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Abstract
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1 Introduction
Because of the important background in nonlinear optics and other fields, many authors
pay more attention to the study of different types of vector nonlinear Schrödinger equa-
tions, we refer the readers to [–]. Most of these results have been proven using critical
point theory, variational approaches or a fixed point theorem. More recently, Chu has ap-
plied another topological approach, a nonlinear alternative principle of Leray-Schauder,
to establish some new existence results for the following Schrödinger equations

–ü(x) + a(x)u(x) = b(x)f
(
u(x)

)
+ e(x),

where a ∈ L∞(R,RN ) is nonnegative almost everywhere, e ∈ L(R,RN ). The author consid-
ered two different cases. One is the singular case, that is, f ∈ C(RN \ {},RN ) and

lim
u→

fi(u) = +∞, i = , , . . . ,n.

The other is the regular case, that is, f ∈ C(RN ,RN ). However, the references [–] are not
concerned with multiplicity of positive solutions for the scalar Schrödinger equation or
system.
Motivated by the study of solitary wave solutions, in this paper we mainly aim to study

the existence and multiplicity of positive bound states of the more general system of non-
autonomous Schrödinger equations

⎧⎪⎨⎪⎩
–ü(x) +A(x)u(x) = C(x)F(u(x)),
lim|x|→∞ u(x) = lim|x|→∞ u̇(x) = ,∫ +∞
–∞ u(x)dx +

∫ +∞
–∞ u̇(x)dx < +∞,

()
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where

u(x) =

⎛⎜⎜⎜⎜⎝
u(x)
u(x)
...

un(x)

⎞⎟⎟⎟⎟⎠ , A(x) =

⎛⎜⎜⎜⎜⎝
a(x) a(x) · · · an(x)
a(x) a(x) · · · an(x)

...
...

. . .
...

an(x) an(x) · · · ann(x)

⎞⎟⎟⎟⎟⎠ ,

C(x) =

⎛⎜⎜⎜⎜⎝
c(x)  · · · 
 c(x) · · · 
...

...
. . .

...
  · · · cn(x)

⎞⎟⎟⎟⎟⎠ , F
(
u(x)

)
=

⎛⎜⎜⎜⎜⎝
f(u(x),u(x), . . . ,un(x))
f(u(x),u(x), . . . ,un(x))

...
fn(u(x),u(x), . . . ,un(x))

⎞⎟⎟⎟⎟⎠ .

The methods used here are the Krasnoselskii fixed point theorem and the Leggett-
Williams fixed point theorem together with a compactness criterion due to Zima.
We organize the paper as follows. In Section , we give some preliminaries; in Section ,

we discuss the existence and multiplicity of positive solutions for ().

2 Preliminaries
For convenience, we assume that the following conditions hold throughout this paper.
(H) aij ∈ L∞(R,R), and aij(x) satisfies the following property

aij(x) =

{
aii(x) ≥ , and infaii(x) >  if i = j,
aij(x)≤ , and Supp(aij) is a nonempty compact set if i �= j.

(H) The support of ci(x) >  denoted by Supp(ci) is a nonempty compact set, and

 <
∫
M
Gi(s, s)ci(s)ds < +∞.

(H) fi(u(x)) ∈ C(RN ,R+) is continuous, and the following notations are introduced:

fi, = lim
u→

fi(u)∑n
i= ui

, fi,∞ = lim
u→∞

fi(u)∑n
i= ui

.

Since (H) holds, then for the homogeneous problem

{
–φ̈(x) + aii(x)φ(x) = ,
φ(–∞) = , φ(+∞) = ,

the associated Green’s function is expressed by

Gi(x, s) =

{
φ
i (x)φ

i (s), –∞ < x≤ s < +∞,
φ
i (s)φ

i (x), –∞ < s ≤ x < +∞,

where φ
i , φ

i are solutions such φ
i (–∞) = , φ

i (+∞) = . Moreover, φ
i , φ

i can be chosen
as positive increasing and positive decreasing functions, respectively. Note that φ

i , φ
i
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intersect at a unique point x. Therefore, we can define a function pi(x) ∈ BC(R) by

pi(x) =

⎧⎨⎩


φ
i (x)

, x ≤ x,


φ
i (x)

, x > x,

where BC(R) denotes the space of bounded continuous functions.

Lemma . [] For each i = , , . . . ,n,Green’s function Gi(x, s) satisfies the following prop-
erties:

(i) Gi(x, s) >  for every (x, s) ∈ R× R;
(ii) Gi(x, s)≤Gi(s, s) for every (x, s) ∈ R× R;
(iii) Given a nonempty compact subset P ⊂ R, we have

Gi(x, s)≥mi(P)pi(s)Gi(s, s) for all (x, s) ∈ P × R,

where mi(P) =min{φ
i (infP),φ

i (infP)}.

Lemma . [] Assume that (H) holds and e(x) ∈ L(R). Then the unique solution of{
–üi(x) + aii(x)ui(x) = e(x),
ui(–∞) = , ui(+∞) = 

belongs to H(R), and the solution can be expressed as

ui(x) =
∫
R
Gi(x, s)e(s)ds.

The proof of our main results is based on the following fixed points, which can be found
in [].

Lemma . Let E be a Banach space, and let K ⊂ E be a cone in E. Assume that �, �

are open subsets of E with  ∈ �, � ⊂ �, and let T : K ∩ (� \ �) → K be a completely
continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then T has a fixed point in K ∩ (� \ �).

Let E be a real Banach space and P be a cone in E. A map α is said to be a nonnegative
continuous concave functional on P if

α : P → [, +∞)

is continuous and

α
(
tx + ( – t)y

)≥ tα(x) + ( – t)α(y)

for all x, y ∈ P and t ∈ [, ].

http://www.boundaryvalueproblems.com/content/2013/1/271
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For numbers a, b such that  < a < b, letting α be a nonnegative continuous concave
functional on P, we define the following convex sets:

Pa =
{
x ∈ P : ‖x‖ < a

}
and

P(α,a,b) =
{
x ∈ P : a ≤ α(x),‖x‖ ≤ b

}
.

Lemma . Let T : Pc → Pc be completely continuous and α be a nonnegative continuous
concave functional on P such that α(x)≤ ‖x‖ for all x ∈ Pc. Suppose that there exist  < d <
a < b ≤ c such that

(i) {x ∈ P(α,a,b) : α(x) > a} �= ∅ and α(Tx) > a for x ∈ P(α,a,b);
(ii) ‖Tx‖ < d for ‖x‖ ≤ d;
(iii) α(Tx) > a for x ∈ P(α,a, c) with ‖Tx‖ > b.

Then T has at least three fixed points x, x, x satisfying

‖x‖ < d, a < α(x),

‖x‖ > d and α(x) < a.

In addition, the following compactness criterion proved by Zima in [] is also used in
our proof.

Lemma . Let � ⊂ BC(R). Let us assume that the functions u ∈ � are equicontinuous in
each compact interval of R and that for all u ∈ �, we have

∣∣u(x)∣∣≤ ξ (x), ∀x ∈ R,

where ξ ∈ BC(R) verifies

lim|x|→+∞ ξ (x) = .

Then � is relatively compact.

3 Main results
Fromnowon, we assume thatM =

⋃
i�=j Supp(aij)∪Supp(ci) is a nonempty compact set. Let

E denote the Banach space
n︷ ︸︸ ︷

BC(R)× BC(R)× · · · × BC(R) with the norm ‖u‖ =∑n
i= |ui|∞,

|ui|∞ =maxx∈M |ui(x)| for u = (u,u, . . . ,un) ∈ E. Define a cone K ⊂ E as

K =

{
u = (u,u, . . . ,un) ∈ E : ui(x)≥  and min

x∈M

n∑
i=

ui(x) ≥ δ‖u‖
}
,

where δ = mini=,,...,n{mipi} ∈ (, ), pi = infM pi(x) and the constants mi ≡ mi(M), i =
, , . . . ,n, are defined by property (iii) of Lemma .. Since M is compact, then pi > ,
i = , , . . . ,n. Moreover, from (iii) of Lemma . it follows thatmipi <  for i = , , . . . ,n.

http://www.boundaryvalueproblems.com/content/2013/1/271
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Let T : K → E be a map with components (T, . . . ,Tn) defined by

Ti(u)(x) =
∫
M
Gi(x, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds.

A fixed point of T is a solution of () which belongs to

n︷ ︸︸ ︷
H(R)× · · · ×H(R).

Lemma . Assume that (H)-(H) hold. Then T(K ) ⊂ K , and T : K → K is completely
continuous.

Proof The continuity is trivial. Since M is compact, there exists a point xm where
minx∈M Ti(u)(x) is attained. Then, for any x ∈ R, we have

Ti(u)(xm) =
∫
M
Gi(x, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

≥ mi

∫
M
pi(s)Gi(s, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

≥ mipi
∫
M
Gi(s, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

≥ mipi
∫
M
Gi(x, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

≥ mipiTi(u)(x),

namely,

min
x∈M Ti(u)(x)≥mipiTi(u)(x)≥ δTi(u)(x).

Therefore, it is clear that T(K ) ⊂ K .
Finally, we prove that each component of T is compact. Let � ⊂ K be a bounded set,

then there exists a constant C >  which is uniformly bounded for its element. Since the
derivative is bounded in compacts, the functions of Ti(�) are equicontinuous on each
compact interval. On the other hand, for any u ∈ �,

∣∣Ti(u)(x)
∣∣≤ C

∫
R
Gi(x, s)

(
–
∑
j �=i

aij(s)
)
ds + max

‖u‖≤C
fi(u)

∫
R
Gi(x, s)ci(s)ds = ξ (x).

�

Theorem . Assume that (H)-(H) hold. In addition, aij(x) (i �= j) satisfies∫
M
Gi(s, s)

(
–
∑
j �=i

aij
)
ds <


n

.

(a) If fi, = , fi,∞ =∞ for some i ∈ {, , . . . ,n}, then () has at least one positive
solution.

(b) If fi,∞ = , fi, =∞ for some i ∈ {, , . . . ,n}, then () has at least one positive
solution.

http://www.boundaryvalueproblems.com/content/2013/1/271
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Proof (a) On the one hand, since fi, = , then there exists r >  such that

fi(u) ≤ ε

n∑
i=

ui for  < u + · · · + un ≤ r,

where ε >  is sufficiently small such that

ε

∫
M
Gi(s, s)ci(s)ds <


n

.

Set �r = {u ∈ E : ‖u‖ < r}. Then, for any u ∈ ∂�r ∩K , we have

Ti(u)(x) =
∫
M
Gi(x, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

≤
∫
M
Gi(s, s)

[
–
∑
j �=i

aij(s)uj(s) + ci(s)ε
n∑
i=

ui(s)

]
ds

≤
[∫

M
Gi(s, s)

(
–
∑
j �=i

aij(s)
)
ds + ε

∫
M
Gi(s, s)ci(s)ds

]
‖u‖

≤ 
n

‖u‖.

Furthermore, for any u ∈ ∂�r ∩K , we have

∥∥T(u)∥∥ = n∑
i=

∣∣Ti(u)
∣∣∞ ≤ ‖u‖.

On the other hand, since fi,∞ = ∞ for some i ∈ {, , . . . ,n}, then there exists R such
that

fi (u) ≥ η

n∑
i=

ui for
n∑
i=

ui ≥ R,

where η >  is sufficiently large such that

ηδ
∫
M
Gi (s, s)ci (s)ds > .

Let R = max{r, R
δ
} and set �R = {u ∈ E : ‖u‖ < R}. Then, for any u ∈ K ∩ ∂�,

minx∈M
∑n

i= ui(x) ≥ δ‖u‖ ≥ R, and we have

Ti (u)(x) =
∫
M
Gi (x, s)

[
–
∑
j �=i

aijuj + ci (s)fi
(
u(s)

)]
ds

≥ mip
i


∫
M
Gi (s, s)ci (s)η

n∑
i=

ui(s)ds

≥ ηδ
∫
M
Gi (s, s)ci (s)ds‖u‖

> ‖u‖.

http://www.boundaryvalueproblems.com/content/2013/1/271
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Furthermore, we have

∥∥T(u)∥∥ > ‖u‖ for u ∈ K ∩ ∂�R.

Now by Lemma ., T has a fixed point u = (u,u, . . . ,un) ∈ K ∩ (�R \ �r), namely, ()
has a positive solution.
(b) On the one hand, since fi, =∞ for some i ∈ {, , . . . ,n}, there exists r >  such that

fi (u) ≥ η

n∑
i=

ui for  ≤
n∑
i=

ui ≤ r,

where η >  is sufficiently large such that

ηδ
∫
M
Gi (s, s)ci (s)ds > .

Set �r = {u ∈ E : ‖u‖ < r}. Then, for any u ∈ K ∩ ∂�r , we have

Ti (u)(x) =
∫
M
Gi (x, s)

[
–
∑
j �=i

aijuj + ci (s)fi
(
u(s)

)]
ds

≥ mip
i


∫
M
Gi (s, s)ci (s)η

n∑
i=

ui(s)ds

≥ ηδ
∫
M
Gi (s, s)ci (s)ds‖u‖

> ‖u‖.

Furthermore, we have

∥∥T(u)∥∥ > ‖u‖ for u ∈ K ∩ ∂�r .

On the other hand, since fi,∞ = , then there exists R such that

fi(u) ≤ ε

n∑
i=

ui for u + · · · + un ≥ R,

where ε >  is sufficiently small such that

ε

∫
M
Gi(s, s)ci(s)ds <


n

.

Let R = max{r, R
δ
} and set �R = {u ∈ E : ‖u‖ < R}. Then, for any u ∈ K ∩ ∂�R,

minx∈M
∑n

i= ui(x) ≥ δ‖u‖ ≥ R, and we have

Ti(u)(x) =
∫
M
Gi(x, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

≤
∫
M
Gi(s, s)

[
–
∑
j �=i

aij(s)uj(s) + ci(s)ε
n∑
i=

ui(s)

]
ds

http://www.boundaryvalueproblems.com/content/2013/1/271
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≤
[∫

M
Gi(s, s)

(
–
∑
j �=i

aij(s)
)
ds + ε

∫
M
Gi(s, s)ci(s)ds

]
‖u‖

≤ 
n

‖u‖.

Furthermore, for any u ∈ ∂�R ∩K , we have

∥∥T(u)∥∥ = n∑
i=

∣∣Ti(u)
∣∣∞ ≤ ‖u‖.

Now, by Lemma ., T has a fixed point u = (u,u, . . . ,un) ∈ K ∩ (�R \ �r), namely, ()
has a positive solution. �

Corollary . Assume that (H)-(H) hold. aij(x) (i �= j) satisfies∫
M
Gi(s, s)

(
–
∑
j �=i

aij
)
ds <


n

.

In addition, the following conditions hold.
(H) If there exist constants R̂,ρ >  such that for some i ∈ {, , . . . ,n},

fi (u) ≥ ρR̂ for δR̂ ≤
n∑
i=

ui ≤ R̂,

where ρ satisfies

ρδ

∫
M
Gi (s, s)ci (s)ds > ;

(H) fi, = , fi,∞ = .
Then () has at least two positive solutions.

Corollary . Assume that (H)-(H) hold. aij(x) (i �= j) satisfies∫
M
Gi(s, s)

(
–
∑
j �=i

aij
)
ds <


n

.

In addition, the following conditions hold.
(H) If there exist constants R̃,ϑ >  such that

fi(u) ≤ ϑR̃ for δR̃ ≤
n∑
i=

ui ≤ R̃,

where ϑ satisfies

ϑ

∫
M
Gi(s, s)ci(s)ds <


n

;

(H) fi, =∞, fj,∞ =∞ for some i, j ∈ {, , . . . ,n}.
Then () has at least two positive solutions.

http://www.boundaryvalueproblems.com/content/2013/1/271
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Theorem . Assume that (H)-(H) hold and aij(x) (i �= j) satisfies

∫
M
Gi(s, s)

(
–
∑
j �=i

aij
)
ds <


n

.

In addition, there exist numbers a, c and d with  < d < a < c
 such that the following con-

ditions are satisfied:
(H) fi(u) < 

n
∫
M Gi(s,s)ci(s)ds

d for ui ≥  and  ≤∑n
i= ui < d;

(H) there exists i ∈ {, , . . . ,n} such that

fi
(
u(x)

)
>

a
δ�

for x ∈M,ui ≥  and
n∑
i=

ui ∈
[
a,

a
δ

]
,

where � =min{∫MGi(s, s)ci(s)ds};
(H) fi(u) ≤ 

n
∫
M Gi(s,s)ci(s)ds

c for ui ≥  and
∑n

i= ui < c.
Then () has at least three positive solutions.

Proof For u = (u,u, . . . ,un) ∈ K , define

α(u) =min
x∈M

(
u(x) + u(x) + · · · + un(x)

)
,

then it is easy to know that α is a nonnegative continuous concave functional on K with
α(u)≤ ‖u‖ for u ∈ K .
Set b = a

δ
. First, we show that T : Kc → Kc with c > b. For any u ∈ Kc, we have

Ti(u)(x) =
∫
R
Gi(x, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

=
∫
M
Gi(x, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

≤
∫
M
Gi(s, s)

[
–
∑
j �=i

aijuj + ci(s)fi
(
u(s)

)]
ds

≤
∫
M
Gi(s, s)

[
–
∑
j �=i

aijuj + ci(s)
c

n
∫
MGi(s, s)ci(s)ds

]
ds

≤ c
n

+
c
n

=
c
n
.

So ‖T(u)‖ =∑n
i= |Ti(u)|∞ ≤ c.

In a similar way, we also can prove that T : Kd → Kd . Then (ii) of Lemma . holds.
Next, we shall show that (i) of Lemma . is satisfied. It is clearly seen that u =

( a+bn , . . . ,
a+b
n ) ∈ {u = (u,u, . . . ,un) ∈ K (α,a,b) : α(u) > a}. Then, for any u ∈ K (α,a,b) and

x ∈M, it is easy to obtain that

b ≥
n∑
i=

|ui|∞ ≥
n∑
i=

ui(x)≥min
x∈M

( n∑
i=

ui(x)

)
= α(u) > a.

http://www.boundaryvalueproblems.com/content/2013/1/271
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Then, by (H), we can have

α
(
T(u)(x)

)
= min

x∈M

( n∑
i=

Ti(u)(x)

)
≥ min

x∈M Ti (u)(x)

≥ δmax
x∈M

Ti (u)(x)

≥ δ

∫
M
Gi (x, s)

[
–
∑
j �=i

aijuj + ci (s)fi
(
u(s)

)]
ds

≥ δ

∫
M
mipi (s)Gi (s, s)ci (s)fi

(
u(s)

)
ds

≥ δ
∫
M
Gi (s, s)ci (s)

a
δ�

ds

= a.

Finally, we verify that (iii) of Lemma . is satisfied. Suppose that u ∈ K (α,a, c) with
‖T(u)‖ > b, then we can have

α
(
T(u)

)
= min

M

( n∑
i=

Ti(u)(x)

)
≥ δ

∥∥T(u)∥∥
> bδ = a.

From the above, the hypotheses of Leggett-Williams theorem are satisfied. Hence () has
at least three positive solutions u, u and u such that ‖u‖ < d, a <minx∈M(

∑n
i= ui (x)),

and ‖u‖ > d with

min
x∈M

( n∑
i=

ui (x)

)
< a. �
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