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Abstract
In this paper we consider a parabolic equation with a periodic boundary condition
and we prove the stability of a solution on the data. We give a numerical example for
the stability of the solution on the data.

1 Introduction
Consider the following mixed problem:

∂u
∂t

–
∂u
∂x

= f (x, t,u), (x, t) ∈D := { < t < T ,  < x < π}, ()

u(, t) = u(π , t), t ∈ [,T], ()

ux(, t) = ux(π , t), t ∈ [,T], ()

u(x, ) = ϕ(x), x ∈ [,π ] ()

for a quasilinear parabolic equation with the nonlinear source term f = f (x, t,u).
The functions ϕ(x) and f (x, t,u) are given functions on [,π ] and D̄× (–∞,∞) respec-

tively. Denote the solution of problem ()-() by u = u(x, t). The existence, uniqueness and
convergence of the weak generalized solution of problem ()-() are considered in []. The
numerical solution of problem ()-() is considered [].
In this study we prove the continuous dependence of the solution u = u(x, t) upon the

data ϕ(x) and f (x, t,u). In [], a similar iteration method is used with this kind of a local
boundary condition for a nonlinear inverse coefficient problem for a parabolic equation.
Then we give a numerical example for the stability.

2 Continuous dependence upon the data
In this section, we will prove the continuous dependence of the solution u = u(x, t) using
an iteration method. The continuous dependence upon the data for linear problems by
different methods is shown in [, ].

Theorem Under the following assumptions, the solution u = u(x, t) depends continuously
upon the data.
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(A) Let the function f (x, t,u) be continuous with respect to all arguments in D̄× (–∞,∞)
and satisfy the following condition:

∣∣f (t,x,u) – f (t,x, ũ)
∣∣ ≤ b(x, t)|u – ũ|,

where b(x, t) ∈ L(D), b(x, t)≥ ,
(A) f (x, t, ) ∈ C[,π ], tε[,π ],
(A) ϕ(x) ∈ C[,π ].

Proof Let φ = {ϕ, f } and φ = {ϕ, f } be two sets of data which satisfy the conditions (A)-
(A).
Let u = u(x, t) and v = v(x, t) be the solutions of problem ()-() corresponding to the

data φ and φ respectively, and

∣∣f (t,x, ) – f (t,x, )
∣∣ ≤ ε for ε ≥ .

The solutions of ()-(), u = u(x, t) and v = v(x, t), are presented in the following form,
respectively:

u(t) = ϕ +

π

∫ t



∫ π


f
(
ξ , τ ,Au(ξ , τ )

)
dξ dτ ,

uck(t) = ϕcke–(k)
t +


π

∫ t



∫ π


f
(
ξ , τ ,Au(ξ , τ )

)
e–(πk)

(t–τ ) coskξ dτ , ()

usk(t) = ϕske–(k)
t +


π

∫ t



∫ π


f
(
ξ , τ ,Au(ξ , τ )

)
e–(πk)

(t–τ ) sinkξ dτ .

Let Au(ξ , τ ) = u(τ )
 +

∑∞
k=[uck(τ ) coskξ + usk(τ ) sinkξ ].

v(t) = ϕ +

π

∫ t



∫ π


f
(
ξ , τ ,Av(ξ , τ )

)
dξ dτ ,

vck(t) = ϕck e–(k)
t +


π

∫ t



∫ π


f
(
ξ , τ ,Av(ξ , τ )

)
e–(πk)

(t–τ ) coskξ dτ , ()

vsk(t) = ϕske–(k)
t +


π

∫ t



∫ π


f
(
ξ , τ ,Av(ξ , τ )

)
e–(πk)

(t–τ ) sinkξ dτ .

Let Av(ξ , τ ) = v(τ )
 +

∑∞
k=[vck(τ ) coskξ + vsk(τ ) sinkξ ].

From the condition of the theorem, we have u()(t) and v()(t) ∈ B. We will prove that
the other sequential approximations satisfy this condition.

u(N+)
 (t) = u() (t) +


π

∫ t



∫ π


f
(
ξ , τ ,Au(N)(ξ , τ )

)
dξ dτ ,

u(N+)
ck (t) = u()ck (t) +


π

∫ t



∫ π


f
(
ξ , τ ,Au(N) (ξ , τ )

)
e–(k)

(t–τ ) coskξ dτ , ()

u(N+)
sk (t) = u()sk (t) +


π

∫ t



∫ π


f
(
ξ , τ ,Au

(N)
(ξ , τ )

)
e–(k)

(t–τ ) sinkξ dτ ,

v(N+)
 (t) = v() (t) +


π

∫ t



∫ π


f
(
ξ , τ ,Av(N)(ξ , τ )

)
dξ dτ ,
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v(N+)
ck (t) = v()ck (t) +


π

∫ t



∫ π


f
(
ξ , τ ,Av

(N)
(ξ , τ )

)
e–(k)

(t–τ ) coskξ dτ , ()

v(N+)
sk (t) = v()sk (t) +


π

∫ t



∫ π


f
(
ξ , τ ,Av

(N)
(ξ , τ )

)
e–(k)

(t–τ ) sinkξ dτ ,

where u() (t) = ϕ, u()ck (t) = ϕcke–(k)
t , u()sk (t) = ϕske–(k)

t and v() (t) = ϕ, v()ck (t) =
ϕcke–(k)

t , v()sk (t) = ϕske–(k)
t .

First of all, we write N =  in ()-(). We consider u()(t) – v()(t)

u()(t) – v()(t) =
u() (t) – v() (t)



+
∞∑
k=

[(
u()ck (t) – v()ck (t)

)
+

(
u()sk (t) – v()sk (t)

)]

= (ϕ – ϕ)

+

π

∫ t



∫ π



[
f
(
ξ , τ ,Au()(ξ , τ )

)
– f

(
ξ , τ ,Av()(ξ , τ )

)]
dξ dτ

+ (ϕck – ϕck)e–(k)
t

+

π

∫ t



∫ π



[
f
(
ξ , τ ,Au()(ξ , τ )

)
– f

(
ξ , τ ,Av()(ξ , τ )

)]

× e–(πk)
(t–τ ) cosπkξ dξ dτ + (ϕsk – ϕsk)e–(k)

t

+

π

∫ t



∫ π



[
f
(
ξ , τ ,Au()(ξ , τ )

)
– f

(
ξ , τ ,Av()(ξ , τ )

)]

× e–(πk)
(t–τ ) sinπkξ dξ dτ . ()

Adding and subtracting

∫ t



∫ π


f (ξ , τ , )dξ dτ ,

∫ t



∫ π


e–(k)

(t–τ )f (ξ , τ , ) cosπkξ dξ dτ ,

∫ t



∫ π


e–(k)

(t–τ )f (ξ , τ , ) sinπkξ dξ dτ

to both sides and applying the Cauchy inequality, Hölder inequality, Lipschitz condition
and Bessel inequality to the right-hand side of () respectively, we obtain

∣∣u()(t) – v()(t)
∣∣ ≤ 

∣∣u() (t) – v() (t)
∣∣ + 

∞∑
k=

(∣∣u()ck (t) – v()ck (t)
∣∣ + ∣∣u()sk (t) – v()sk (t)

∣∣)

≤ ‖ϕ – ϕ‖

+
(√

T + π√
π

)(∫ t



∫ π


b(ξ , τ )dξ dτ

) 
 ∣∣u()(t)∣∣

+
(√

T + π√
π

)(∫ t



∫ π


b(ξ , τ )dξ dτ

) 
 ∣∣v()(t)∣∣

+
(√

T + π√
π

)(∫ t



∫ π


f (ξ , τ , ) – f (ξ , τ , )dξ dτ

) 

,
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AT = ‖ϕ – ϕ‖ +
[(√

T + π√
π

)∥∥b(x, t)∥∥∣∣ū()(t)∣∣ +
(√

T + π√
π

)∥∥b(x, t)∥∥∣∣v()(t)∣∣
]

+
(√

T + π√
π

)
‖f – f ‖,

‖ϕ – ϕ‖ =max
|ϕ – ϕ|


+

∞∑
k=

max |ϕck – ϕck| +max |ϕsk – ϕsk|.

For N = ,

∣∣u()(t) – v()(t)
∣∣ ≤ |u() (t) – v() (t)|


+

∞∑
k=

(∣∣u()ck (t) – v()ck
∣∣ + ∣∣u()sk (t) – v()sk (t)

∣∣)

≤
(√

T + π√
π

)(∫ t



∫ π


b(ξ , τ )dξ dτ

) 

AT

+
(√

T + π√
π

)(∫ t



∫ π


b(ξ , τ )dξ dτ

) 

AT .

For N = ,

∣∣u()(t) – v()(t)
∣∣

≤ |u() (t) – v() (t)|


+
∞∑
k=

(∣∣u()ck (t) – v()ck (t)
∣∣ + ∣∣u()sk (t) – v()sk (t)

∣∣)

≤
(√

T + π√
π

)(∫ t



∫ π


b(ξ , τ )

∣∣u()(t) – v()(t)
∣∣ dξ dτ

) 


+
(√

T + π√
π

)(∫ t



∫ π


b(ξ , τ )

∣∣u()(t) – v()(t)
∣∣ dξ dτ

) 


≤
(√

T + π√
π

)

AT

[∫ t



∫ 


b(ξ , τ )

(∫ τ



∫ π


b(ξ, τ)dξ dτ

)
dξ dτ

] 


+
(√

T + π√
π

)

AT

[∫ t



∫ 


b(ξ , τ )

(∫ τ



∫ 


b(ξ, τ)dξ dτ

)
dξ dτ

] 


≤
(√

T + π√
π

)

AT
√


[(∫ t



∫ 


b(ξ , τ )dξ dτ

)] 


+
(√

T + π√
π

)

AT
√


[(∫ t



∫ 


b(ξ , τ )dξ dτ

)] 

.

In the same way, for a general value of N , we have

∣∣u(N+)(t) – v(N+)(t)
∣∣ ≤ |u(N+)

 (t) – v(N+)
 (t)|



+
∞∑
k=

(∣∣u(N+)
ck (t) – v(N+)

ck (t)
∣∣ + ∣∣u(N+)

sk (t) – v(N+)
sk (t)

∣∣)

≤ AT · aN = aN
(‖ϕ – ϕ‖ +C(t) +M‖f – f ‖), ()
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where

aN =
(√

T + π√
π

)N AT√
N !

[(∫ t



∫ π


b(ξ , τ )dξ dτ

)]N


+
(√

T + π√
π

)N AT√
N !

[(∫ t



∫ π


b(ξ , τ )dξ dτ

)]N


and

M =
(√

T + π√
π

)N

.

(The sequence aN is convergent, then we can write aN ≤ M, ∀N .)
It follows from the estimation ([, pp.-]) that limN→∞ u(N+)(t) = u(t).
Then let N → ∞ for the last equation

∣∣u(t) – v(t)
∣∣ ≤ M‖ϕ – ϕ‖ +M‖f – f ‖,

whereM =M ·M.
If ‖f – f ‖ ≤ ε and ‖ϕ – ϕ‖ ≤ ε, then |u(t) – v(t)| ≤ ε. �

3 Numerical example
In this section we consider an example of numerical solution of ()-() to test the stability
of this problem. The numerical procedure of ()-() is considered in [].

Figure 1 The exact and numerical solutions of u(x, 1). The exact and numerical solutions of u(x, 1), (–) for
ε = 0, (–·) for ε = 0.05, (..) for ε = 0.01, the exact solution is shown with a dashed line.
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Example  Consider the problem

∂u
∂t

–
∂u
∂x

= u, ()

u(x, ) = sinx, x ∈ [,π ], ()

u(, t) = u(π , t), t ∈ [,T], ux(, t) = ux(π , t), t ∈ [,T]. ()

It is easy to see that the analytical solution of this problem is

u(x, t) = sinx exp(–t).

In this example, we take f (x, t,u) = f (x, t,u) + ε and ϕ(x) = ϕ(x) + ε for different ε values.
The comparisons between the analytical solution and the numerical finite difference

solution for ε = ,, ε = , values when T =  are shown in Figure .

The computational results presented are consistent with the theoretical results.
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