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Abstract
In this paper we investigate the elastography inverse problem of identifying
cancerous tumors within the human body. From a mathematical standpoint, the
elastography inverse problem consists of identifying the variable Lamé parameter μ
in a system of linear elasticity where the underlying object exhibits nearly
incompressible behavior. This problem is subsequently posed as an optimization
problem using an energy output least-squares (EOLS) functional, but the nonlinearity
that arises makes the computation of the EOLS functional’s derivatives challenging.
We employ an adjoint method for the computation of the gradient, something
shown to be an efficient method in recent studies, and also give a parallelizable
hybrid method for the computation of the EOLS functional’s second derivative.
Detailed discrete formulas and nontrivial computational examples are provided to
show the feasibility of both the adjoint and hybrid approaches. Furthermore, all
results are given in the framework of a general saddle point problem allowing easy
adaptation to numerous other inverse problems.
MSC: 35R30; 65N30
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1 Introduction
Consider the following system of partial differential equations describing the response of
an isotropic elastic object to certain body forces and traction applied to its boundary:

–∇ · σ = f in �, (a)

σ = με(u) + λdivuI, (b)

u = g on �, (c)

σn = h on �. (d)

Here the domain � is a subset of R or R and ∂� = � ∪ � is its boundary. In (a)-(d),
the vector-valued function u = u(x) represents the displacement of the elastic object, f is
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the applied body force, n is the unit outward normal, and

ε(u) =


(∇u +∇uT

)
is the linearized strain tensor. The resulting stress tensor σ in the stress-strain law (b) is
obtained under the assumption that the elastic object is isotropic and the displacement is
small enough so that a linear relationship holds. The Lamé parameters μ and λ quantify
the elastic properties of the material. (In the following, for simplicity we set g = .)
In this work our objective is to investigate the elastography (also known as elasticity

imaging) inverse problem of locating cancerous tumors within the human body. This in-
verse problem consists of identifying the variable parameter μ in (a)-(d) from a mea-
surement of the displacement field u. Conversely, the direct problem for (a)-(d) is to
find the displacement u when function h, the variable coefficients μ and λ, and the body
force f are all known. The underlying idea is that differences in molecular makeup as well
as microscopic and macroscopic structure result in significant differences in the stiffness
of living soft tissue (see []). Moreover, changes in tissue stiffness generally correlate with
changes in pathological state, with many cancers appearing as hard nodules within the
surrounding softer tissue. In a clinical setting, measurements of displacement in human
tissue can be obtained using ultrasound and this can then serve as data in the context of
the elastography inverse problem. By solving this inverse problem and recoveringμ, tumor
locations can be identified using the marked differences in elastic properties between the
healthy and unhealthy tissue. Additionally, we note that in the elastography inverse prob-
lem the human body is treated as a nearly incompressible object where the parameter λ is
significantly large and hence only the parameter μ is sought.
Although numerous authors have contributed to using the elasticity properties of soft

tissue as a tool to differentiate between normal and cancerous tissue, Raghavan and Yagle
[] were among the first authors to realize that this study can be best done in an inverse
problem framework using measured strains and the equations of equilibrium to recover
elasticity (cf. (a)-(d)). Since then, many studies have been devoted to investigating var-
ious aspects of the elastography inverse problem and the interested reader is referred to
[–] and the cited reference therein. Additionally, a detailed account of the recent devel-
opments in elastography inverse problem can be found in the survey article by Doyley [].
See also [–] and the cited references therein for more details.
One of themain technical challenges in the study of this inverse problem stems from the

fact that the human body is treated as a nearly incompressible object. That is, the elasticity
modulus λ is significantly large (and particularly λ � μ), rendering classical finite element
methods ineffective due to the so-called locking effect. In the literature, several approaches
have been proposed to overcome the locking effect, and in this work we employ themixed
finite elements strategy.
In the following, we provide the necessary details for the transformation of system (a)-

(d) into a saddle point problem to which the mixed finite element approach can be ap-
plied.
We begin by recalling that the dot product of two tensors A and B can be denoted by

A · B. That is, for ×  tensors A and B, we have

A · B = AB +AB +AB +AB.
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Given a sufficiently smooth domain � ⊂ R
, the L-norm of a tensor-valued function

A = A(x) is given by

‖A‖L = ‖A‖L(�) =
∫

�

A ·A =
∫

�

(
A
 +A

 +A
 +A


)
.

On the other hand, for a vector-valued function u(x) = (u(x),u(x))T, the L-norm is
given by

‖u‖L = ‖u‖L(�) =
∫

�

(
u + u

)
,

whereas the H-norm by

‖u‖H = ‖u‖H(�) = ‖u‖L + ‖∇u‖L .

In the following discussion, for the sake of simplicity, in (a)-(d) we set g = . For this
case, the space of test functions, denoted by V̂ , is given by

V̂ =
{
v̄ ∈ H(�)×H(�) : v̄ =  on �

}
.

By using Green’s identity and boundary conditions (c) and (d), we obtain the following
weak form of elasticity system (a)-(d): Find ū ∈ V̂ such that

∫
�

με(ū) · ε(v̄) +
∫

�

λ(div ū)(div v̄) =
∫

�

f v̄ +
∫

�

v̄h for every v̄ ∈ V̂ . ()

Themixed finite elements strategy, which, in the present context, consists of introducing
a pressure term p ∈Q = L(�), is as follows:

div ū =
p
λ
. ()

As λ → ∞, () yields the incompressibility limit

div ū = .

The weak formulation of () reads∫
�

(div ū)q –
∫

�


λ
pq =  for every q ∈Q. ()

By using relation (), the weak form () can be expressed as follows: Find ū ∈ V̂ such
that ∫

�

με(ū) · ε(v̄) +
∫

�

p(div v̄) =
∫

�

f v̄ +
∫

�

v̄h for every v̄ ∈ V̂ , ()

where the pressure p is also an unknown.
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Therefore, the problem of finding ū ∈ V̂ , satisfying (), has now been converted into the
saddle point problem of finding (ū,p) ∈ V̂ ×Q such that∫

�

με(ū) · ε(v̄) +
∫

�

p(div v̄) =
∫

�

f v̄ +
∫

�

v̄h for every v̄ ∈ V̂ , (a)∫
�

(div ū)q –
∫

�


λ
pq =  for every q ∈Q, (b)

where Q = L(�) and V̂ = {v̄ ∈H(�)×H(�) : v̄ =  on �}.
For the saddle point formulation, the Babuška-Brezzi condition provides guidance in the

choice of finite element spaces necessary for a stable numerical approximation (see []).
The primary objective of this work is to develop an efficient computational framework

for the elastography inverse problem. For this we employ an adjoint approach for the
derivative computation of a recently proposed energy output least-squares (EOLS) func-
tional []. We recall that Oberai et al. [] used the adjoint approach to compute ef-
ficiently the gradient of the output least-squares functional. Inspired by Tortorelli and
Michaleris [], we also devise a hybridmethod for an efficient computation of the second-
order derivative of the EOLS functional. In this direction, we would also like to draw at-
tention to an interesting paper by Cioacaa, Alexea, and Sandua [] where a second-order
adjoint method is studied. All the results and formulas given are for a general saddle point
problem and hence can easily be adapted to a wide range of inverse problems for varia-
tional problems (see []). In the derivation of the adjoint formulas, we do not include
the regularization functional while considering the EOLS functional. However, we use a
smooth regularizer for the identification of a smooth parameter and a BV regularizer for
the identification of discontinuous coefficients.

2 Optimization approach for inverse problems in saddle point problems
Let V̂ and Q be real Hilbert spaces, let B be a real Banach space, and let A be a nonempty,
closed, and convex subset of B. Here B is the coefficient/parameter space and A is the
set of all admissible coefficients. Let a : B × V̂ × V̂ → R be a trilinear map which we
assume to be symmetric with respect to the second and third arguments. That is, for every
� ∈ B and for all ū, v̄ ∈ V̂ , we have a(�, ū, v̄) = a(�, v̄, ū). Let b : V̂ × Q → R be a bilinear
form, let c :Q ×Q → R be a symmetric bilinear form, and let m : V̂ → R be a linear and
continuous map. We assume that there are positive constants κ, κ, ς, ς, and κ such
that the following inequalities hold:

a(�, v̄, v̄) ≥ κ‖v̄‖ for every v̄ ∈ V̂ , for every � ∈ A, (a)

a(�, ū, v̄) ≤ κ‖�‖‖ū‖‖v̄‖ for every ū, v̄ ∈ V̂ , for every � ∈ A, (b)

c(q,q) ≥ ς‖q‖ for every q ∈Q, (c)∣∣c(p,q)∣∣ ≤ ς‖p‖‖q‖ for every p,q ∈ Q, (d)∣∣b(v̄,q)∣∣ ≤ κ‖v̄‖‖q‖ for every v̄ ∈ V̂ , for every q ∈Q. (e)

Remark . We remark that for the subsequent development of our approach, it suffices
to assume that A is a closed and convex set of admissible parameters. Most commonly,
it is chosen as the set of box-constraints. In some works, the space in which A resides is
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required to be compactly embedded in the solution space (see [–]). In our discrete
examples, we have used linear elements to approximate the imposed box-constraints.

We consider the following saddle point problem: Given � ∈ A, find (ū,p) ∈ V̂ ×Q such
that

a(�, ū, v̄) + b(v̄,p) =m(v̄) for every v̄ ∈ V̂ , (a)

b(ū,q) – c(p,q) =  for every q ∈Q. (b)

Given all the data, the direct problem in this setting is to find (ū,p). However, our focus
is on the inverse problem of finding a parameter � ∈ A that makes (a)-(b) true for a
measurement (z̄, ẑ) of (ū,p).
Evidently, saddle point problem (a)-(b) connected to the elastography inverse prob-

lem of identifying a variable parameter μ in the system of incompressible linear elasticity
can be deduced by setting:

a(μ, ū, v̄) =
∫

�

με(ū) · ε(v̄), (a)

b(ū,q) =
∫

�

(div ū)q, (b)

c(p,q) =
∫

�


λ
pq, (c)

m(v̄) =
∫

�

f v̄ +
∫

�

v̄h. (d)

A common approach to solve inverse problems of parameter identification in PDEs is
to minimize the output least-squares functional, which, in the present context, can be
defined by

JOLS(�) =


∥∥u(�) – z

∥∥
V =



∥∥ū(�) – z̄

∥∥
V̂ +



∥∥p(�) – ẑ

∥∥
Q, ()

where V = V̂ × Q, z = (z̄, ẑ) ∈ V is the measured data, and u(�) = (ū(�),p(�)) ∈ V is the
solution of (a)-(b) corresponding to �.
The output least-squares solution to the inverse problem of identifying � is the one that

solves the following optimization problem: Find �̄ ∈ A such that

JOLS(�̄)≤ JOLS(�) for every � ∈ A.

Recently, in [], the following objective functional was proposed to solve the inverse
problem of identifying the variable parameter � ∈ A in saddle point problem (a)-(b):

J(�) =


a
(
�, ū(�) – z̄, ū(�) – z̄

)
+


c
(
p(�) – ẑ,p(�) – ẑ

)
, ()

where z = (z̄, ẑ) is the measured data and u(�) = (ū(�),p(�)) is the solution of (a)-(b)
corresponding to �.
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Clearly, to solve an optimization problemwith the above objective functional, we need to
compute its derivative which, in turn, requires us to compute the derivative of the solution
map. It is well known that one of the most challenging aspects in the study of inverse
problems is in finding an efficient computation of the derivative of the solution map. We
will now develop an adjointmethod for the computation of the first derivative of the EOLS
functional and then a new hybrid method for the computation of the functional’s second
derivative.
For every � ∈ A, the map � → S(�) = (ū(�),p(�)) is well defined and single-valued. The

following result for the differentiability of S, which was announced in [] without a proof,
will be needed.

Theorem. For each � in the interior of A,u = u(�) = (ū(�),p(�)) is infinitely differentiable
at �.
. Given u, the first derivative δu = (δū, δp) = (Dū(�)δ�,Dp(�)δ�) is the unique solution

of the saddle point problem:

a(�, δū, v̄) + b(v̄, δp) = –a(δ�, ū, v̄) for every v̄ ∈ V̂ , (a)

b(δū,q) – c(δp,q) =  for every q ∈Q. (b)

. The second-order derivative

δu =
(
δū, δp

)
=

(
Dū(�)(δ�, δ�),Dp(�)(δ�, δ�)

)
is the unique solution of the saddle point problem

a
(
�, δū, v̄

)
+ b

(
v̄, δp

)
= –a

(
δ�,Dū(�)δ�, v̄

)
– a

(
δ�,Dū(�)δ�, v̄

)
for every v̄ ∈ V̂ , (a)

b
(
δū,q

)
– c

(
δp,q

)
=  for every q ∈Q. (b)

Proof Wedefine amapG : A×V̂ → V̂ ∗×Q∗ byG(�, (ū,p)) = (a(�, ū)+b(p)–m,b(ū)–c(p)),
where V̂ ∗ andQ∗ are the duals of V̂ andQ, and a(�, ū), b(p), and c(p) are the associated dual
elements given by the Riesz theorem. Then saddle point problem (a)-(b) is equivalent
to the following implicit equation:

G(�,u) = (V̂∗ , Q∗ ). ()

The differentiability of u = u(�) follows from the implicit function theorem. In fact, the
map G is infinitely differentiable and the partial derivative with respect to variable u =
(ū,p) is given by

DuG
(
�, (ū,p)

)
(δū, δp) ≡ (

a(�, δū) + b(δp),b(δū) – c(δp)
)

for every δū ∈ V̂ .

By [, Proposition ], the map DuG(�, (ū,p)) : A × V̂ → V̂ ∗ × Q∗ is an isomorphism.
Therefore, using the implicit function theorem, themap u = u(�) is infinitely differentiable
at any � in the interior of A.

http://www.boundaryvalueproblems.com/content/2013/1/263
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We now compute the first and second derivatives of the coefficient-to-solution map. By
using equation (a), for any �̂ ∈ A and for any sufficiently small t ∈R+, we have

a
(
� + t�̂, ū(� + t�̂), v̄

)
+ b

(
v̄,p(� + t�̂)

)
=m(v̄),

a
(
�, ū(�), v̄

)
+ b

(
v̄,p(�)

)
=m(v̄),

and by manipulating the terms in these two equations, we obtain

a
(

� + t�̂,
ū(� + t�̂) – ū(�)

t
, v̄

)
+ a

(
�̂, ū(�), v̄

)
+ b

(
v̄,
p(� + t�̂) – p(�)

t

)
= ,

which, by passing the above equation to the limit when t → +, yields (a)

a
(
�,Dū(�)(�̂), v̄

)
+ b

(
v̄,Dp(�)(�̂)

)
= –a

(
�̂, ū(�), v̄

)
.

Analogously, using equation (b), for any �̂ ∈ A and for every sufficiently small t ∈ R+,
we have

b
(
u(� + t�̂),q

)
– c

(
p(� + t�̂),q

)
= ,

b
(
u(�),q

)
– c

(
p(�),q

)
= ,

and by manipulating the above two equations, we obtain

b
(
u(� + t�̂) – u(�)

t
,q

)
– c

(
p(� + t�̂) – p(�)

t
,q

)
= ,

which, by passing the above equation to limit t → +, gives

b
(
Dū(�)(�̂),q

)
– c

(
Dp(�)(�̂),q

)
= ,

which is (b). Consequently, (a) and (b) characterize the first derivative.
The same arguments can be used to compute the form of the second derivative. From

(a), for any �̂, �̂ ∈ A and for any sufficiently small t ∈R+, we have

a
(
� + t�̂,Dū(� + t�̂)(�̂), v̄

)
+ b

(
v̄,Dp(� + t�̂)(�̂)

)
= –a

(
�̂, ū(� + t�̂), v̄

)
,

a
(
�,Dū(�)(�̂), v̄

)
+ b

(
v̄,Dp(�)(�̂)

)
= –a

(
�̂, ū(�), v̄

)
,

and by rearranging the above set of equations, we obtain

a
(
�̂,Dū(� + t�̂)(�̂), v̄

)
+ a

(
�,
Dū(� + t�̂)(�̂) –Dū(�)(�̂)

t
, v̄

)

+ b
(
v̄,
Dp(� + t�̂)(�̂) –Dp(�)(�̂)

t

)

= –a
(

�̂,
ū(� + t�̂) – ū(�)

t
, v̄

)
.
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Since the solution map u = u(�) is twice Fréchet differentiable, by passing to the limit
t → +, we get

a
(
�̂,Dū(�)(�̂), v̄

)
+ a

(
�,Dū(�̂, �̂), v̄

)
+ b

(
v̄,Dp(�̂, �̂)

)
= –a

(
�̂,Dū(�)(�̂), v̄

)
, ()

which, after a rearrangement of terms, yields (a)

a
(
�,Dū(�̂, �̂), v̄

)
+ b

(
v̄,Dp(�̂, �̂)

)
= –a

(
�̂,Dū(�)(�̂), v̄

)
– a

(
�̂,Dū(�)(�̂), v̄

)
.

From (b), for any �̂, �̂ ∈ A and any sufficiently small t ∈R+, we have

b
(
Dū(� + �̂)(�̂),q

)
– c

(
Dp(� + �̂)(�̂),q

)
= ,

b
(
Dū(�)(�̂),q

)
– c

(
Dp(�)(�̂),q

)
= ,

and by rearranging the above two equations, we get

b
(
Dū(� + t�̂)(�̂) –Dū(�)(�̂)

t
,q

)
– c

(
Dp(� + �̂)(�̂) –Dp(�)(�̂)

t
,q

)
= .

By passing to limit t → +, we finally deduce

b
(
Dū(�̂, �̂),q

)
– c

(
Dp(�̂, �̂),q

)
= ,

which in conjunction with (b) forms the corresponding saddle point whose unique so-
lution characterizes the second derivative Du(�̂, �̂) = (Dū(�̂, �̂),Dp(�̂, �̂)). �

3 An adjoint and a hybrid method for the energy output least squares
The developed adjoint method for the EOLS functional,

J(�) =


a(�, ū – z̄, ū – z̄) +



c(p – ẑ,p – ẑ),

is based on the key observation that the underlying saddle point problem can equivalently
be posed as a variational equation of finding u = (ū,p) ∈ V = V̂ ×Q such that

T(�,u, v) =m(v̄) for every v = (v̄,q) ∈ V , ()

where

T(�,u, v) = a(�, ū, v̄) + b(v̄,p) + b(ū,q) – c(p,q). ()

By a direct computation, we have

DT(�,u, v)(�)(δ�) = a(δ�, ū, v̄) + a(�, δū, v̄)

+ b(v̄, δp) + b(δū,q) – c(δp,q)

= a(δ�, ū, v̄) + t(�, δu, v). ()

http://www.boundaryvalueproblems.com/content/2013/1/263
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We define

J(�, v) = J(�) + T(�,u, v) –m(v̄) for every v ∈ V ,

and, by using (), notice that

J(a, v) = J(a) for every v ∈ V .

Therefore, for any ‘test function’ v = (v̄,q) ∈ V , we have

DJ(�)(δ�) =D�J(�, v)(δ�) for every δ� ∈ A, ()

where D� stands for the partial derivative with respect to �.
The key idea behind the adjoint method is to choose a particular v to avoid the compu-

tation of δu. By a direct computation and taking into account (), we obtain

D�J(�, v)(δ�) =


a(δ�, ū – z̄, ū – z̄) + a(�, δū, ū – z̄) + c(δp,p – ẑ)

+ a(δ�, ū, v̄) + T(�, δu, v). ()

Now, let w = w(�) be the unique solution of the saddle point problem

a(�, w̄, v̄) + b(v̄,pw) = –a(�, ū – z̄, v̄) – b(v̄,p – ẑ) for every v̄ ∈ V̂ , (a)

b(w̄,q) – c(pw,q) =  for every q ∈ Q, (b)

which exists, by standard arguments, since the above problem is just (a)-(b) withm(·) =
–a(�, ū, ·) – b(·,p).
By setting v = w in (), we obtain

D�J(�,w)(δ�) =


a(δ�, ū – z̄, ū – z̄) + a(�, δū, ū – z̄) + c(δp,p – ẑ)

+ a(δ�, ū, w̄) + T(�, δu,w)

=


a(δ�, ū – z̄, ū – z̄) + a(�, δū, ū – z̄) + c(δp,p – ẑ)

+ a(δ�, ū, w̄) – a(�, ū – z̄, δū) – b(δū,p – ẑ)

=


a(δ�, ū – z̄, ū – z̄) + a(δ�, ū, w̄) + a(�, δū, ū) + c(δp,p)

– b(δū,p – ẑ) + a(δ�, ū, w̄) – a(�, δū, ū – z̄)

=


a(δ�, ū – z̄, ū – z̄) + a(δ�, ū, w̄)

+ c(δp,p – ẑ) – b(δū,p – ẑ),

where we have used the symmetry of the trilinear form T , a(�, ·, ·), and (a)-(b). Since
c(δp,p – ẑ) = b(δū,p – ẑ), we obtain

D�J(�,w)(δ�) =


a(δ�, ū – z̄, ū – z̄) + a(δ�, ū, w̄).

http://www.boundaryvalueproblems.com/content/2013/1/263
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Therefore, using (), we have

DJ(�)(δ�) =


a(δ�, ū – z̄, ū – z̄) + a(δ�, ū, w̄). ()

Summarizing, we have the following scheme to compute the derivative DJ(�) given
a ∈ A:
. Compute u by ().
. Compute w by (a)-(b).
. Compute DJ(�) by ().
Let us now develop the hybrid method for the computation of the second-order deriva-

tive. In the hybrid method proposed below, the derivative δu is computed directly while
the computation of the second derivative δu is avoided by using an adjoint method. We
will follow the same general scheme that was used above, but here we will use derivative
formula (a)-(b).
Let δ� ∈ A be a fixed direction. Then, for any v = (v̄,q) ∈ V , we define

H(�, v) = DJ(�)(δ�) + a
(
�,Dū(�)(δ�), v̄

)
+ b

(
v̄,Dp(�)(δ�)

)
+ b

(
Dū(�)(δ�),q

)
– c

(
Dp(�)(δ�),q

)
+ a(δ�, ū, v̄)

=


a(δ�, ū – z̄, ū – z̄) + a

(
�,Dū(�)(δ�), ū – z̄

)
+ c

(
Dp(�)(δ�),p – ẑ

)
+ a

(
�,Dū(�)(δ�), v̄

)
+ b

(
v̄,Dp(�)(δ�)

)
+ b

(
Dū(�)(δ�),q

)
– c

(
Dp(�)(δ�),q

)
+ a(δ�, ū, v̄).

By the construction of H , for every v ∈ V , we have

∂H
∂�

(�, v)(δ�) =DJ(�)(δ�, δ�) for every δ� ∈ A. ()

By a simple calculation, we have

∂H
∂�

(�, v)(δ�) = a
(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
�,Dū(�)(δ�, δ�), ū – z̄

)
+ a

(
�,Dū(�)(δ�),Dū(�)(δ�)

)
+ c

(
Dp(�)(δ�, δ�),p – ẑ

)
+ c

(
Dp(�)(δ�),Dp(�)(δ�)

)
+ a

(
δ�,Dū(�)(δ�), v̄

)
+ a

(
�,Dū(�)(δ�, δ�), v̄

)
+ b

(
v̄,Dp(�)(δ�, δ�)

)
+ b

(
Dū(�)(δ�, δ�),q

)
– c

(
Dp(�)(δ�, δ�),q

)
+ a

(
δ�,Dū(�)(δ�), v̄

)
. ()

Letw(�) = (w̄(�),pw(�)) be the unique solution of the saddle point problem (cf. (a)-(b)):

a(�, w̄, v̄) + b(v̄,pw) = a(�, v̄, z̄ – ū) + b(v̄, ẑ – p) for every v̄ ∈ V̂ , (a)

b(w̄,q) – c(pw,q) =  for every q ∈ Q. (b)

http://www.boundaryvalueproblems.com/content/2013/1/263
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By setting v = w in (), we have

∂H
∂�

(�,w)(δ�) = a
(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
�,Dū(�)(δ�, δ�), ū – z̄

)
+ a

(
�,Dū(�)(δ�),Dū(�)(δ�)

)
+ c

(
Dp(�)(δ�, δ�),p – ẑ

)
+ c

(
Dp(�)(δ�),Dp(�)(δ�)

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
+ a

(
�,Dū(�)(δ�, δ�), w̄

)
+ b

(
w̄,Dp(�)(δ�, δ�)

)
+ b

(
Dū(�)(δ�, δ�),q

)
– c

(
Dp(�)(δ�, δ�),q

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
= a

(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
�,Dū(�)(δ�),Dū(�)(δ�)

)
+ c

(
Dp(�)(δ�),Dp(�)(δ�)

)
+ a

(
�,Dū(�)(δ�, δ�), ū – z̄

)
+ c

(
Dp(�)(δ�, δ�),p – ẑ

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
+ a

(
�,Dū(�)(δ�, δ�), w̄

)
+ b

(
w̄,Dp(�)(δ�, δ�)

)
+ b

(
Dū(�)(δ�, δ�),q

)
– c

(
Dp(�)(δ�, δ�),q

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
= a

(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
�,Dū(�)(δ�),Dū(�)(δ�)

)
+ c

(
Dp(�)(δ�),Dp(�)(δ�)

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
+ c

(
Dp(�)(δ�, δ�),p – ẑ

)
+ b

(
Dū(�)(δ�, δ�), ẑ – p

)
.

Recall that by derivative formula (a)-(b), we have

c
(
Dp(�)(δ�, δ�),p – ẑ

)
= b

(
Dp(�)(δ�, δ�),p – ẑ

)
,

which implies

∂H
∂�

(�,w)(δ�) = a
(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
�,Dū(�)(δ�),Dū(�)(δ�)

)
+ c

(
Dp(�)(δ�),Dp(�)(δ�)

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
.

Consequently, from (), we get

DJ(�)(δ�, δ�) = a
(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
δ�,Dū(�)(δ�), ū – z̄

)
+ a

(
�,Dū(�)(δ�),Dū(�)(δ�)

)
+ c

(
Dp(�)(δ�),Dp(�)(δ�)

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
+ a

(
δ�,Dū(�)(δ�), w̄

)
and, in particular,

DJ(�)(δ�, δ�) = a(δ�, δū, ū – z̄) + a(�, δū, δū) + c(δp, δp) + a(δ�, δū, w̄). ()

http://www.boundaryvalueproblems.com/content/2013/1/263
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Summarizing, we propose the following scheme to compute the derivativeDJ(�)(δ�, δ�)
given � ∈ A, δ� ∈ A.
. Compute u(�) = (ū(�),p) by ().
. Compute δu = (δū, δp) by (a)-(b).
. Compute w(�) = (w̄(�),q(�)) by (a)-(b).
. Compute DJ(�)(δ�, δ�) by ().

4 Discretization formulas for the adjoint and the hybrid method
In this section, we collect discrete formulae for saddle point problem (a)-(b) and the
associated inverse problem. We begin, therefore, with a triangulation Th on �, Lh is the
space of all piecewise continuous polynomials of degree d� relative to Th, Uh is the space
of all piecewise continuous polynomials of degree du relative to Th, and Qh is the space of
all piecewise continuous polynomials of degree dq relative to Th.
In order to represent the discrete saddle point problem in a computable form, we pro-

ceed as follows. We represent bases for Lh, Uh, and Qh by {ϕ,ϕ, . . . ,ϕm}, {ψ,ψ, . . . ,ψn},
and {χ,χ, . . . ,χk}, respectively. The space Lh is then isomorphic toRm and for any � ∈ Lh,
we define L ∈ R

m by Li = �(xi) for i = , , . . . ,m, where the nodal basis {ϕ,ϕ, . . . ,ϕm}
corresponds to the nodes {x,x, . . . ,xm}. Conversely, each L ∈ R

m corresponds to � ∈ Lh
defined by � =

∑m
i= Liϕi. Similarly, u ∈ Uh will correspond to U ∈ R

n, where Ūi = u(yi),
i = , , . . . ,n, and u =

∑n
i= Ūiψi, where y, y, . . . , yn are the nodes of the mesh defining Uh.

Finally, q ∈Qh will correspond toQ ∈R
k , whereQi = q(zi), i = , , . . . ,k, and q =

∑k
i=Qiχi,

where z, z, . . . , zk are the nodes of the mesh defining Qh. (The spaces Ah, Uh, and Qh are
defined relative to the same elements, but the nodes will be different if d� �= du �= dq.)
Recall that the discrete saddle point problem seeks, for each �h, the unique (ūh,ph) ∈

Vh ×Qh with

a(�h, ūh, v̄) + b(v̄,ph) =m(v̄) for every v̄ ∈ Uh, (a)

b(ūh,q) – c(ph,q) =  for every q ∈Qh. (b)

We define S : Rm → R
n+k to be the finite element solution operator that assigns to each

coefficient �h ∈ Ah the unique approximate solution uh = (ūh,ph) ∈ Uh ×Qh. Then S(L) =
U , where U is defined by

K (L)U = F , ()

and where the stiffness matrix K (L) ∈ R
(n+k)×(n+k) and the load vector F ∈ R

n+k are given
by

K (L) =

[
K̂ (L) BT

B –C

]

with

K̂ (L)i,j = a(�,ψj,ψi), i, j = , , . . . ,n,

Bi,j = b(ψj,χi), i = , , . . . ,k,n = , , . . . ,n,

http://www.boundaryvalueproblems.com/content/2013/1/263
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Ci,j = c(χj,χi), i, j = , , . . . ,k,

Fi =m(ψi), i = , , . . . ,n,

Fj = , j = n + ,n + , . . . ,n + k.

For future reference, it will be useful to note that

K̂ (L)ij = TijkLk ,

where the summation convention is used and T is the tensor defined by

Tijk = a(ϕk ,ψi,ψj) for every i, j = , . . . ,n,k = , . . . ,m.

Let us now compute the discrete analogue of energy least-squares objective functional.
By using the above notations, the discrete form of

J(L) =


a(�, ū – z̄, ū – z̄) +



c(p – ẑ,p – ẑ)

is given by

J(L) =


(
Ū(L) – Z̄

)TK̂ (L)
(
Ū(L) – Z̄

)
+


(
P(L) – Ẑ

)TC(
P(L) – Ẑ

)
.

In order to get an operative expression for the gradient, we need to consider the so-called
adjoint stiffness matrix A defined by the following condition:

K̂ (L)V̄ =A(V̄ )L for every L ∈R
m, for every V̄ ∈R

n. ()

4.1 Computation of the gradient by using the adjoint method
Using the above notation, we have the following discrete adjoint method for the compu-
tation of gradient of J(·).
. We compute U =

[ Ū(L)
P(L)

]
by solving the linear system

[
K̂ (L) BT

B –C

][
Ū(L)
P(L)

]
=

[
F


]
. ()

. We computeW =
[ W̄ (L)
PW (L)

]
by solving the linear system

[
K̂ (L) BT

B –C

][
W̄ (L)
PW (L)

]
=

[
–K̂ (L)(Ū – Z̄) – BT(P – P̂)



]
. ()

. The gradient ∇J(L) can be calculated by using the adjoint stiffness matrix. From
(), we have

DJ(�)(δ�) =


a(δ�, ū – z̄, ū – z̄) + a(δ�, ū, w̄), ()

http://www.boundaryvalueproblems.com/content/2013/1/263
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a direct discretization gives the following:

∇J(L)(δL) =


(Ū – Z̄)TK̂ (δL)(Ū – Z̄) + ŪTK̂ (δL)W̄

=


ŪT

A(Ū – Z̄)δL + ŪT
A

(
W̄ (L)

)
δL,

and therefore the gradient ∇J(L) is given by

∇J(L) =


(Ū – Z̄)TA(Ū – Z̄) + ŪT

A
(
W̄ (L)

)
. ()

4.2 Computation of the Hessian by using a hybrid method
Recall that we have established the following:

D
��J(�)(δ�, δ�) = a(δ�, δū, ū – z̄) + a(�, δū, δū) + c(δp, δp) + a(δ�, δū, w̄). ()

By the standard discretization scheme, we have
. a(δL, δŪ, Ū – Z̄) = δLT∇ŪTK̂ (δL)(Ū – Z̄) = δLT∇ŪT

A(Ū – Z̄)δL,
. a(L, δŪ, δŪ) = δLT∇ŪTK̂ (L)∇ŪδL = δLT∇ŪTK̂ (L)∇ŪδL,
. c(δP, δP) = δLT∇PTC∇PδL,
. a(δ�, δū, w̄) = δLT∇ŪTK̂ (δL)W̄ = δLT∇ŪT

A(W̄ )δL.
Consequently, we have the following explicit formula for the Hessian:

∇J(L) = T∇ŪT
A(Ū – Z̄) +∇ŪTK̂ (L)∇Ū +∇PTC∇P + ∇ŪT

A(W̄ ). ()

Summarizing, we have the following scheme for the computation of the second deriva-
tive of the EOLS:
. Compute U = (Ū ,P) by solving linear system ().
. ComputeW = (W̄ ,P) by solving linear system ().
. Compute ∇U = (∇Ū ,∇P) by solving m linear systems.
. Compute ∇J(L) by using formula ().
We note that to compute the Hessian using the hybrid method requires the solution of

m +  linear systems.

5 Numerical experiments
We consider here two representative examples of elastography inverse problems for the
recovery of a variable μ on a two-dimensional isotropic domain � = (, ) × (, ) with
boundary ∂� = � ∪ �. In the first example, a smooth coefficient is recovered using both
the adjoint and hybrid gradient calculationmethods. For the second example, we examine
the recovery of a discontinuous coefficient using the adjoint method.
All examples are solved on a  ×  quadrangular mesh with , quadrangles and

, total degrees of freedom. Example  uses a smooth Tikhonov-type regulariza-
tion method, whereas the discontinuities in Example  necessitate the use of a BV-
regularization scheme (see [] for a more thorough discussion of regularization).

5.1 Example 1
In this example we consider the recovery of a smooth coefficient in which the left and
right domain boundaries (�) are fixedwith static condition g(x, y) and the top and bottom

http://www.boundaryvalueproblems.com/content/2013/1/263
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Figure 1 Example 1 using adjoint method/1st-order algorithm (13 iterations).

boundaries have Neumann condition h(x, y). The functions defining the coefficient, load,
and boundary conditions are as follows:

μ(x, y) = . +


sin(πx), f (x, y) =

[
. + 

x
. + 

y

]
,

g(x, y) =




[
x
y

]
on �, h(x, y) =




[
 + x

 + y

]
on �.

http://www.boundaryvalueproblems.com/content/2013/1/263
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Figure 2 Example 1 using hybrid method/2nd-order algorithm (9 iterations).

For this example, the underlying optimization problem was solved using both a first-
order Newton-CG-Trust Region algorithm as well as a second-order quasi-Newton
method, using the adjoint and hybrid gradient calculations outlined in the preceding sec-
tions, respectively. Comparatively, the hybrid method converges faster to the solution in
only  algorithm iterations compared to  iterations for the adjoint method when both
are started from the same initial point and under the same stopping criteria (∇J < –).
This can be seen qualitatively in Figures  and  through the comparison of the computed
μ at selected intermediary algorithm steps (subfigures (a) and (b)).

http://www.boundaryvalueproblems.com/content/2013/1/263
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5.2 Example 2
For the discontinuous example, the top of the region is taken as � and fixed with (con-
stant) Dirichlet condition g(x, y). The remaining edges of the region are taken as � with
Neumann condition h(x, y). The functions defining the coefficient, load, and boundary
conditions are as follows:

μ(x, y) =

⎧⎪⎪⎨⎪⎪⎩
. for (x, y) ∈ R,

. for (x, y) ∈ R,

. otherwise,

f (x, y) =

[
. + x


. + y



]
,

g(x, y) =

[



]
on �, h(x, y) =

[



]
on �,

Figure 3 Example 2 using adjoint method/1st-order algorithm (36 iterations).

http://www.boundaryvalueproblems.com/content/2013/1/263
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where R = {(x, y) : . ≤ x ≤ ., . ≤ y ≤ .} and R = {(x, y) : . ≤ x ≤ ., . ≤ y ≤
.}.

6 Concluding remarks
In this work we have presented a detailed application of the adjoint method for efficiently
computing the gradient of the energy output least-squares functional as well as a hybrid
method for calculating the functional’s second derivative. We have also provided two nu-
merical examples of elastography inverse problems to demonstrate the overall feasibility
of implementation and establish the relative effectiveness of these methods when coupled
with the appropriate first-order and second-order optimization algorithms. See Figure .
One issue not addressed in depth was the comparative performance of these methods,

measured both against existing schemes and against one other. In short, we note that the
hybrid method requires the solution of m +  linear systems with m scaling along with
the size of the mesh. However, the m systems remain entirely independent, allowing for
the parallelization of parts of the computation and thus granting significant performance
gains and potential advantages over other strategies. In a future work, we look to extend
our study here into just such a thorough analysis and carefully consider the performance
of the adjoint and hybrid derivative computation methods.
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