con-
stant. There are a bunch of papers, for instance, [–] and references therein. But the
p(x)-Laplace operator possesses more complicated nonlinearities than the p-Laplace op-
erator, for example, it is nonhomogeneous, so a more complicated analysis has to be care-
fully carried out. Someproperties of the p-Laplacian eigenvalue problemsmay not hold for
a general p(x)-Laplacian. For example, under some conditions, the infimum of all eigen-
values for the p(x)-Laplacian might be zero; see []. The purpose of this paper is to give
suitable conditions on φ and f to satisfy the positivity of the infimum of all eigenvalues for
(E) still. This result generalizes Benouhiba’s recent result in [] in some sense.
This paper is organized as follows. In Section , we state some basic results for the vari-

able exponent Lebesgue-Sobolev spaces, which are given in [, ]. In Section , we give
sufficient conditions on φ and f to obtain the positivity of the infimum eigenvalue for the
problem (E) above. Also, we present an example to illustrate our main result.

2 Preliminaries
In this section, we state some elementary properties for the variable exponent Lebesgue-
Sobolev spaces, which will be used in the next section. The basic properties of the variable
exponent Lebesgue-Sobolev spaces can be found from [, ].
To make a self-contained paper, we first recall some definitions and basic properties

of the variable exponent Lebesgue spaces Lp(x)(RN ) and the variable exponent Lebesgue-
Sobolev spacesW ,p(x)(RN ).
Set

C+
(
R

N)
=

{
h ∈ C

(
R

N)
: inf
x∈RN

h(x) > 
}
.

For any h ∈ C+(RN ), we define

h+ = sup
x∈RN

h(x) and h– = inf
x∈RN

h(x).

For any p ∈ C+(RN ), we introduce the variable exponent Lebesgue space

Lp(x)
(
R

N)
:=

{
u : u is a measurable real-valued function,

∫
RN

∣∣u(x)∣∣p(x) dx < ∞
}
,

endowed with the Luxemburg norm

‖u‖Lp(x)(RN ) = inf

{
λ >  :

∫
RN

∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 
}
.

The dual space of Lp(x)(RN ) is Lp′(x)(RN ), where /p(x) + /p′(x) = . The variable exponent
Lebesgue spaces are a special case of Orlicz-Musielak spaces treated by Musielak in [].
The variable exponent Sobolev spaceW ,p(x)(RN ) is defined by

W ,p(x)(
R

N)
=

{
u ∈ Lp(x)

(
R

N)
: |∇u| ∈ Lp(x)

(
R

N)}
,

where the norm is

‖u‖W ,p(x)(RN ) = ‖u‖Lp(x)(RN ) + ‖∇u‖Lp(x)(RN ). (.)
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Definition . The exponent p(·) is said to be log-Hölder continuous if there is a constant
C such that

∣∣p(x) – p(y)
∣∣ ≤ C

– log |x – y| (.)

for every x, y ∈R
N with |x – y| ≤ /.

Smooth functions are not dense in the variable exponent Sobolev spaces, without addi-
tional assumptions on the exponent p(x). Zhikov [] gave some examples of Lavrentiev’s
phenomenon for the problemswith variable exponents. These examples show that smooth
functions are not dense in variable exponent Sobolev spaces. However, when p(x) satis-
fies the log-Hölder continuity condition, smooth functions are dense in variable expo-
nent Sobolev spaces, and there is no confusion in defining the Sobolev space with zero
boundary values, W ,p(x)

 (RN ), as the completion of C∞
 (RN ) with respect to the norm

‖u‖W ,p(x)(RN ) (see [, ]).

Lemma . [, ] The space Lp(x)(RN ) is a separable, uniformly convex Banach space,
and its conjugate space is Lp′(x)(RN ), where /p(x) + /p′(x) = . For any u ∈ Lp(x)(RN ) and
v ∈ Lp′(x)(RN ), we have

∣∣∣∣
∫
RN

uvdx
∣∣∣∣ ≤

(

p–

+

p′
–

)
‖u‖Lp(x)(RN )‖v‖Lp′(x)(RN ) ≤ ‖u‖Lp(x)(RN )‖v‖Lp′(x)(RN ).

Lemma . [] Denote

ρ(u) =
∫
RN

|u|p(x) dx for all u ∈ Lp(x)
(
R

N)
.

Then
() ρ(u) >  (= ; < ) if and only if ‖u‖Lp(x)(RN ) >  (= ; < ), respectively;
() if ‖u‖Lp(x)(RN ) > , then ‖u‖p–Lp(x)(RN ) ≤ ρ(u)≤ ‖u‖p+Lp(x)(RN );
() if ‖u‖Lp(x)(RN ) < , then ‖u‖p+Lp(x)(RN ) ≤ ρ(u)≤ ‖u‖p–Lp(x)(RN ).

Lemma . [] Let q ∈ L∞(RN ) be such that  ≤ p(x)q(x) ≤ ∞ for almost all x ∈ R
N . If

u ∈ Lq(x)(RN ) with u 	= , then
() if ‖u‖Lp(x)q(x)(RN ) > , then ‖u‖q–Lp(x)q(x)(RN ) ≤ ‖|u|q(x)‖Lp(x)(RN ) ≤ ‖u‖q+Lp(x)q(x)(RN );
() if ‖u‖Lp(x)q(x)(RN ) < , then ‖u‖q+Lp(x)q(x)(RN ) ≤ ‖|u|q(x)‖Lp(x)(RN ) ≤ ‖u‖q–Lp(x)q(x)(RN ).

Lemma . [] Let� ⊂R
N be an open, bounded set with Lipschitz boundary, and let p ∈

C+(�) with  < p– ≤ p+ < N satisfy the log-Hölder continuity condition (.). If q ∈ L∞(�)
with q– >  satisfies

q(x)≤ p∗(x) :=
Np(x)

N – p(x)
for all x ∈ �,

then we have

W ,p(x)(�) ↪→ Lq(x)(�),

and the imbedding is compact if infx∈�(p∗(x) – q(x)) > .

http://www.boundaryvalueproblems.com/content/2013/1/214


Kim and Kim Boundary Value Problems 2013, 2013:214 Page 4 of 12
http://www.boundaryvalueproblems.com/content/2013/1/214

Lemma . [] Suppose that p : RN → R
N is a Lipschitz function with  < p– ≤ p+ < N .

Let q ∈ L∞(RN ) and p(x) ≤ q(x) ≤ p∗(x) for almost all x ∈ R
N . Then there is a continuous

embedding W ,p(x)(RN ) ↪→ Lq(x)(RN ).

3 Main result
In this section, we shall give the proof of the existence of the positive eigenvalue for the
problem (E), by applying the basic properties of the spaces Lp(x)(RN ) and W ,p(x)(RN ),
which were given in the previous section.
Throughout this paper, let p ∈ C+(RN ) satisfy the log-Hölder continuity condition (.)

and X :=W ,p(x)
 (RN ) with the norm

‖u‖X = inf

{
λ >  :

∫
RN

∣∣∣∣∇u(x)
λ

∣∣∣∣
p(x)

dx ≤ 
}
,

which is equivalent to norm (.).

Definition . We say that u ∈ X is a weak solution of the problem (E) if

∫
RN

φ
(
x, |∇u|)∇u(x) · ∇ϕ(x)dx = λ

∫
RN

f (x,u)ϕ(x)dx

for all ϕ ∈ X.

Denote

� =
{
x ∈ R

N :  < p(x) < 
}
, � =

{
x ∈R

N : p(x)≥ 
}

(we allow the case that one of these sets is empty). Then it is obvious that RN = � ∪ �.
We assume that:

(H) p,q ∈ C+(RN ), p(x) <N , and  < p– ≤ p+ < q– ≤ q+ < p∗(x).
(HJ) φ :RN × [,∞)→ [,∞) satisfies the following conditions: φ(·,η) is measurable

on R
N for all η ≥  and φ(x, ·) is locally absolutely continuous on [,∞) for

almost all x ∈ R
N .

(HJ) There are a function a ∈ Lp′(x)(RN ) and a nonnegative constant b such that

∣∣φ(
x, |v|)v∣∣ ≤ a(x) + b|v|p(x)–

for almost all x ∈ R
N and for all v ∈R

N .
(HJ) There exists a positive constant c such that the following conditions are satisfied

for almost all x ∈ R
N :

φ(x,η)≥ cηp(x)– and η
∂φ

∂η
(x,η) + φ(x,η)≥ cηp(x)– (.)

for almost all η ∈ (, ). In case x ∈ �, assume that condition (.) holds for
almost all η ∈ (,∞), and in case x ∈ �, assume that for almost all η ∈ (,∞)
instead

φ(x,η)≥ c and η
∂φ

∂η
(x,η) + φ(x,η)≥ c. (.)

http://www.boundaryvalueproblems.com/content/2013/1/214
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(HJ) For all x ∈ R
N and all ξ ∈R

N , the estimate holds

 ≤ a(x, ξ ) · ξ ≤ p+�
(
x, |ξ |),

where a(x, ξ ) = φ(x, |ξ |)ξ .
Let us put

�(x, t) =
∫ t


φ(x,η)ηdη

and define the functional � : X →R by

�(u) =
∫
RN

�
(
x,

∣∣∇u(x)
∣∣)dx.

Then � ∈ C(X,R) [], and its Gateaux derivative is

〈
�′(u),ϕ

〉
:=

∫
RN

φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) · ∇ϕ(x)dx. (.)

Let f : RN × R → R be a real-valued function. We assume that the function f satisfies
the Carathéodory condition in the sense that f (·, t) is measurable for all t ∈ R and f (x, ·) is
continuous for almost all x ∈R

N . Denote

γ (x) =
r(x)

r(x) – q(x)
for almost all x ∈R

N ,

where q is given in (H) and q(x) < r(x) < p∗(x). We assume that
(F) For all (x, t) ∈R

N ×R, f (x, t)t ≥ , and there is a nonnegative measurable function
m with m ∈ Lγ (x)(RN ) such that

∣∣f (x, t)∣∣ ≤ m(x)|t|q(x)–.

Denoting F(x, t) =
∫ t
 f (x, s)ds, it follows from (F) that

(F′)  ≤ F(x, t)≤ m(x)
q(x)

|t|q(x) for all (x, t) ∈R
N ×R.

Define the functional � , Iλ : X →R by

�(u) =
∫
RN

F(x,u)dx and Iλ(u) = �(u) – λ�(u).

Then it is easy to check that � ∈ C(X,R), and its Gateaux derivative is

〈
� ′(u),ϕ

〉
=

∫
RN

f (x,u)ϕ(x)dx (.)

for any u,ϕ ∈ X. Let us consider the following quantity:

λ∗ = inf
u∈X\{}

∫
RN �(x, |∇u|)dx∫

RN F(x,u)dx
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/214
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For the case of φ(x, |t|) = |t|p(x)– and f (x, t) =m(x)|t|q(x)–t, where m(x) satisfies a suitable
condition, Benouhiba [] proved that λ∗ > . In this section, we shall generalize the con-
ditions on f and φ to satisfy λ∗ >  still.
The following lemma plays a key role in obtaining the main result in this section.

Lemma . Assume that assumptions (HJ)-(HJ), (H), and (F) hold and satisfy

(H) q+ –


p– < q–,

then the functionals � and � satisfy the following relations:

lim‖u‖X→

�(u)
�(u)

= ∞ (.)

and

lim‖u‖X→∞
�(u)
�(u)

= ∞. (.)

Proof Applying Lemmas ., . and ., we get

∣∣�(u)
∣∣ =

∣∣∣∣
∫
RN

F(x,u)dx
∣∣∣∣

≤
∫
RN

∣∣∣∣m(x)
q(x)

|u|q(x)
∣∣∣∣dx

≤ 
q–

‖m‖Lγ (x)(RN )
∥∥|u|q(x)∥∥

L
r(x)
q(x) (RN )

≤ 
q–

‖m‖Lγ (x)(RN )
(‖u‖q+Lr(x)(RN ) + ‖u‖q–Lr(x)(RN )

)

≤ C
q–

‖m‖Lγ (x)(RN )
(‖u‖q+X + ‖u‖q–X

)
(.)

for some positive constant C. Let u in X with ‖u‖X ≤ . Then it follows from (HJ), (HJ),
(.) and Lemma .() that

∣∣∣∣�(u)
�(u)

∣∣∣∣ ≥
∫
RN �(x, |∇u|)dx

C
q– ‖m‖Lγ (x)(RN )‖u‖q–X

≥
c
p+ ‖u‖p+X

C
q– ‖m‖Lγ (x)(RN )‖u‖q–X

. (.)

Since q– > p+, we conclude that

�(u)
�(u)

→ ∞ as ‖u‖X → .

Next, we show that relation (.) holds. From (H), there exists a positive constant δ

such that q+ – (/)p– < δ < q–, and thus we have

p– > (q+ – δ) > (q– – δ). (.)

http://www.boundaryvalueproblems.com/content/2013/1/214
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Let �(x) be a measurable function such that

max

{
p(x)γ (x)

p(x) + δγ (x)
,

p∗(x)
p∗(x) + δ – q(x)

}

≤ �(x)≤ min

{
p∗(x)γ (x)

p∗(x) + δγ (x)
,

p(x)
p(x) + δ – q(x)

}
(.)

holds for almost all x ∈R
N and

δ

(
�+

�–
+ 

)
< q–. (.)

Then we have � ∈ L∞(RN ) and  < �(x) < γ (x). Let u ∈ X with ‖u‖X > . Then it follows
from (F′) and Lemma . that

∣∣�(u)
∣∣ ≤ 

q–

∫
RN

m(x)|u|δ|u|q(x)–δ dx

≤ 
q–

∥∥m|u|δ∥∥L�(x)(RN )

∥∥|u|q(x)–δ
∥∥
L�′(x)(RN ).

Therefore, without loss of generality, we may suppose that ‖m|u|δ‖L�(x)(RN ) > . From the
inequality above, by using Lemma ., Lemma . and Lemma . in order, we have

∣∣�(u)
∣∣ ≤ 

q–

(∫
RN

m�(x)|u|δ�(x)
) 

�– ∥∥|u|q(x)–δ
∥∥
L�′(x)(RN )

≤ 
q–

∥∥m�(x)∥∥ 
�–

L
γ (x)
�(x) (RN )

∥∥|u|δ�(x)∥∥ 
�–

L
( γ (x)
�(x) )

′
(RN )

∥∥|u|q(x)–δ
∥∥
L�′(x)(RN )

≤ 
q–

‖m‖α

Lγ (x)(RN )

(‖u‖δ
�+
�–

L
δ�(x)( γ (x)

�(x) )
′
(RN )

+ ‖u‖δ

L
δ�(x)( γ (x)

�(x) )
′
(RN )

)

× (‖u‖q+–δ

L(q(x)–δ)�′(x)(RN )
+ ‖u‖q––δ

L(q(x)–δ)�′(x)(RN )

)
,

where α =
{

�+/�– if ‖m‖Lγ (x)(RN ) > ,

 if ‖m‖Lγ (x)(RN ) ≤ .

By Young’s inequality, we get

∣∣�(u)
∣∣ ≤ 

q–
‖m‖α

Lγ (x)(RN )

(‖u‖δ
�+
�–

L
δ�(x)( γ (x)

�(x) )
′
(RN )

+ ‖u‖δ
L
δ�(x)( γ (x)

�(x) )
′
(RN )

+ ‖u‖(q+–δ)
L(q(x)–δ)�′(x)(RN )

+ ‖u‖(q––δ)
L(q(x)–δ)�′(x)(RN )

)
.

Using (.), we get that

p(x) < δ�(x)
(

γ (x)
�(x)

)′
≤ p∗(x), p(x) <

(
q(x) – δ

)
�′(x) ≤ p∗(x)

holds for almost all x ∈R
N . Hence it follows from Lemma . that

∣∣�(u)
∣∣ ≤ C

q–
‖m‖α

Lγ (x)(RN )

(‖u‖δ
�+
�–

X + ‖u‖(q+–δ)
X

)
(.)
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for some positive constant C. Therefore, we obtain that

∣∣∣∣�(u)
�(u)

∣∣∣∣ ≥
c
p+ ‖u‖p–X

C
q– ‖m‖α

Lγ (x)(RN )(‖u‖δ
�+
�–

X + ‖u‖(q+–δ)
X )

.

From (.), with the inequality above, we conclude that relation (.) holds. �

Lemma . Assume that (HJ)-(HJ) and (H) hold. Then � is weakly lower semi-
continuous, i.e., un ⇀ u in X implies that �(u) ≤ lim infn→∞ �(un).

Proof Suppose that un ⇀ u in X as n → ∞. Since (HJ) implies that �′ is strictly mono-
tone on X, we have that � is convex, and so,

�(un) ≥ �(u) +
〈
�′(u),un – u

〉

for any n. Then we get that

lim inf
n→∞�(un) ≥ �(u) + lim inf

n→∞
〈
�′(u),un – u

〉
= �(u).

The proof is complete. �

Lemma . Assume that (H) and (F) hold. For any K ∈ [,∞) and all u ∈ X, the follow-
ing estimate holds:

∫
|x|≥K

F(x,u)dx ≤ C
q–

(∫
|x|≥K

m(x)dx
) 

γ (‖u‖q+X + ‖u‖q–X
)
, (.)

where γ is either γ+ or γ–.

Proof Applying Lemmas ., . and ., we get

∫
|x|≥K

F(x,u)dx ≤
∫

|x|≥K

m(x)
q(x)

|u|q(x) dx

≤ 
q–

‖m‖Lγ (x)({x∈RN :|x|≥K})
∥∥|u|q(x)∥∥

L
r(x)
q(x) ({x∈RN :|x|≥K})

≤ 
q–

(∫
|x|≥K

m(x)dx
) 

γ (‖u‖q+Lr(x)(RN ) + ‖u‖q–Lr(x)(RN )

)

≤ C
q–

(∫
|x|≥K

m(x)dx
) 

γ (‖u‖q+X + ‖u‖q–X
)

for some positive constant C. �

Lemma . Assume that (H) and (F) hold. For almost all x ∈ R
N and all t ∈ R, the

following estimate holds:

F(x, t)≤ 
q–

(
m(x)γ (x)

γ–
+

|t|r(x)
(γ+)′

)
. (.)
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Proof Since q(x)(γ (x))′ = r(x), estimate (.) is obtained from (F′) and Young’s inequal-
ity. �

Lemma . Assume that (H) and (F) hold. Then � is weakly-strongly continuous, i.e.,
un ⇀ u in X implies that �(un) → �(u).

Proof Let {un} be a sequence in X such that un ⇀ u in X. Then {un} is bounded in X. By
Lemma ., for each ε > , there is a positive constant Kε such that

∫
|x|≥Kε

F(x,un)dx ≤ ε and
∫

|x|≥Kε

F(x,u)dx≤ ε (.)

holds for each n ∈N. It follows from Lemma . that the Nemytskij operator

u �→ F
(
x,u(x)

)

is continuous from Lr(x)(BKε ()) into L(BKε ()); see Theorem . in []. This together
with Lemma . yields that

∫
|x|<Kε

F(x,un)dx→
∫

|x|<Kε

F(x,u)dx. (.)

Using (.) and (.), we deduce that �(un) → �(u) as n → ∞. The proof is complete.
�

Weare in a position to state themain result about the existence of the positive eigenvalue
for the problem (E).

Theorem . Assume that (HJ)-(HJ), (H), (H), and (F) hold. Then λ∗ is a positive
eigenvalue of the problem (E).Moreover, the problem (E) has a nontrivial weak solution for
any λ ≥ λ∗.

Proof It is trivial by (.) that λ∗ ≥ . Suppose to the contrary that λ∗ = . Let {un} be a
sequence in X \ {} such that

lim
n→∞

�(un)
�(un)

= .

As in (.), we have
∣∣∣∣�(un)
�(un)

∣∣∣∣ ≥ C‖un‖p+–q–X

for some positive constant C. Since p+ < q–, we obtain that ‖un‖X → ∞ as n→ ∞. Hence
it follows from Lemma . that

lim
n→∞

�(un)
�(un)

= ∞,

which contradicts with the hypothesis. Hence we get λ∗ > . The analogous argument as
that in the proof of Theorem . in [] proves that λ∗ is an eigenvalue of the problem (E);
see also Theorem . in [].
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Finally, we show that the problem (E) has a nontrivial weak solution for any λ ≥ λ∗.
Notice that u is a weak solution of (E) if and only if u is a critical point of Iλ. Assume that
λ > λ∗ is fixed. Let u ∈ X with ‖u‖X > . With the help of (HJ) and (HJ), it follows from
proceeding as in the proof of relation (.) in Lemma . that

Iλ(u) ≥ c
p+

‖u‖p–X – λ
C
q–

‖m‖α

Lγ (x)(RN )

(‖u‖δ
�+
�–

X + ‖u‖(q+–δ)
X

)
.

Since p– > (q+ – δ) > δ(�+/�–), the inequality above implies that Iλ(u) → ∞ as ‖u‖X →
∞ for λ > λ∗, that is, Iλ is coercive. Also since the functional Iλ is weakly lower semi-
continuous by Lemmas . and ., we deduce that there exists a global minimizer u of
Iλ in X. Since λ > λ∗, we verify by definition (.) that there is an element ω in X \ {} such
that �(ω)/�(ω) < λ. Then Iλ(ω) < . So we obtain that

Iλ(u) = inf
v∈X\{} Iλ(v) < .

Consequently, we conclude that u 	≡ . This completes the proof. �

Now, we consider an example to demonstrate our main result in this section.

Example . Let p ∈ C(RN ) with  ≤ p(x) < N satisfy the log-Hölder continuity con-
dition (.). Suppose that a ∈ Lp′(x)(RN ), and there is a positive constant a such that
a(x)≥ a for almost all x ∈R

N . Let us consider

–div
((
a(x) + |∇u|) p(x)–

 ∇u
)
= λm(x)|u|q(x)–u in R

N . (E)

In this case, put

φ
(
x, |v|) = (

a(x) + |v|) p(x)–
 and �

(
x, |v|) = 

p(x)
(
a(x) + |v|) p(x)



for all v ∈R
N . Denote the quantities

λ∗ = inf
u∈X\{}

∫
RN


p(x) (a(x) + |∇u|) p(x) dx∫

RN
m(x)
p(x) |u|q(x) dx and λ∗ = inf

u∈X\{}

∫
RN (a(x) + |∇u|) p(x) dx∫

RN m(x)|u|q(x) dx .

If conditions (H)-(H) hold, then we have
(i)  < λ∗ ≤ λ∗,
(ii) λ∗ is a positive eigenvalue of the problem (E),
(iii) the problem (E) has a nontrivial weak solution for any λ ≥ λ∗,
(iv) λ is not an eigenvalue of (E) for λ < λ∗.

Proof It is clear that conditions (HJ)-(HJ) and (F) hold. From the definitions of λ∗ and
λ∗, we know that

q–
p+

λ∗ ≤ λ∗ ≤ q+
p–

λ∗,

http://www.boundaryvalueproblems.com/content/2013/1/214
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and thus λ∗ ≤ λ∗. Also, from the same argument as that in Theorem ., we have λ∗ > ,
and thus λ∗ > . Applying Theorem ., the conclusions (ii) and (iii) hold. Let λ < λ∗. Sup-
pose that λ is an eigenvalue of the problem (E). Then there is an element v ∈ X \ {} such
that

∫
RN

(
a(x) + |∇v|) p(x)

 dx – λ

∫
RN

m(x)|v|q(x) dx = .

By the definition of λ∗, we get that

λ∗
∫
RN

m(x)|v|q(x) dx ≤
∫
RN

(
a(x) + |∇v|) p(x)

 dx

= λ

∫
RN

m(x)|v|q(x) dx < λ∗
∫
RN

m(x)|v|q(x) dx,

a contradiction. �
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