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Abstract
The aim of this paper is to study the extinction of solutions of the initial boundary
value problem for ut = div(|∇u|p(x,t)–2∇u) + b(x, t)|u|q – a0u. The authors discuss how
the relations of p(x, t) and dimension N affect the properties of extinction in finite time.
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1 Introduction
In this paper, we consider the following nonlinear degenerate parabolic equation:

⎧⎪⎪⎨
⎪⎪⎩
ut = div(|∇u|p(x,t)–∇u) + b(x, t)|u|q – au, (x, t) ∈ � × (,T) =QT ,

u(x, t) = , (x, t) ∈ ∂� × (,T) = �T ,

u(x, ) = u(x), x ∈ �,

(.)

where QT = � × (,T], �T denotes the lateral boundary of the cylinder QT , a > . It will
be assumed throughout the paper that the exponent p(x, t) is continuous in Q = QT with
logarithmic module of continuity

 < p– = inf
(x,t)∈Q

p(x, t) ≤ p(x, t)≤ p+ = sup
(x,t)∈Q

p(x, t) <∞, (.)

∀z = (x, t) ∈ QT , ξ = (y, s) ∈QT , |z – ξ | < ,
∣∣p(z) – p(ξ )

∣∣ ≤ ω
(|z – ξ |), (.)

where

lim sup
τ→+

ω(τ ) ln

τ
= C < +∞.

Model (.) may describe some properties of electro-rheological fluids which change
their mechanical properties dramatically when an external electric field is applied. The
variable exponent p in model (.) is a function of the external electric field |–→E |, which
satisfies the quasi-staticMaxwell equations div(ε

–→E +–→p ) = , Curl(–→E ) = , where ε is the
dielectric constant in vacuum and the electric polarization –→p is linear in –→E , i.e., –→p = λ

–→E .
For more complete physical background, the readers may refer to [–].
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These models include parabolic or elliptic equations which are nonlinear with respect
to gradient of the thought solution and with variable exponents of nonlinearity; see [–
] and references therein. Besides, another important application is the image processing
where the anisotropy and nonlinearity of the diffusion operator and convection terms are
used to underline the borders of the distorted image and to eliminate the noise [–].
When p is a fixed constant, authors in [–] studied extinctions in finite time, blowing-
up in finite time of solutions. Due to the lack of homogeneity and the gap between norm
and modular, some methods in [–] fail in solving our problems. In order to over-
come some difficulties, we have to search for some new methods and techniques. To the
best of our knowledge, there are only a few works about parabolic equations with variable
exponents of nonlinearity. In [], applying Galerkin’s method, Antontsev and Shmarev
obtained the existence and uniqueness of weak solutions with the assumption that the
function a(u) in div(a(u)|∇u|p(x)–∇u) was bounded. In the case when the function a(u)
in div(a(u)|∇u|p(x)–∇u) might be not upper bounded, the authors in [, ] applied the
method of parabolic regularization and Galerkin’s method to prove the existence of weak
solutions. In this paper, we apply energy methods and Gronwall inequalities to prove that
the solution vanishes in finite time.Moreover, we obtain the critical exponent of extinction
in finite time.
The outline of this paper is the following. In Section , we shall introduce the function

spaces of Orlicz-Sobolev type, give the definition of a weak solution to the problem; Sec-
tion  will be devoted to the proof of the extinction of the solution obtained in Section .

2 Preliminaries
Wewill state some properties of variable exponent spaces and give the definition of a weak
solution to the problem. Let us introduce the Banach spaces.

Lp(x,t)(QT ) =
{
u(x, t)

∣∣u is measurable in QT ,Ap(·)(u) =
∫∫

QT

|u|p(x,t) dxdt <∞
}
,

‖u‖p(·) = inf
{
λ > ,Ap(·)(u/λ) ≤ 

}
;

Vt(�) =
{
u|u ∈ L(�)∩W ,

 (�), |∇u| ∈ Lp(x,t)(�)
}
,

‖u‖Vt (�) = ‖u‖,� + ‖∇u‖p(·)�;
W(QT ) =

{
u : [,T] 
→Vt(�)|u ∈ L(QT ), |∇u| ∈ Lp(x,t)(QT ),u =  on �T

}
,

‖u‖W(QT ) = ‖u‖,QT + ‖∇u‖p(x),QT

and denote byW′(QT ) the dual ofW(QT ) with respect to the inner product in L(QT ).
For the sake of simplicity, we first state some results about the properties of the Luxem-

burg norm.

Lemma . [, ] For any u ∈ Lp(x)(�),

() ‖u‖p(x) <  (= ; > ) ⇔ Ap(·)(u) <  (= ; > );

() ‖u‖p(x) <  ⇒ ‖u‖p+p(x) ≤ Ap(·)(u) ≤ ‖u‖p–p(x);
‖u‖p(x) ≥  ⇒ ‖u‖p–p(x) ≤ Ap(·)(u) ≤ ‖u‖p+p(x);

() ‖u‖p(x) →  ⇔ Ap(·)(u) → ; ‖u‖p(x) → ∞ ⇔ Ap(·)(u) → ∞.
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Lemma . [, ] If p ∈ C(�),  < p– < p+ < ∞, then Lp(x)(�) and W ,p(x)(�) are uni-
formly convex. Hence they are reflexive.

Lemma. ([, ], Poincaré’s inequality) There exists a constant C = C(p±, |�|) >  such
that for any u ∈W ,p(x)

 (�),

‖u‖p(x) ≤ C‖∇u‖p(x).

Definition . A function u ∈W(QT )∩L∞(,T ;L∞(�)) is called a weak solution of prob-
lem (.) if every test-function

ξ ∈ Z =
{
η(x, t)|η ∈W(QT )∩ L∞(

,T ;L(�)
)
,ηt ∈W′(QT )

}

and for every t < t ∈ (,T], the following identity holds:

∫ t

t

∫
�

[
uξt – |∇u|p(x,t)–∇u∇ξ + b(x, t)|u|qξ – auξ

]
dxdt =

∫
�

uξ dx|tt . (.)

3 Main results and their proofs
Our main results read as follows.

Theorem . Assume that p(x, t) satisfies conditions (.)-(.) and  < q < , b ∈
L(,T ;L∞(�)), a > , then problem (.) has at lease one weak solution u(x, t) in the
sense of Definition ..

Proof Define the operator

〈Lu,ϕ〉 =
∫

�

〈|∇u|p(x,t)–∇u∇ϕ – b(x, t)|u|qϕ + auϕ
〉
dx +

∫
�

utϕ dx, ϕ ∈ Vt(�).

According to [, ], we know that {ϕk(x)} ⊂ V+(�) = {u(x)|u ∈ L(�)∩W ,
 (�), |∇u| ∈

Lp+} such that
⋃∞

n=Vn is dense in V+(�) with

Vn = Span{ϕ,ϕ, . . . ,ϕn}.

We construct the approximate solution u(m)(x, t) as follows:

u(m)(x, t) =
m∑
i=

C(m)
k (t)ϕk(x),

where the coefficient C(m)
k (t) may be obtained by solving the following identities:

〈
Lu(m),ϕk

〉
= , k = , , . . . ,m. (.)

Problem (.) generates the systems ofm ODE

⎧⎨
⎩
(Cm

k (t))′ =Gk(t,Cm
 (t) · · ·Cm

m(t)),

Cm
k () =

∫
�
u(x)ϕk dx, k = , , . . . ,m.

(.)
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If all the conditions in Theorem . hold, the functions Gk are continuous in all argu-
ments. �

In order to prove this theorem, we need the following lemmas.

Lemma. The approximate solutions u(m) of problem (.) satisfy the following inequality
on the interval:

∥∥u(m)(·, τ )∥∥
,� +

∫∫
Qτ

∣∣∇u(m)∣∣p(x,t) dxdt ≤ C.

Proof By Peano’s theorem, for every finitem, system (.) has solutions Cm
i , i = , , . . . ,m,

on the interval (,T).
Multiplying each of equations (.) by Cm

k (t) and summing over k = , , . . . ,m, we arrive
at the relations



∥∥u(m)∥∥

L(�)

∣∣t=τ

t= +
∫∫

Qτ

∣∣∇u(m)∣∣p(x,t) dxdt

=
∫∫

Qτ

b
∣∣u(m)∣∣qu(m) dxdt – a

∫∫
Qτ

∣∣u(m)∣∣ dxdt

≤ C

∫ τ



(∫
�

|b| 
–q dx

)
dt + a

∫ τ



∫
�

∣∣u(m)∣∣ dxdt – a
∫∫

Qτ

∣∣u(m)∣∣ dxdt

≤ C

∫ τ



∫
�

|b| 
–q dxdt.

This completes the proof of Lemma .. �

The rest of the argument is similar to that in [], we omit it here. In order to prove the
locally extinction of weak solutions, we need to prove that the solution remains bounded.

Theorem. Assume that the conditions inTheorem . hold, then the solution of problem
(.) remains bounded, i.e.,

‖u‖L∞(QT ) ≤ K (T) =
{
( – q)

∫ T


‖b‖L∞(QT ) dt + ‖u‖–qL∞(�)

} 
–q

.

Proof For any fixedM > , define

uM =max
{
–M,min{u,M}}.

For any integer k ∈ N∗, we choose uk–M as a test-function in (.). Letting t = t + h, t = t,
with t, t + h ∈ (,T) in (.), we have


k

∫ t+h

t

d
dt

(∫
�

ukM dx
)
dt +

∫ t+h

t

∫
�

(k – )u(k–)M |∇uM|p(x,t) dxdt

=
∫ t+h

t

∫
�

b(x, t)uk–M |uM|q dxdt – a
∫ t+h

t

∫
�

ukM dxdt.
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Multiplying the above identity by 
h , letting h→ + and applying Lebesgue’s dominated

convergence theorem, we have that for every t ∈ (,T),


k

d
dt

∫
�

ukM dx +
∫

�

(k – )u(k–)M |∇uM|p(x,t) dx

=
∫

�

b(x, t)uk+q–M dx – a
∫

�

ukM dx

≤ ‖uM‖
k+q–

k
k · ‖b‖

k
–q
k
–q

– a‖uM‖kk .

We have

d
dt

‖uM‖k ≤ ‖uM‖
q
k
k · ‖b‖

k
–q
k
–q

– a‖uM‖k .

By Gronwall’s inequality, we get

‖uM‖k ≤
{
( – q)

∫ T


‖b‖

k
–q
k
–q

dt + ‖u‖–q
} 

–q
. (.)

Letting k → +∞ in (.), we have

‖uM‖∞,� ≤
{
( – q)

∫ T



∥∥b(·, t)∥∥∞,� dt + ‖u‖–q∞,�

} 
–q

� K (T),

We chooseM > K (T), then uM = u a.e. in QT . �

Theorem . (Extinction) (N > ) Suppose N
N+ < p– < N–

N+ .
()  < p– < p+ < (N–)p–

Np––N+p– , then there exists T∗
 � T∗

 (p±,N ,q, |�|, |b|
L


–q

,a) such that
every nonnegative solution of problem (.) vanishes in finite time, i.e.,

lim
t→T∗


‖u‖L(�) = ;

()  < p– < (N–)p–
Np––N+p– < p+ < Np–

Np–+p––N , then there exists T∗
 � T∗

 (p±,N ,q, |�|, |b|
L


–q

,a)
such that every nonnegative solution of problem (.) vanishes in finite time, i.e.,

lim
t→T∗


‖u‖Lr (�) = , with r =

p+(N – p– –Np–) + (N + )p–

p–
> .

Theorem . (Extinction) (N > ) Assume that N–
N+ < p– < p+ < Np–

Np–+p––N < , then there
exists T∗

 � T∗
 (p±,N ,q, |�|, |b|

L


–q
,a) such that every nonnegative solution of problem

(.) vanishes in finite time, i.e.,

lim
t→T∗


‖u‖Lr (�) = , with  < r =  +

p+(N – p–) –Np–(p+ – )
p–

< .

Proof Case . N
N+ < p– < N–

N+ ,  < p– < p+ < (N–)p–
Np––N+p– .
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Choosing u as a test-function in (.), we have




∫ t



∫
�

d
dt

|u| dxdt +
∫ t



∫
�

|∇u|p(x,t) dxdt =
∫ t



∫
�

b|u|+q dx – a
∫ t



∫
�

u dx,

∫ t



∫
�

|∇u|p(x,τ ) dxdτ Lemma .≥ Cmin
{|∇u|p–p(·,t) · |∇u|p+p(·,t)

}
(.)≥ Cmin

{
Mp+–p– , 

}|∇u|p+p–
≥ C|∇u|p+p– .

Applying the embedding theoremW ,p– ↪→ L, we have

(∫
�

u dx
)

≤ C

(∫
�

|∇u|p– dx
) 

p–

,

∫ t



∫
�

b
∣∣uq+∣∣dx ≤

(∫ t



∫
�

b


–q dxdt
) –q

 ·
(∫ t



∫
�

|u| dxdt
) q+


, (.)

F(t) =
∫ t



∫
�

|u| dxdt.

Moreover, we have

F ′(t) +CF(t)
p+
 + aF(t)≤ CF(t)

q+
 .

This conclusion follows from Gronwall’s inequality.
Case . N

N+ < p– < N–
N+ ,  < p– < (N–)p–

Np––N+p+ < p+ < Np–
Np––N+p– .

Choosing um as a test-function with m =  + p+(N–p–)–Np–(p+–)
p– , we have




∫ t



∫
�

d
dt

|u|m+ dxdt + (m – )
∫ t



∫
�

um|∇u|p(x,t) dxdt

=
∫ t



∫
�

b|u|m+q dx – a
∫ t



∫
�

um+ dx. (.)

Applying |u|∞ ≤M,m –  – (α – )p– ≤  and Lemma ., we get that

(m – )
∫ t



∫
�

um–|∇u|p(x,τ ) dxdτ ≥ C

∫ t



∫
�

∣∣∇uα
∣∣p(x,τ ) dxdτ

≥ Cmin
{∣∣∇uα

∣∣p–
p(·,t) ·

∣∣∇uα
∣∣p+
p(·,t)

}

≥ Cmin
{
Mp+–p– , 

}∣∣∇uα
∣∣p+
p–

≥ C
∣∣∇uα

∣∣p+
p– .

Applying the embedding theoremW ,p– ↪→ L
Np–
N–p– , we have

(∫
�

u
αNp–
N–p– dx

)N–p–
Np– ≤ C

(∫
�

∣∣∇uα
∣∣p– dx

) 
p–

,

∫ t



∫
�

b
∣∣uq+m∣∣dx ≤

(∫ t



∫
�

b
m+
–q dxdt

) –q
m+ ·

(∫ t



∫
�

|u|m+ dxdt
) q+

m+q
.

(.)
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Similarly as Case , letting α = (m+)(N–p–)
Np– , we have

F ′(t) + F(t)
p+(N–p–)

Np– + aF(t)≤ CF(t)
q+m
+m ,

with F(t) =
∫ T


∫
�

|u|m+ dxdt.
Case . N–

N+ < p– < p+ < Np–
Np–+p––N < .

We choose um as a test-function. We have

m =  +
p+(N – p–) –Np–(p+ – )

p–
.

The rest of the argument is the same as Case , we omit it here. �
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