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Abstract
In this paper, the stability of a class of time-delay Takagi-Sugeno (T-S) fuzzy Markovian
jumping partial differential equations (PDEs) with p-Laplace diffusion are investigated,
and several criteria for asymptotical stability and robust exponential stability are
obtained. Different from all the previous related literature, the authors use the
contraction mapping theory to obtain in this paper the existence of other solutions
for PDEs with p-Laplace besides the trivial solution. In fact, if there is only the trivial
solution for the PDEs, the stability criteria about the trivial solution would become
meaningless. Moreover, infinitely many solutions for these PDEs of all the previous
related literature can be obtained by employing the methods of this paper. In a word,
the works of all the related literature were found more meaningful owing to the
methods and results of this paper.

1 Introduction
In this paper, we are to study the stability of a class of delayed Takagi-Sugeno (T-S) fuzzy
Markovian jumping p-Laplace partial differential equations (PDEs) which owns a wide
range of physics and engineering backgrounds (see, e.g., [–]). Below, we shall introduce
this Markovian jumping fuzzy mathematical model.
Given a complete probability space (�,F ,P) with a natural filtration {Ft}t≥, where �

is a sample space, F is σ -algebra of a subset of the sample space, and P is the probability
measure defined onF . Let S = {, , . . . ,N} and the random formprocess {r(t), t ∈ [, +∞)}
be a homogeneous, finite-state Markovian process with right continuous trajectories with
generator � = (πij)N×N and transition probability from mode i at time t to mode j at time
t +�t, i, j ∈ S,

P
(
r(t + δ) = j | r(t) = i

)
=

{
πijδ + o(δ), j �= i,

 + πijδ + o(δ), j = i,

where πij ≥  is transition probability rate from i to j (j �= i) and πii = –
∑s

j=,j �=i πij, δ > 
and limδ→ o(δ)/δ = .
Let us consider the following delayed Markovian jumping PDEs:

∂u(t,x)
∂t

= ∇ · (D(t,x,u) ◦ ∇pu(t,x)
)
–B

(
u(t,x)

)
+C

(
r(t), t

)
f
(
u(t,x)

)
+D

(
r(t), t

)
g
(
u
(
t – τ

(
r(t), t

)
,x
))
, t ≥ ,x ∈ 	 (.)
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equipped with the initial condition

u(θ ,x) = φ(θ ,x), (θ ,x) ∈ [–τ , ]× 	 (.a)

and the zero-boundary condition

B
[
ui(t,x)

]
= , (t,x) ∈ [–τ , +∞)× ∂	, i = , , . . . ,n, (.b)

where p >  is a positive scalar, 	 ∈ Rm is a bounded domain with a smooth boundary ∂	

of class C by 	, u(t,x) = (u(t,x),u(t,x), . . . ,un(t,x))T ∈ Rn. Below, u(t,x) is always de-
noted by u for the sake of convenience. D(t,x,u) ◦ ∇pu(t,x) denotes the Hadamard prod-
uct of matrix D(t,x,u) and ∇pu (see [] or []), and D(t,x, v) = (Djk(t,x,u))n×m satisfies
Djk(t,x,u) ≥  for all j,k, (t,x,u). In mode r(t) = i ∈ S = {, , . . . ,N}, we denote Ci(t) =
C(r(t), t) and Di(t) =D(r(t), t). Denote by τi(t) the time delay τ (r(t), t), which satisfies  ≤
τi(t) ≤ τ for any mode i ∈ S. Functions B(u) = (B(u),B(u), . . . ,Bn(un))T ∈ Rn, f (u) =
(f(u), f(u), . . . , fn(un))T ∈ Rn, g(u) = (g(u), g(u), . . . , gn(un))T ∈ Rn. Boundary condi-
tion (.b) is called the Dirichlet boundary condition if B[ui(t,x)] = ui(t,x), and the Neu-
mann boundary condition ifB[ui(t,x)] = ∂ui(t,x)

∂ν
. Here, ∂ui(t,x)

∂ν
= ( ∂ui(t,x)

∂x
, ∂ui(t,x)

∂x
, . . . , ∂ui(t,x)

∂xm )T

denotes the outward normal derivative on ∂	.
Obviously, system (.) admits the followingMarkovian jumping Cohen-Grossberg neu-

ral networks as its special case.

∂u
∂t

= ∇ · (D(t,x,u) ◦ ∇pu
)

– Ã(u)
[̃
B(u) – C̃i(t)f (u) – D̃i(t)g

(
u
(
t – τi(t),x

))]
. (.)

For mode i ∈ S, system (.) is simply denoted as

∂u
∂t

=∇ · (D(t,x,u) ◦ ∇pu
)
–B(u) +Ci(t)f (u) +Di(t)g

(
u
(
t – τi(t),x

))
. (.)

The T-S fuzzy mathematical model with time delay is described as follows.
Fuzzy rule j:
IF ω(t) is μj and . . .ωs(t) is μjs THEN

∂u
∂t

=∇ · (D(t,x,u) ◦ ∇pu
)
–B(u) +Cij(t)f (u) +Dij(t)g

(
u
(
t – τi(t),x

))
, (.)

where ωk(t) (k = , , . . . , s) is the premise variable, μjk (j = , , . . . , r; k = , , . . . , s) is the
fuzzy set that is characterized by a membership function, r is the number of the IF-THEN
rules, and s is the number of the premise variables.
For any mode r(t) = i ∈ S, we assume that Cij, Dij are real constant matrices of appro-

priate dimensions, and �Cij, �Dij are real-valued matrix functions which stand for time-
varying parameter uncertainties, satisfying

Cij(t) = Cij +�Cij(t), Dij(t) = Dij +�Dij(t). (.)
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By way of a standard fuzzy inference method, system (.) is inferred as follows:

∂u
∂t

= ∇ · (D(t,x,u) ◦ ∇pu
)
–B(u)

+
r∑
j=

hj
(
ω(t)

)[
Cij(t)f (u) +Dij(t)g

(
u
(
t – τi(t),x

))]
, (.)

where ω(t) = [ω(t),ω(t), . . . ,ωs(t)], hj(ω(t)) =
wj(ω(t))∑r
k= wk (ω(t))

, wj(ω(t)) : Rs → [, ] (j = , ,
. . . , r) is the membership function of the system with respect to the fuzzy rule j. hj can
be regarded as the normalized weight of each IF-THEN rule, satisfying hj(ω(t)) ≥  and∑r

j= hj(ω(t)) = . Motivated by some methods of the above-mentioned literature and re-
cent related studies [–, –], we are to investigate the stability of T-S fuzzy sys-
tem (.).

2 Preparation
In this paper, we always assume the following.
(H) Let B(u) = (B(u),B(u), . . . ,Bn(un))T ∈ Rn, there exist positive definite

diagonal matrices B = diag(b,b, . . . ,bn) and B̃ = diag(̃b, b̃, . . . , b̃n) such that

b̃j ≥ sup
r∈R

B ′
j (r) ≥ inf

r∈RB ′
j (r) ≥ bj, ∀j = , , . . . ,n;

(H) There exist constant diagonal matrices Gk = diag(G(k)
 ,G(k)

 , . . . ,G(k)
n ),

Fk = diag(F (k)
 ,F (k)

 , . . . ,F (k)
n ), k = , , with |F ()

j | ≤ F ()
j , |G()

j | ≤G()
j , j = , , . . . ,n,

such that

F ()
j ≤ fj(r)

r
≤ F ()

j , G()
j ≤ gj(r)

r
≤G()

j , ∀j = , , . . . ,n, and r ∈ R.

In addition, one can assume that u =  is a trivial solution of PDEs (.) provided that
B() = f () = g() = . For any mode i ∈ S, the parameter uncertainties considered here
are norm-bounded and of the following forms:

(
�Cij(t) �Dij(t)

)
= EijF(t)(Hij Mij), ∀i ∈ S. (.)

Here F(t) is an unknown matrix function satisfying |FT (t)||F(t)| ≤ I , and Eij, Gij, Hij are
known real constant matrices. Throughout this paper, for a matrix C = (cij)n×n, we denote
the matrix |C| = (|cij|)n×n. In addition, we denote by I the identity matrix with compatible
dimension and denote ‖u‖ =

∫
	
u(t,x)dx.

Definition . For any given scalar p > , system (.) is said to be global stochastic expo-
nential robust stability in the mean square if for every initial condition φ ∈ LF

([–τ , ]×
	;Rn), r() = i, there exist scalars β >  and γ >  such that for any solution u(t,x;φ, i),

E
(∥∥u(t,x;φ, i)∥∥)≤ γ e–βt

[
sup

–τ≤θ≤
E
(∥∥φ(θ ,x)∥∥)], t ≥ ,

for all admissible uncertainties satisfying (.).
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Note that Definition . actually provides the definition about the global stochastic ex-
ponential robust stability for the trivial solution u =  of PDEs (.).

Lemma . ([]) Let ε >  be any given scalar, and let M, E and K be matrices with
appropriate dimensions. If KTK ≤ I , then we have

MKE +E
TKTMT ≤ ε–MMT + εET

E.

Lemma . (Schur complement []) GivenmatricesQ(t), S(t) andR(t)with appropriate
dimensions, whereQ(t) =Q(t)T ,R(t) =R(t)T , then(

Q(t) S(t)
ST (t) R(t)

)
> ,

if and only if

R(t) > , Q(t) – S(t)R–(t)ST (t) > ;

or

Q(t) > , R(t) – ST (t)Q–(t)ST (t) > ,

whereQ(t), S(t) andR(t) are dependent on t.

3 Main result
In this section, we assume that the time-varying delays τi(t) satisfy ≤ τi(t) ≤ τ with τ̇i(t)+∑

l∈S πilτl(t) ≤ a <  for any mode i ∈ S.

Theorem . Let p > . Assume that there exist a positive scalar α <  and a sequence of
positive scalars ciljk and dil

jk with |ciljk(t)| ≤ ciljk and |dil
jk(t)| ≤ dil

jk for all i,k, t ≥  such that

max
j

(
b̃j – bj
bj

)
+
(
max
k

(∣∣ciljk∣∣F ()
k
)
+max

k

(∣∣dil
jk
∣∣G()

k
)) n∑

j=

r
bj

≤ α < . (.)

If, in addition, there exist a positive scalar β >  and positive definite diagonal matrices
Pi (i ∈ S), L, L and Q such that the following LMI conditions hold:(

	i 	i

∗ 	i

)
< , ∀i ∈ S, (.)

where Cil(t) = (ciljk(t))n×n, Dil(t) = (dil
jk(t))n×n,

	i =

⎛⎜⎜⎜⎝
Ai  (F + F)L + Pi

∑r
j= |Cij| Pi

∑r
j= |Dij|

∗ Ai  (G +G)L
∗ ∗ –L 
∗ ∗ ∗ –L

⎞⎟⎟⎟⎠ ,

	i =
(
M ET

 M ET
 · · · · · · Mr ET

r
)
,
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	i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–I       
∗ –I      
∗ ∗ –I     
∗ ∗ ∗ –I    

∗ ∗ ∗ ∗ . . .   
∗ ∗ ∗ ∗ · · · ∗ –Ir– 
∗ ∗ ∗ ∗ ∗ · · · ∗ –Ir

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ai = –PiB +
∑
l∈S

πilPl + βPi +Q – FLF, Ai = –( – a)e–τβQ – GLG,

Ij = I, ∀j = , , . . . , r,

Mj =

⎛⎜⎜⎜⎝
Pi|Eij|




⎞⎟⎟⎟⎠ , Ej =

⎛⎜⎜⎜⎝



|HT
ij |

|MT
ij |

⎞⎟⎟⎟⎠
T

,

then system (.) is global stochastic exponential robust stability in the mean square.

Proof The whole proof may be divided into two big steps.
Step . Firstly show the existence of solutions for system (.) though it owns a trivial

solution obviously. We may consider the existence of a class of solutions that u(t,x) =
u(t) for all x ∈ 	, and B[u(t,x)] =  for all (t,x) ∈ [–τ , +∞) × ∂	. For any given initial
condition φ(θ ), we show that there exists at least the above-mentioned solution for PDEs
(.), satisfying the initial condition u(θ ) = φ(θ ) for all θ ∈ [–τ , ]. So, in this section, we
only need to consider the existence of solutions for the following system:

⎧⎨⎩
du(t)
dt = –B(u(t)) +

∑r
j= hj(ω(t))[Cij(t)f (u(t)) +Dij(t)g(u(t – τi(t)))], t ≥ , i ∈ S,

u(θ ) = φ(θ ), –τ ≤ θ ≤ ,

or equivalently,

⎧⎪⎪⎨⎪⎪⎩
duj(t)
dt = –Bj(uj(t)) +

∑r
l= hl(ω(t))[

∑n
k= ciljk(t)fk(uk(t))

+
∑n

k= dil
jk(t)gk(uk(t – τi(t)))], t ≥ , i ∈ S,∀j

uj(θ ) = φj(θ ), –τ ≤ θ ≤ ,∀j
(.)

where j = , , . . . ,n.
To apply the fixed point theory, we need to define the complete metric space as fol-

lows.
Let� =�×�×· · ·×�n, and let�j (j = , , . . . ,n) be the space consisting of functions

qj(t) : [–τ ,∞)→ R satisfying
(a) qj(t) is continuous on t ∈ [,∞);
(b) qj(θ ) = φj(θ ), –τ ≤ θ ≤ .

http://www.boundaryvalueproblems.com/content/2013/1/264
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In fact, it is not difficult to verify that the above space � is a complete space provided
that it is equipped with the following metric:

dist(q̂, q̆) =
n∑
j=

(
sup
t≥–τ

∣∣q̂j(t) – q̆j(t)
∣∣),

where q̂ = q̂(t) = (q̂(t), q̂(t), . . . , q̂n(t))T ∈ � and q̆ = q̆(t) = (q̆(t), q̆(t), . . . , q̆n(t))T ∈ �.
Define the operator � acting on � for u(t) = (u(t), . . . ,uj(t), . . . ,un(t))T ∈ � such that

�(u)(t) = (�(u)(t), . . . ,�(uj)(t), . . . ,�(un)(t)), where �(uj)(t) : [–τ ,∞)→ R satisfies

�(uj)(t) = e–bjtφj() + e–bjt
∫ t


ebjs

[
–
(
Bj
(
uj(s)

)
– bjuj(s)

)
+

r∑
l=

hl
(
ω(s)

)( n∑
k=

ciljk(s)fk
(
uk(s)

)
+

n∑
k=

dil
jk(s)gk

(
uk
(
s – τi(s)

)))]
ds,

t ≥ , i ∈ S, (.)

and �(uj)(θ ) = φj(θ ), –τ ≤ θ ≤  for each j = , , . . . ,n.
In view of the fact that�(uj)() = φj() for each j, it is not difficult to verify that the fixed

point of � is the solution of system (.), and the solution of (.) is the fixed point of �.
So we only need to prove that � has the corresponding fixed point on � for any given
initial condition φ(θ ).
Next, we claim that �(�j) ⊂ �j for each j = , , . . . ,n.
Indeed, for any given uj(t) ∈ �j, it follows from (.) and the assumptions on fj, gj

that �(uj)(t) is continuous on t ∈ [,∞), and hence condition (a) is satisfied. In addition,
�(uj)(θ ) = φj(θ ), –τ ≤ θ ≤ , and then condition (b) holds. Thereby, �(�j) ⊂ �j for all j.
Finally, we claim that � is a contraction mapping on �.
Indeed, for u(t) = (u(t), . . . ,uj(t), . . . ,un(t))T ∈ �, v(t) = (v(t), . . . , vj(t), . . . , vn(t))T ∈ �,

we have

∣∣�(uj)(t) –�(vj)(t)
∣∣≤ Jj + Jj + Jj,

where

Jj = e–bjt
∫ t


ebjs

[∣∣(Bj
(
uj(s)

)
– bjuj(s)

)
–
(
Bj
(
vj(s)

)
– bjvj(s)

)∣∣]ds,
Jj = e–bjt

∫ t


ebjs

r∑
l=

∣∣hl(ω(s))∣∣( n∑
k=

∣∣ciljk(s)∣∣∣∣fk(uk(s)) – fk
(
vk(s)

)∣∣)ds,

Jj = e–bjt
∫ t


ebjs

r∑
l=

∣∣hl(ω(s))∣∣( n∑
k=

∣∣dil
jk(s)

∣∣∣∣gk(uk(s – τi(s)
))
– gk

(
vk
(
s – τi(s)

))∣∣)ds.

We can get, by the differential mean value theorem,

Jj ≤ (̃bj – bj) sup
t≥

∣∣uj(t) – vj(t)
∣∣e–bjt ∫ t


ebjs ds≤ b̃j – bj

bj
sup
t≥–τ

∣∣uj(t) – vj(t)
∣∣,

http://www.boundaryvalueproblems.com/content/2013/1/264
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and obtain, by the assumptions on f , g ,

Jj ≤ r
bj

n∑
k=

∣∣ciljk∣∣F ()
k sup

t≥–τ

∣∣uk(t) – vk(t)
∣∣≤ r

bj
max
k

(∣∣ciljk∣∣F ()
k
)
dist(u, v)

and

Jj ≤ r
n∑
k=

∣∣dil
jk
∣∣G()

k sup
t≥

∣∣uk(t – τi(t)
)
– vk

(
t – τi(t)

)∣∣e–bjt ∫ t


ebjs ds

≤ r
bj

max
k

(∣∣dil
jk
∣∣G()

k
)
dist(u, v).

Then we have

sup
t≥–τ

∣∣�(uj)(t) –�(vj)(t)
∣∣ ≤ b̃j – bj

bj
sup
t≥–τ

∣∣uj(t) – vj(t)
∣∣ + r

bj
max
k

(∣∣ciljk∣∣F ()
k
)
dist(u, v)

+
r
bj

max
k

(∣∣dil
jk
∣∣G()

k
)
dist(u, v).

Therefore,

dist
(
�(u),�(v)

)
=

n∑
j=

sup
t≥–τ

∣∣�(uj)(t) –�(vj)(t)
∣∣

≤
[
max

j

(
b̃j – bj
bj

)
+
(
max
k

(∣∣ciljk∣∣F ()
k
)
+max

k

(∣∣dil
jk
∣∣G()

k
)) n∑

j=

r
bj

]
dist(u, v)

≤ α dist(u, v),

which implies that � is a contraction mapping on �. And then the contraction mapping
theory yields that � has the fixed point u(t) on �, which means u(t) is the solution to
system (.) for a given initial condition φ(θ ).

Remark . If the number of the IF-THEN rules r = , then (.) is just (.). Hence, we
have also shown the existence of solutions for (.).

Remark . From the arbitrariness of initial condition φ(θ ), we know that system (.)
may in all probability own infinitelymany solutions under zero-boundary condition (.b).
Below, we shall show that all the above-mentioned solutions converge to the trivial solu-
tion u =  as t → ∞ for an arbitrary initial condition φ(θ ). In fact, we shall prove that the
trivial solution of PDEs (.) is globally exponentially stable. However, in much previous
related literature (e.g., []), the existence of solutions for PDEs is not discussed. Naturally,
people want to ask whether the system owns the other solutions besides the trivial solu-
tion. Now we provide a sufficient condition for the existence. Compared with [], it is a
major advance. In addition, we provide the first method, by which we can also give sim-
ilar sufficient conditions for the existence of the PDEs in the previous related literature,
including [].

http://www.boundaryvalueproblems.com/content/2013/1/264
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Step . We prove that system (.) is global stochastic exponential robust stability in the
mean square.
Consider the Lyapunov-Krasovskii functional:

V (t, i) = Vi +Vi, ∀i ∈ S,

where

Vi = eβt
∫

	

uT (t,x)Piu(t,x)dx,

Vi = eβt
∫

	

∫ 

–τi(t)
eβθuT (t + θ ,x)Qu(t + θ ,x)dθ dx.

L is the weak infinitesimal operator such thatLV (t,u(t,x), i) =LVi +LVi for any given
i ∈ S. Then we have

LVi = eβt

{

∫

	

uTPi
(∇ · (D(t,x,u) ◦ ∇pu

))
dx – 

∫
	

uTPiB
(
u(t,x)

)
dx

+ 
∫

	

r∑
j=

hj
(
ω(t)

)[
uTPiCij(t)f (u) + uTPiDij(t)g

(
u
(
t – τi(t),x

))]
dx

+
∫

	

uT
(∑

l∈S
πilPl

)
udx

}
+ βeβt

∫
	

uTPiudx,

where u = u(t,x) is a solution for PDEs (.).

LVi = eβt
∫

	

uTQudx

–
(
 – τ̇i(t) –

∑
l∈S

πilτl(t)
)
eβ(t–τi(t))

∫
	

uT
(
t – τi(t),x

)
Qu

(
t – τi(t),x

)
dx

≤ eβt
[∫

	

uTQudx – ( – a)e–τβ

∫
	

uT
(
t – τi(t),x

)
Qu

(
t – τi(t),x

)
dx
]

= eβt
[∫

	

∣∣uT ∣∣Q|u|dx – ( – a)e–τβ

∫
	

∣∣uT(t – τi(t),x
)∣∣Q∣∣u(t – τi(t),x

)∣∣dx].
It follows immediately by [, Lemma ] that


∫

	

uTPi
(∇ · (D(t,x,u) ◦ ∇pu

))
dx ≤ .

Condition (H) derives that∫
	

uTPiB
(
u(t,x)

)
dx≥

∫
	

uTPiBudx =
∫

	

∣∣uT ∣∣PiB|u|dx. (.)

From (H), we have


∣∣f T (u)∣∣L∣∣f (u)∣∣ – 

∣∣uT ∣∣(F + F)L
∣∣f (u)∣∣ + 

∣∣uT ∣∣FLF|u| ≤ , (.)

http://www.boundaryvalueproblems.com/content/2013/1/264
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∣∣gT(u(t – τi(t),x

))∣∣L∣∣g(u(t – τi(t),x
))∣∣ + 

∣∣uT(t – τi(t),x
)∣∣GLG

∣∣u(t – τi(t),x
)∣∣

≤ 
∣∣uT(t – τi(t),x

)∣∣(G +G)L
∣∣g(u(t – τi(t),x

))∣∣. (.)

Combining the above analysis results in

LV
(
t, v(t,x), i

)≤ eβt
∫

	

ζT (t,x)Aiζ (t,x)dx, (.)

where

Ai =

⎛⎜⎜⎜⎝
Ai  (F + F)L + Pi

∑r
j= hj(ω(t))Cij(t) Pi

∑r
j= hj(ω(t))Dij(t)

∗ Ai  (G +G)L
∗ ∗ –L 
∗ ∗ ∗ –L

⎞⎟⎟⎟⎠
and ζ (t,x) = (|uT (t,x)|, |uT (t – τ (t),x)|, |f T (u(t,x))|, |gT (u(t – τi(t),x))|)T .
In addition, we have


∫

	

uTPi

r∑
j=

hj
(
ω(t)

)
Cij(t)f

(
u(t,x)

)
dx

≤ 
∫

	

[∣∣uT ∣∣Pi

r∑
j=

(|Cij| + |�Cij|
)∣∣f (u(t,x))∣∣]dx

≤ 
∫

	

[
|uT |Pi

r∑
j=

(|Cij| + |Eij|
∣∣F(t)∣∣|Hij|

)∣∣f (u(t,x))∣∣]dx. (.)

Similarly,


∫

	

uTPi

r∑
j=

hj
(
ω(t)

)
Dij(t)g

(
u
(
t – τi(t),x

))
dx

≤ 
∫

	

[∣∣uT ∣∣Pi

r∑
j=

(|Dij| + |Eij|
∣∣F(t)∣∣|Mij|

)∣∣g(u(t – τi(t),x
))∣∣]dx. (.)

Further, we can apply the Schur complement to (.) and derive Ai < . Hence,
LV (t, i) ≤ . Define

V(t, i) =
∫

	

uT (t,x)Piu(t,x)dx +
∫

	

∫ 

–τi(t)
eβθuT (t + θ ,x)Qu(t + θ ,x)dθ dx.

Then we get V (t, i) = eβtV(t, i), satisfying L(eβtV(t, i)) =LV (t, i) ≤ .
Further, by applying the Dynkin formula, we can derive that for any i ∈ S,

eβt
EV(t) –EV() = E

∫ t


L
(
eβsV(s)

)
ds≤  for all t ≥ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/264
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Now, for any φ(θ ,x) ∈ LF
([–τ , ] × 	;Rn) and any system mode i ∈ S, the solution

u(t,x,φ, i) of system (.) with the initial value φ satisfies

min
i∈S {αi}eβt

E
(∥∥u(t,x,φ, i)∥∥)

≤ αie
βt
E
(∥∥u(t,x,φ, i)∥∥)

≤ eβt
EV

(
t,u(t,x), i

)≤ EV
(
,u(,x), i

)
≤ E

(
αi
∥∥φ()∥∥) +E

(∫ 

–τ

∫
	

eβθ
[
φT (θ ,x)Qφ(θ ,x)

]
dxdθ

)
≤
(
max
i∈S

{αi} + λmaxQ
)

sup
–τ≤θ≤

E
(∥∥φ(θ )∥∥), t ≥ , (.)

or

E
(∥∥v(t,x;φ, i)∥∥)≤ γ e–βt sup

–τ≤θ≤
E
(∥∥φ(θ ,x)∥∥), t ≥ , (.)

where positive scalars αi, αi satisfy αiI ≤ Pi and αI ≥ Pi for any mode i ∈ S, scalars γ =


mini∈S{αi} (maxi∈S{αi}+λmaxQ) > , β > . Therefore, we can see by (.) and Definition .
that system (.) is global stochastic exponential robust stability in the mean square.

Remark . It is the first time to obtain the robust exponential stability criterion for T-
S fuzzy PDEs (.). Theorem . admits more effectiveness and less conservatism due to
the large allowable variation range of time-delay, which will be illustrated by a numerical
example (below).

Remark . System (.) encompasses a wide range of physics and engineering back-
grounds so that we can apply our Theorem . to the case of Cohen-Grossberg neural net-
works. We consider the following T-S fuzzy Markovian jumping CGNNs with p-Laplace
diffusion:

∂u
∂t

= ∇ · (D(t,x,u) ◦ ∇pu
)

–A(u)

{
B(u) –

r∑
j=

hj
(
ω(t)

)[
Cij(t)f (u) +Dij(t)g

(
u
(
t – τi(t),x

))]}
, (.)

where A(u) = diag(a(u(t,x)),a(u(t,x)), . . . ,an(un(t,x))), satisfying

 < aj ≤ aj(r)≤ aj, j = , , . . . ,n.

Denote A = diag(a,a, . . . ,an) and A = diag(a,a, . . . ,an).

Corollary . Assume p > . CGNNs (.) is global exponential robust stability in the
mean square if there exist a positive scalar β >  and positive definite diagonal matrices Pi

(i ∈ S), L, L and Q such that the following LMI conditions hold:(
	̃i 	̃i

∗ 	i

)
< , ∀i ∈ S,

http://www.boundaryvalueproblems.com/content/2013/1/264
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where

	̃i =

⎛⎜⎜⎜⎝
Ãi  (F + F)L + PiA

∑r
j= |Cij| PiA

∑r
j= |Dij|

∗ Ai  (G +G)L
∗ ∗ –L 
∗ ∗ ∗ –L

⎞⎟⎟⎟⎠ ,

	̃i =
(
M̃ ET

 M̃ ET
 · · · · · · M̃r ET

r
)
,

M̃j =

⎛⎜⎜⎜⎝
PiA|Eij|





⎞⎟⎟⎟⎠ , Ej =

⎛⎜⎜⎜⎝



|HT
ij |

|MT
ij |

⎞⎟⎟⎟⎠
T

,

Ãi = –PiAB +
∑
l∈S

πilPl + βPi +Q – FLF. �

4 A numerical example
Example . Consider the T-S fuzzy p-Laplace PDEs with Markovian jumping parame-
ters as follows.
Fuzzy rule :
IF ω(t) is μ and . . .ωs(t) is μs, THEN

∂u
∂t

= ∇ · (D(t,x,u) ◦ ∇pu
)
–B(u) +Ci(t)f (u)

+Di(t)g
(
u
(
t – τi(t),x

))
, i ∈ S. (.)

Fuzzy rule :
IF ω(t) is μ and . . .ωs(t) is μs, THEN

∂u
∂t

= ∇ · (D(t,x,u) ◦ ∇pu
)
–B(u) +Ci(t)f (u)

+Di(t)g
(
u
(
t – τi(t),x

))
, i ∈ S, (.)

where 	 = {(x,x)T ∈ R : |xk| <
√
,k = , }, x = (x,x)T ∈ 	, u = (uT (t,x),uT (t,x))T ∈

R, andwe select theNeumann boundary condition. Let S = {, } andπ = –.,π = .;
π = ., π = –..

C =

(
. .
. .

)
, C =

(
. .
. .

)
, C =

(
. .
. .

)
,

C =

(
. .
. .

)
, D =

(
. –.

–. .

)
, D =

(
. –.

–. .

)
,

D =

(
. –.

–. .

)
, D =

(
. –.

–. .

)
,

E = E = E = E =

(
. .
. .

)
;
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H =H =H =H =

(
. .
. .

)
=M =M =M =M;

B =

(
. 
 .

)
, F =

(
 
 

)
=G, F =

(
 
 

)
=G.

Let β = . and τ (t) ≡ τ = .. According to Theorem ., we can solve LMI con-
ditions (.) by using Matlab LMI Toolbox and obtain tmin = –. < , which im-
plies feasible (see [, Remark ()] for detail). Further, the corresponding matrices are
extracted as follows:

P =

(
. 

 .

)
, P =

(
. 

 .

)
,

Q =

(
. 

 .

)
, L =

(
. 

 .

)
,

L =

(
. 

 .

)
.

Hence, we conclude from Theorem . that PDEs (.)-(.) is global exponential robust
stability in the mean square.

Remark . Example . illustrates the effectiveness and less conservatism due to the
allowable upper bound of time-delay (τ = .).

5 Conclusions and further studies
The stability of the nonlinear p-Laplace (p > ) Markovian jumping dynamic PDEs was
first studied in []. Since then, there have been a lot of related literature [–, –]
involving the stability analysis of the nonlinear p-Laplace (p > ) dynamic PDEs under
various complicated and practical factors, such as impulse, parameter uncertainties and
so on. However, in all the previous related literature, the existence of solutions of those
PDEs was neglected. Naturally, people want to know whether there are other solutions
besides the trivial solution. If there exists only the trivial solution as the unique solution
for the PDEs, all those stability criteria about the trivial solution would become mean-
ingless though these PDEs of all the previous related literature can actually own infinitely
many solutions only if the similar sufficient conditions are also given. So, in this paper, we
present a sufficient condition for the existence of PDEs (.) in our Theorem . by way
of the contraction mapping theory. Moreover, we have provided the methods, by which
the existence of solutions for those PDEs in the above related literature can similarly be
proved. Theworks of all the above related literature becomemoremeaningful owing to the
contribution of this paper (see Remark .). So the further study is no longer the existence
of solutions for dynamic PDEs with the nonlinear p-Laplace.
Note that almost all the above related literature did not point out the role that the nonlin-

ear p-Laplace items play, except []. In fact, when p = , -Laplace is the linear Laplace,
and there are many papers (see, e.g., [, , –]) in which the Laplace diffusion item
plays its role in their stability criteria for the linear Laplace PDEs can be considered in
the special Hilbert spaceH(	) that can be orthogonally decomposed into the direct sum
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of infinitely many eigenfunction spaces. However, the nonlinear p-Laplace (p > , p �= )
brings great difficulties, for the nonlinear p-Laplace PDEs should be considered in the
frame of Sobolev space W ,p(	) that is only a reflexive Banach space. Indeed, owing to
the great difficulties, the authors only provide in [] the stability criterion in which the
nonlinear p-Laplace items play roles in the case of  < p < . So a further profound study
is very interesting, which may call for some new mathematical methods, and even new
mathematical theories. Under the Dirichlet or Neumann boundary condition, the prob-
lem of the role of the nonlinear p-Laplace (p >  or p > ) item in the stability criteria for
PDEs still remains open and challenging.
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