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Abstract
In this paper, we consider a Lagrange-Galerkin scheme to approximate a
two-dimensional fluid-structure interaction problem. The equations of the system are
the Navier-Stokes equations in the fluid part, coupled with ordinary differential
equations for the dynamics of the solid. We are interested in studying numerical
schemes based on the use of the characteristics method for rigid and deformable
solids. The schemes are based on a global weak formulation involving only terms
defined on the whole fluid-solid domain. Convergence results are stated for both
semi and fully discrete schemes. This article reviews known results for rigid solid along
with some new results on deformable structure yet to be published.

1 Introduction
In this article, we present a modified characteristics method for the discretization of the
equations modelling the motion of a solid immersed in a cavity filled by a viscous incom-
pressible fluid. We are interested in rigid and deformable solids modelling some particu-
late flows in the case of rigid solid and the swimming of slender, neutrally buoyant fish,
for the deformable structure (see []). The presented methods are generalizations of the
numerical scheme introduced in [], where the solid immersed in the fluid is rigid and has
the same density with the fluid.
The fluid-structure interaction problem that we study is characterized by the strong

coupling between the nonlinear equations of the fluid and those of the structure, as well
as the fact that the equations of the fluid are written in a variable domain in time, which
depends on the displacement of the structure. From the numerical point of view, in this
kind of problems it is necessary to solve equations on moving domains. For this reason, in
recent years various authors have proposed a number of different techniques [–].
For the numerical treatment of convection term in the Navier-Stokes equations, we dis-

cretize the material derivative along trajectories (see []) combined with the Lagrange-
Galerkin mixed finite element approximation of Navier-Stokes equations in a veloc-
ity/pressure formulation studied in []. In [], the convergence analysis of a finite element
projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations is
done.
The numerical analysis of some time decoupling algorithms in the case, where the de-

formation of the structure induces an evolution in the fluid domain has been developed
in [] (one-dimensional problem). For the ALE method applied to interaction problems,
we may cite [] in the case of the unsteady Stokes equations in a time dependent domain
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and [] for a two-dimensional problem describing the motion of a rigid body in a viscous
fluid. In [, ], the authors have introduced a convergent numerical method based on
finite elements with a fixed mesh for a two-dimensional fluid-rigid body problem, where
the densities of the fluid and the solid are equal. In [, ], we have introduced crucial
modifications on the characteristic function, and we have proposed a convergent numeri-
cal scheme for a two dimensional fluid-rigid body problemwhere the densities of the fluid
and the solid are different. In this paper, we go further, and we present a new characteris-
tic function which gives us convergent algorithms for the simulation of aquatic organisms
(for the existence and regularity of the solution in this kind of interactions, see []).

2 Setting of the problem
2.1 Notation and hypothesis
Let us now introduce some notation following paper [], where the existence and unique-
ness for the solution of similar problem are treated.We denote by S the domain occupied
by the solid in a reference configuration.We assume that S is an open connected set with
C∞ boundary, and we choose a system of coordinates with the origin at the mass center
of S. For the deformable solid, we suppose that the motion is given by a smooth mapping

X : S × [,∞)→R
,

which satisfies

X(y, t) = ξ (t) +Rθ (t)X∗(y, t) ∀y ∈ S, t ≥ , ()

where for every t ≥ , ξ (t) is the trajectory of the mass center, and θ (t) represents the
angle giving the orientation of the solid.Rθ denotes the matrix associated to the rotation
of angle θ . In (),X∗ denotes an appropriate smoothmapping, representing the undulatory
deformation of the creature. The rigid solid is obtained by considering the map

X∗ = I,

where I denotes the identity map.
Throughout this paper, the deformable body will be called the creature or sometimes

just the body in particular, when considering the rigid body case.
In the remaining part of this work, the functions ξ , θ are unknowns to be determined

from the governing equations below, whereas the undulatory motion X∗ will be supposed
to be known and to satisfy several assumptions as in [], which will be recalled in the
sequel.
(H) For every t ≥ , the mapping y �→ X∗(y, t) is a C∞ diffeomorphism from S onto

S∗(t), where S∗(t) = X∗(S, t). Moreover, for every y ∈ S, the mapping t �→ X∗(y, t) is of
class C∞ and X∗(y, ) = y.
For every t ≥  we denote by Y∗ the inverse of X∗, i.e., the diffeomorphism satisfying

X∗(Y∗(x∗, t
)
, t

)
= x∗, Y∗(X∗(y, t), t

)
= y

for every x∗ ∈ S∗(t), t ≥  and y ∈ S.
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(H) The total volume of the creature is preserved, i.e.,

∫
S∗(t)

dx∗ =
∫
S

dy ∀t ≥ . ()

Denote by w∗ the undulatory velocity of creature, written as a vector field on S∗(t), i.e.,

w∗(x∗, t
)
=

∂X∗

∂t
(y, t)

∣∣∣∣
y=Y∗(x∗ ,t)

∀x∗ ∈ S∗(t), t ≥ . ()

Let ρS, be the density field of the solid in the reference configuration S, and let ρ∗
S (t) be

the density field of S∗(t). Themass conservation principle applied to the whole body gives

∫
S∗(t)

ρ∗
S
(
x∗, t

)
dx∗ =

∫
S

ρS,(y)dy ∀t ≥ , ()

whereas the local form of the conservation of mass yields

ρ∗
S
(
x∗, t

)
=

ρS,(Y∗(x∗, t))
det (∇X∗)(Y∗(x∗, t))

∀t ≥ ,∀x∗ ∈ S∗(t), ()

where ∇X∗ stands for the Jacobian matrix of X∗(·, t).
(H)

∫
S∗(t) ρ

∗
S (x∗, t)w∗(x∗, t)dx∗ =  for all t ≥ .

(H)
∫
S∗(t) ρ

∗
S (x∗, t)x∗⊥ ·w∗(x∗, t)dx∗ =  for all t ≥ , where we denote by x⊥ the vector

x⊥ =
( –x

x

)
for x =

( x
x

)
.

Conditions (H), (H) correspond to the so-called self-propelling conditions which are
natural requirements for understanding swimming viewed as a self-propelled phenomena.
In particular, hypotheses (H) and (H) imply that the position of the center of mass of

the creature is not affected by the undulatory motion, that is,

∫
S

ρS,(y)X∗(y, t)dy =  ∀t ≥ . ()

From (), it follows that the region occupied by the creature at time t is given by

S
(
ξ (t), θ (t), t

)
=Rθ (t)S∗(t) + ξ (t) ∀t ≥ . ()

Moreover, by differentiating equation () with respect to t, it follows that the Eulerian
velocity field of the solid is given for every t ≥  by

uS(x, t) = ξ ′(t) + θ ′(t)
(
x – ξ (t)

)⊥ +w(x, t) ∀x ∈ S
(
ξ (t), θ (t), t

)
, ()

where

w(x, t) =Rθ (t)w∗(R–θ (t)
(
x – ξ (t)

)
, t

) ∀x ∈ S
(
ξ (t), θ (t), t

)
. ()

The Eulerian density field of the body is given by

ρS(x, t) = ρ∗
S
(
R–θ (t)

(
x – ξ (t)

)
, t

) ∀t ≥ ,x ∈ S
(
ξ (t), θ (t), t

)
, ()
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with ρ∗
S given by (). The massM of the body and its moment of inertia with respect to an

axis orthogonal to the plane of themotion and passing by themass center of S(ξ (t), θ (t), t),
are as usually given by

M =
∫
S(ξ (t),θ (t),t)

ρS(x, t)dx. ()

I(t) =
∫
S(ξ (t),θ (t),t)

ρS(x, t)
∣∣x – ξ (t)

∣∣ dx. ()

Let us notice that from (), () and (), we have that

M =
∫
S

ρS,(y)dy.

Remark . In the caseX∗ = I (rigid solid), all hypotheses (H)-(H) are satisfied, and the
undulatory velocity field w∗ is equal to zero.

2.2 Equations
Let � be an open bounded set in R

 representing the domain occupied by the solid-fluid
system. Recalling that S(ξ (t), θ (t), t) is the domain occupied by the solid at instant t, we
have that the fluid fills, at instant t, the domain F (ξ (t), θ (t), t) =� \ S(ξ (t), θ (t), t).
With the notation above, the full system describing the self-propelled motion of the

creature can be written as

ρF

(
∂u
∂t

+ (u · ∇)u
)
–μ�u +∇p = ρF f , x ∈F

(
ξ (t), θ (t), t

)
, t ∈ (,T), ()

divu = , x ∈F
(
ξ (t), θ (t), t

)
, t ∈ (,T), ()

u = , x ∈ ∂�, t ∈ (,T), ()

u(x, t) = ξ ′(t) + θ ′(t)
(
x – ξ (t)

)⊥ +w(x, t), x ∈ ∂S
(
ξ (t), θ (t), t

)
, t ∈ (,T), ()

Mξ ′′(t) = –
∫

∂S(ξ (t),θ (t),t)
σnd� +

∫
S(ξ (t),θ (t),t)

ρS(x, t)f(x, t)dx, t ∈ (,T), ()

(
Iθ ′)′(t) = –

∫
∂S(ξ (t),θ (t),t)

(
x – ξ (t)

)⊥ · σnd�

+
∫
S(ξ (t),θ (t),t)

ρS(x, t)
(
x – ξ (t)

)⊥ · f(x, t)dx, t ∈ (,T). ()

In the system above, ρF >  and μ >  stand for the density and the viscosity of the
fluid, which are supposed to be constant, u is the Eulerian velocity field of the fluid, and
p denotes the pressure field of the fluid. A prime stands for the derivation operator with
respect to time. By using the classical notation

D(u) =


(
(∇u) + (∇u)T

)
, ()

the stress tensor field σ is defined by

σ (u,p) = μD(u) – pId, ()

http://www.boundaryvalueproblems.com/content/2013/1/246
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where Id is the identity matrix in M(R). Moreover, for t ∈ [,T] and x ∈ ∂S(ξ (t), θ (t), t)
we denote by n(x, t) the unit normal to S(ξ (t), θ (t), t) oriented towards the solid. Recall
that the massM and the moment of inertia I(t) of the solid at instant t are defined by ()
and ().
System ()-() is completed by the initial conditions

u(x, ) = u(x), x ∈F
(
ξ (), θ (), 

)
, ()

ξ () = ξ, θ () = θ, ξ ′() = ξ , θ ′() = ω. ()

Remark . In the case of rigid solid, equation () becomes

u(x, t) = ξ ′(t) + θ ′(t)
(
x – ξ (t)

)⊥, x ∈ ∂S
(
ξ (t), θ (t), t

)
, t ∈ [,T],

because the undulatory velocity field w is equal to zero.

2.3 Weak formulation
Let ξ ∈ H((,T);R), θ ∈ H((,T);R) be two functions such that S(ξ (t), θ (t), t) ⊂ � for
all t ∈ [,T]. In the sequel, we define F = F (ξ (), θ (), ) and S = S(ξ (), θ (), ). More-
over, if no confusion is possible, we define

S(t) = S
(
ξ (t), θ (t), t

)
, F (t) =F

(
ξ (t), θ (t), t

)
=� \ S(t).

Let 
 :R × [,T] →R
 be a mapping such that for every t ∈ [,T], the function 
(·, t)

is a C∞-diffeomorphism from F onto F (ξ (t), θ (t), t) and such that the derivatives

∂ i+k+k


∂ti ∂yk ∂yk
, i≤ ,k ≥ ,k ≥ 

exist and are continuous. The existence of such a function is due, in particular, to the fact
that dist(S(t), ∂�) >  for all t (see []).We can now define the following functions spaces:

L
(
,T ;H(F (t)

)) = {
u | u
 ∈ L

(
,T ;H(F )

)}
,

H(,T ;L(F (t)
)) = {

u | u
 ∈H(,T ;L(F )
)}
,

C
(
[,T];H(F (t)

)) = {
u | u
 ∈ C

(
[,T];H(F )

)}
,

L
(
,T ;H(F (t)

))
=

{
p | p
 ∈ L

(
,T ;H(F )

)}
,

where v
 denotes the function defined by v
 (y, t) = v(
(y, t), t) for (y, t) ∈ F × (,T).
In order to introduce the weak formulation, we first define some additional functions

spaces. For every t ≥ , let (ξ , θ ) be an arbitrary position of the creature at time t, such
that S(ξ , θ , t) ⊂ �. We denote

K(ξ , θ , t) =
{
u ∈H

(�) :D(u) =  in S(ξ , θ , t)
}
, ()

M(ξ , θ , t) =
{
p ∈ L(�) :

∫
�

pdx =  and p =  in S(ξ , θ , t)
}
, ()

where D(u) is the strain rate tensor defined by ().
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Let (u,p, ξ , θ ) be a solution of ()-(). The vector velocity field u and the pressure p
can be extended to � by setting

u(x, t) = ξ ′(t) + θ ′(t)
(
x – ξ (t)

)⊥ +w(x, t) if x ∈ S
(
ξ (t), θ (t), t

)
, ()

p(x, t) =  if x ∈ S
(
ξ (t), θ (t), t

)
. ()

The extended vector u(·, t) belongs to H
(�). In the remaining part of this paper, the

solution u and p of ()-() will be extended as above.
We also need to extend the density field ρS of the creature (defined in ()) to the whole

domain � by setting

ρ(x, t) =

⎧⎨
⎩ρF for all x ∈F (ξ (t), θ (t), t),

ρS(x, t) for all x ∈ S(ξ (t), θ (t), t),
t ≥ . ()

By a slight variation of the argument in Ladyzhenskaya [, p.], it can be shown that
for every δ > , there exists a continuous function (x∗, t) �→ �∗(x∗, t) such that, for every
t ≥ , the map x∗ �→ �∗(x∗, t) is C∞ onR

 \S∗(t) and such that the function t �→ �∗(x∗, t)
is of class C∞ for every x∗ ∈R

 \ S∗(t) and

⎧⎪⎪⎨
⎪⎪⎩
div�∗ =  in R

 \ S∗(t), t ∈ (,T),

�∗(x∗, t) =  if dist(x∗,S∗(t))≥ δ > , t ∈ (,T),

�∗(x∗, t) =w∗(x∗, t) if x∗ ∈ S∗(t), t ∈ (,T).

()

For every t ≥ , let (ξ , θ ) be an arbitrary position of the creature at time t, such that
S(ξ , θ , t) ⊂ � . We then define �(·, t; ξ , θ ) by

�(x, t; ξ , θ ) =Rθ�
∗(R–θ (x – ξ ), t

) ∀x ∈R
. ()

Then the function � satisfies
⎧⎪⎪⎨
⎪⎪⎩
div� =  in R

 \ S(ξ , θ , t),
� =  on ∂�,

� =w in S(ξ , θ , t).

()

An important ingredient of the numerical method we use is given by the characteristic
functions whose level lines are the integral curves of the velocity field. More precisely
(see, for instance, [, ]) the characteristic function ψ : [,T] × � → � is defined as
the solution of the initial value problem

⎧⎨
⎩

d
dtψ(t; s,x) = u(ψ(t; s,x), t) ∀t ∈ [,T],

ψ(s; s,x) = x.
()

It is well known that the material derivative Dtu = ∂u/∂t + (u · ∇)u of the velocity field u
at instant t satisfies:

Dtu(x, t) =
d
dt

[
u
(
ψ(t; t,x), t

)]
|t=t

. ()

http://www.boundaryvalueproblems.com/content/2013/1/246
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Remark . By using a classical result of Liouville (see, for instance, [, p.]), if

ξ ∈H(,T), θ ∈ H(,T), u ∈ C
(
[,T];H

(�)
)

are such that for any t ∈ [,T], we have S(ξ (t), θ (t), t)⊂ � and

divu =  in F
(
ξ (t), θ (t), t

)
,

then we get

det Jψ (t, s,x) =  ∀x ∈F
(
ξ (t), θ (t), t

)
, ()

where we have denoted by

Jψ =
(

∂ψ i

∂yj

)
i,j

the Jacobian matrix of the transformation y �→ ψ(y).

In order to give the global weak formulation of our problem, we need to introduce the
bilinear forms

a :H
(�) ×H

(�) →R, b :H
(�) × L(�) →R,

defined by

a(u,v) = μ
∫

�

D(u) :D(v)dx ∀u,v ∈H
(�),

b(u,q) = –
∫

�

(divu)qdx ∀u ∈H
(�),q ∈ L(�).

Proposition . Assume that

u ∈ L
(
,T ;H(F (t)

)) ∩H(,T ;L(F (t)
)) ∩C

(
[,T];H(F (t)

)),
p ∈ L

(
,T ;H(F (t)

))
, ξ ∈H(,T), θ ∈ H(,T),

and that u and p are extended to � as above.
Then (u,p, ξ , θ ) is the solution of ()-() if and only if for all t ∈ [,T], u(·, t) –

�(·, t; ξ (t), θ (t)) ∈ K(ξ (t), θ (t), t), p(·, t) ∈M(ξ (t), θ (t), t), and (u,p) satisfies

(ρDtu,v) + a(u,v) + b(v,p) =
(
ρf(t),v

) ∀v ∈K
(
ξ (t), θ (t), t

)
, ()

b(u,q) =  ∀q ∈M
(
ξ (t), θ (t), t

)
, ()

for a.e. t ∈ (,T).

More details on the existence and uniqueness of the solution and the complete proof of
this result could be found in [].

http://www.boundaryvalueproblems.com/content/2013/1/246
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In the remainder of the paper, we suppose that f and u satisfy

f ∈ C
(
[,T];H(�)

)
, u ∈H(F ), div(u) =  in F ,

u =  on ∂�,

u(x) = ξ  +ω(x – ξ)⊥ +Rθw
∗(R–θ (x – ξ), 

)
for x ∈ ∂S ,

()

where ξ, ξ  ∈ R
 and θ, ω ∈ R are given as initial data in (). Let us also assume that

the corresponding solution (u,p, ξ , θ ) of problem ()-() satisfies the following regularity
properties:

⎧⎪⎪⎨
⎪⎪⎩
u ∈ C([,T];H(F (t)))∩H(,T ;L(F (t))),

D
t u ∈ L(,T ;L(F (t))), u ∈ C([,T];C,(�)),

p ∈ C([,T];H(F (t))), ξ ∈ H(,T), θ ∈H(,T).

()

Moreover, we suppose that there exists a nonempty open connected subset� of� such
that for any ξ , ξ  ∈ �, we have

S
(
ξ  + λ(ξ  – ξ ), θ , t

) ⊂ � ∀λ ∈ [, ],∀θ ∈ [, π ],∀t ∈ [,T]. ()

Using this notation, we assume that

ξ (t) ∈ �, dist
(
S(t), ∂�

)
>  ∀t ∈ [,T]. ()

Remark . The hypotheses () and () imply the existence of η >  such that

dist
(
ξ (t), ∂�

)
> η, dist

(
S(t), ∂�

)
> η ∀t ∈ [,T]. ()

3 Time discretization and first main result
In this section, based on a weak form of the governing equations, we describe a method
for the time discretization of ()-().
Let us first divide the time interval [,T] into subintervals [tk , tk+] with tk+ – tk =�t =

T
N , whereN is a positive integer and k ∈ {, . . . ,N}. Let (uk ,pk , ξ k , θ k) be the approximation
of the solution of ()-() at time t = tk (remark that uk and pk are functions defined on
the whole domain �). We denote

Kk =K
(
ξ k , θ k , tk

)
, Mk =M

(
ξ k , θ k , tk

)
,

Sk = S
(
ξ k , θ k , tk

)
, F k =F

(
ξ k , θ k , tk

)
,

()

and we consider the functions

�k(x) =Rθk�
∗(R–θk

(
x – ξ k), tk) ∀x ∈R

,

ρk(x) =

⎧⎨
⎩ρ∗

S (R–θk (x – ξ k), tk) if x ∈ Sk ,

ρF if x ∈F k .

()

http://www.boundaryvalueproblems.com/content/2013/1/246
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Remark . Combining the regularity properties of �∗ and w∗, it follows that

�k ∈ C,(�). ()

Moreover, taking δ < η in definition () of �∗, where η is defined in (), we have that
�k +Kk ⊆H

(�).

Now, let us describe the numerical scheme for approximating the solutions of ()-().
This procedure is based on the weak form derived in Proposition ..
The first step of our scheme consists in computing the new position of the mass center

and the new orientation of the creature by setting

ξ k+ = ξ k +�tuk(ξ k), ()

θ k+ = θ k +
�t
I(tk)

∫
Sk

ρk(uk(x) – uk(ξ k)) · (x – ξ k)⊥ dx. ()

The second step consists in computing the global velocity field uk+ and the global pres-
sure field pk+. To this end, we look for uk+ ∈ �k+ +Kk+ and pk+ ∈ Mk+ such that for
all v ∈Kk+, and for all q ∈Mk+, we have

(
ρk+uk+ – uk ◦Xk

uk

�t
,v

)
+ a

(
uk+,v

)
+ b

(
v,pk+

)
=

(
ρk+fk+,v

)
, ()

b
(
uk+,q

)
= , ()

where fk+(x) = f(x, tk+) for any x ∈ �.
In the equations above, the approximate characteristic is given by

Xk
uk (x) = χ k(tk ; tk+,x), ()

for all x ∈ �, where χ k is the solution of the problem

⎧⎨
⎩

d
dtχ

k(t; tk+,x) = ũk(χ k(t; tk+,x)), t ∈ [tk , tk+],

χ k(tk+; tk+,x) = ξ k +Rθk�(tk ; tk+,R–θk+ (x – ξ k+)),
()

with

ũk(z) = uk(z) – uk(ξ k) – θ k+ – θ k

�t
(
z – ξ k)⊥ –�k(z) ∀z ∈R

,

where uk(z) is extended by zero outside of �.
For all s ∈ [,T], and z ∈ R

, function�(·; s,z) corresponds to the characteristic function
of the extended undulatory velocity �∗, defined by

⎧⎨
⎩

d
dt�(t; s,z) = �∗(�(t; s,z), t), t ∈ [,T],

�(s; s,z) = z.
()

http://www.boundaryvalueproblems.com/content/2013/1/246
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Remark . Let us note that for any z ∈ S∗(tk+), equation () has the explicit solution

�
(
t; tk+,z

)
=X∗(Y∗(z, tk+), t) ∈ S∗(t). ()

Then for any x ∈ S(ξ k+, θ k+, tk+), since

R–θk+
(
x – ξ k+) ∈ S∗(tk+),

we obtain that the initial condition in () is

χ k(tk+; tk+,x) = ξ k +RθkX∗(Y∗(R–θk+
(
x – ξ k+), tk+), tk).

Moreover, since z = χ k(tk+; tk+,x) ∈ S(ξ k , θ k , tk), we have ũk(z) =  and

χ k(t; tk+,x) = ξ k +RθkX∗(Y∗(R–θk+
(
x – ξ k+), tk+), tk) ∀t ∈ [

tk , tk+
]
.

In particular, for t = tk we have that

Xk
uk (x) = ξ k +RθkX∗(Y∗(R–θk+

(
x – ξ k+), tk+), tk) ()

for all x ∈ S(ξ k+, θ k+, tk+).

It is easy to see that for any k ∈ {, . . . ,N}, equations ()-() represent a mixed formu-
lation of a well-posed Navier-Stokes-type system, so that our scheme is well defined.
Let us now state our first main result concerning the convergence of the semi-discrete

scheme ()-().

Theorem . Suppose that � is an open smooth bounded domain in R
, f and u satisfy

(), and the exact solution (u,p, ξ , θ ) of problem ()-() satisfies hypotheses ()-().
Then there exist a constant K >  depending on T and a constant δ >  independent of T
such that for all  < �t ≤ δ, the solution (uk ,pk , ξ k , θ k)k∈{,...,N} of the time-discretization
problem ()-() satisfies

sup
≤k≤N

(∥∥u(
tk

)
– uk∥∥

L(�) +
∣∣ξ(

tk
)
– ξ k∣∣ + ∣∣θ(

tk
)
– θ k∣∣) ≤ K�t. ()

The complete proof of this result could be found in [] for the case of rigid solid and in
the forthcoming paper [] for the deformable structure.

4 Fully discrete formulation and secondmain result
In order to discretize problem ()-() with respect to the space variable, we introduce
two families of finite element spaces which approximate spaces Kk and Mk defined in
(), () and (). To this end, for any discretization parameter h ∈ (, ), we consider
a quasi-uniform triangulation Th of the domain �. Suppose that � is a bounded convex
domain with a polygonal boundary. We denote by Wh the P + bubble finite elements

http://www.boundaryvalueproblems.com/content/2013/1/246


San Martín et al. Boundary Value Problems 2013, 2013:246 Page 11 of 15
http://www.boundaryvalueproblems.com/content/2013/1/246

space associated with Th for the velocity field and by Eh the P-finite elements space for
the pressure, that is,

Wh =
{
v ∈ C(�) : ∀T ∈ Th,v|T ∈ P + bubble(T)

}
,

Eh =
{
q ∈ C(�) : ∀T ∈ Th,q|T ∈ P

}
.

Then, we define the following finite elements spaces for a conform approximation of the
fluid-solid system:

Kh(ξ , θ , t) =Wh ∩K(ξ , θ , t) ∀ξ ∈ �,∀θ ∈ [, π ],∀t ∈ [,T],

Mh(ξ , θ , t) = Eh ∩M(ξ , θ , t) ∀ξ ∈ �,∀θ ∈ [, π ],∀t ∈ [,T].

Let us recall an approximation property of the projection on Kh(ξ , θ , t) × Mh(ξ , θ , t)
(see []).

Lemma . Suppose that V ∈ K(ξ , θ , t) and P ∈ M(ξ , θ , t). Then there exists a unique
couple (Vh,Ph) in Kh(ξ , θ , t)×Mh(ξ , θ , t) such that

⎧⎨
⎩a(V –Vh,v) + b(v,P – Ph) =  ∀v ∈Kh(ξ , θ , t),

b(V –Vh,q) =  ∀q ∈Mh(ξ , θ , t).
()

In addition, if we suppose that V|�\S(ξ ,θ ,t) ∈ H(� \ S(ξ , θ , t)) and P|�\S(ξ ,θ ,t) ∈ H(� \
S(ξ , θ , t)), then there exists a positive constant C, independent of h, such that

‖V –Vh‖L(�) ≤ Ch.

In order to define the approximate characteristics, let us denote by Fh the P-finite ele-
ments space associated with the triangulation Th, and we introduce the space

Rh(ξ , θ , t) =
{∇⊥φh : φh ∈ Fh,φh =  on ∂�

} ∩K(ξ , θ , t),

∀ξ ∈ �, ∀θ ∈ [, π ], ∀t ∈ [,T], where ∇⊥φh =
( – ∂φh

∂y
∂φh
∂x

)
.

We denote by P(ξ , θ , t) the orthogonal projection from L(�) onto Rh(ξ , θ , t), i.e., for
any u ∈ L(�), then the projection P(ξ , θ , t)u ∈Rh(ξ , θ , t) is such that (u–P(ξ , θ , t)u, rh) =
 for all rh ∈Rh(ξ , θ , t).
Let N be a positive integer. We denote �t = T/N and tk = k�t for all k ∈ {, . . . ,N}. For

k = , we define

u
h(·) = u(·, ), ξ

h = ξ and θ
h = θ, ()

where (u(·, ),p(·, )) ∈ Kh(ξ, θ, ) × Mh(ξ, θ, ) is the projection of the initial condi-
tion (u(·, ),p(·, )) on Kh(ξ, θ, )×Mh(ξ, θ, ) defined in ().

http://www.boundaryvalueproblems.com/content/2013/1/246
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Assume that the approximate solution (uk
h,p

k
h, ξ

k
h, θ k

h ) of ()-() at time t = tk is known.
We describe below the numerical scheme allowing to determinate the approximate solu-
tion (uk+

h ,pk+h , ξ k+
h , θ k+

h ) at t = tk+. First, we compute ξ k+
h ∈R

 and θ k+
h ∈R by

ξ k+
h = ξ k

h + uk
h
(
ξ k
h
)
�t, ()

θ k+
h = θ k

h +
�t
I(tk)

∫
Sk

ρk
h
(
uk
h(x) – uk

h
(
ξ k
h
)) · (x – ξ k

h
)⊥ dx, ()

where ρk
h is defined by the identity () below.

We consider the approximated characteristic function χ k
h defined as the solution of the

following ordinary differential equation:

⎧⎨
⎩

d
dtχ

k
h(t; tk+,x) = P(ξ k

h, θ k
h , tk)ũ

k
h(χ

k
h(t; tk+,x)), t ∈ [tk , tk+],

χ k
h(tk+; tk+,x) = ξ k

h +R
θkh

�(tk ; tk+,R–θk+h
(x – ξ k+

h )),
()

with

ũk
h(z) = uk

h(z) – uk
h
(
ξ k
h
)
–

θ k+
h – θ k

h
�t

(
z – ξ k

h
)⊥ –�k

h(z) ∀z ∈ R
,

where uk
h(z) is extended by zero outside of � and

�k
h(x) =R

θkh
�∗(R–θkh

(
x – ξ k

h
)
, tk

) ∀x ∈R
.

The characteristic function � is defined by ().
Finally, we define

Xk
h(x) = χ k

h
(
tk ; tk+,x

) ∀x ∈ �. ()

In the sequel, we shall split the mesh into the union of  different types of triangle sub-
sets. We first introduce Ah as the union of all triangles intersecting the solid S(ξ k

h, θ k
h , tk),

i.e.,

Ah =
⋃
T∈Th

◦
T∩ ◦

S(ξkh ,θ
k
h ,t

k ) �=∅

T .

We also denote by Qh the union of all triangles such that all their vertices are contained
in Ah. The triangles of Th are then split into the following four categories (see Figure ):
• F is the subset of Th formed by all triangles T ∈ Th such that T ⊂ S(ξ k

h, θ k
h , tk).

• F is the subset formed by all triangles T ∈ Th \F such that T ⊂ Qh.
• F is the subset formed by all triangles T ∈ Th such that T ∩Qh �= ∅ and T �⊂ Qh.
• F = Th \ (F ∪F ∪F).
We introduce the approximated density function ρk

h as follows:

ρk
h(x) =

⎧⎨
⎩ρ∗

S (R–θkh
(x – ξ k

h ), tk) if x ∈ S(ξ k
h, θ k

h , tk),

ρF if x ∈ � \ S(ξ k
h, θ k

h , tk).
()

http://www.boundaryvalueproblems.com/content/2013/1/246
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Figure 1 In this figure, we see the splitting of the fixed triangulation related to the position of the
solid at time t.

With these notations, we introduce the following mixed variational fully discrete for-
mulation: Find uk+

h ∈ �k+
h +Kh(ξ k+

h , θ k+
h , tk+), pk+h ∈Mh(ξ k+

h , θ k+
h , tk+) such that

(
ρk+
h

uk+
h – uk

h ◦Xk
h

�t
,v

)
+ a

(
uk+
h ,v

)
+ b

(
v,pk+h

)
=

(
ρk+
h fk+h ,v

) ∀v ∈Kh
(
ξ k+
h , θ k+

h , tk+
)
, ()

b
(
uk+
h ,q

)
=  ∀q ∈Mh

(
ξ k+
h , θ k+

h , tk+
)
, ()

where fk+h is the L(�)-projection of fk+ = f(tk+) on (Eh).
Let us now state the second main result of this paper, which asserts the convergence of

the fully-discrete scheme ()-(). The complete proof of this result could be found in []
for the case of rigid body and in the forthcoming paper [] if the structure is deformable.

Theorem . Let � be a convex domain with a polygonal boundary. Suppose that f and
u satisfy the conditions from (), and that (u,p, ξ , θ ) is a solution of ()-() satisfying
regularity properties ()-(). Let C >  and  < α ≤  be two fixed constants. Then there
exist two positive constants K and τ ∗, independent of h and�t such that for all  <�t ≤ τ ∗

and for all h ≤ C�t+α , we have

sup
≤k≤N

(∥∥u(
tk

)
– uk

h
∥∥
L(�) +

∣∣ξ(
tk

)
– ξ k

h
∣∣ + ∣∣θ(

tk
)
– θ k

h
∣∣) ≤ K�tα .

Let us mention that in order to get an approximation of first order in time (i.e., O(�t)
in Theorem .), we have to choose α = . In this case, the corresponding condition on h
becomes h ≤ C�t which is similar to the one obtained in [, Theorem .], where the
densities of the fluid ρF and of the solid ρS are equal.

Remark . Let us give some comments on the condition of h and �t required for the
convergence result in Theorem .. First, we emphasize that the same type of condition
appears in several works for approximation in a Lagrangian framework of the Navier-
Stokes equations without any rigid body.Wemay cite [], where convergence is obtained

http://www.boundaryvalueproblems.com/content/2013/1/246
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under condition h ≤ C�t and [], where h and �t are chosen such that h ≤ C�t ≤
Chσ and σ > / (with h and �t small enough). We also mention [] for an ALE scheme
applied to Stokes equations in a time-dependent domain, where the authors obtain an
error estimate of order O(�t) under condition h≤ C�t/.
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