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Abstract
In this paper, we obtain the unique solution for the following periodic problem

x′′(t) = g(t, x(t), x′(t)), t ∈ (a,b),

x(a) = x(b), x′(a) = x′(b),

where g : [a,b]×R
2 →R is a continuous function, by constructing an auxiliary

system with bounded solutions. The upper and lower solution method and an
anti-maximum principle are employed to establish the monotone iterative sequences
and obtain the extremal solutions for the auxiliary system.
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1 Introduction
This paper is concerned with the unique solution to the following periodic problem:

⎧⎨
⎩
x′′(t) = g(t,x(t),x′(t)), t ∈ (a,b),

x(a) = x(b), x′(a) = x′(b),
(.)

where g : [a,b]×R
 →R is a continuous function.

It is well known that the upper and lower solution method together with the iterative
technique is a powerful tool for proving the existence results for boundary value problems
(see [–] and the references therein). Recently, the case when the upper solution and
the lower solution are in the reversed order has received some attention (see [–] and
the references therein). The monotone approximation method can be used in the case the
lower and upper solutions are in the reversed order β ≤ α. This method works for any
boundary value problem such that a uniform anti-maximum principle holds. This is the
case for the Neumann and periodic problems.

© 2013 Yang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2013/1/88
mailto:yangaij2004@163.com
mailto:whl982032@163.com
http://creativecommons.org/licenses/by/2.0


Yang et al. Boundary Value Problems 2013, 2013:88 Page 2 of 12
http://www.boundaryvalueproblems.com/content/2013/1/88

For example, Cabada et al. in [] used iteration schemes based on problems like

⎧⎨
⎩

α′′
n – k|α′

n – α′
n–| + λαn = f (t,αn–,α′

n–) + λαn–,

α′
n(a) = α′(b) = ,

discussed a Neumann boundary value problem

⎧⎨
⎩
u′′(t) = f (t,u(t),u′(t)), t ∈ [a,b],

x′(a) = x′(b) = .

In [], Torres and Zhang considered a kind of π-periodic boundary value problem. The
strategy of this paper was to exploit an anti-maximum principle for the linear equation in
order to construct a monotone approximation scheme converging to the solution.
In [], Zuo et al. further developed the monotone method and invested the T-periodic

solution of

y′′(t) = f
(
t, y(t), y

(
w(t)

))
, t ∈R. (.)

They used the monotone iterative technique with upper and lower solution in reversed
order to define two sequences that converge uniformly to extremal solution of (.). How-
ever, they did not construct the explicit expression of the monotone iterative sequences.
We have investigated the periodic problems (.) in [] by introducing the following

auxiliary periodic system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′(t) = f (t,u(t),u′(t), v(t)),

v′′(t) = f (t, v(t), v′(t),u(t)),

u(a) = u(b), u′(a) = u′(b),

v(a) = v(b), v′(a) = v′(b),

where f : [a,b]×R
 → R is a L-Carathéodory function, and f (t,u,w,u) ≡ g(t,u,w).

Motivated by the above works, we aremainly concernedwith the periodic problem (.).
Onemight have noticed that computing the iterative sequences {αn} and {βn} can be a dif-
ficult work in those existed papers. In this paper, by adopting an auxiliary periodic system
and an anti-maximumprinciple which are different from that in the reference [], we also
obtain the unique solution for the problem (.).
Here, we introduce the following auxiliary periodic system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′(t) +Ku(t) = f (t,u(t),u′(t), v(t)) +Kv(t), t ∈ (a,b),

v′′(t) +Kv(t) = f (t, v(t), v′(t),u(t)) +Ku(t), t ∈ (a,b),

u(a) = u(b), u′(a) = u′(b),

v(a) = v(b), v′(a) = v′(b),

(.)

where f : [a,b]×R
 → R is a continuous function and f (t,u,w,u) = g(t,u,w), the constant

K is defined in Section .

http://www.boundaryvalueproblems.com/content/2013/1/88


Yang et al. Boundary Value Problems 2013, 2013:88 Page 3 of 12
http://www.boundaryvalueproblems.com/content/2013/1/88

The organization of this paper is as follows. We shall introduce some useful lemmas
in Section . The main results and their proof about auxiliary periodic (.) are given in
Section . Section  gives the unique solution of (.) and an example is introduced.

2 Related lemmas
For the convenience of the reader, we give some lemmas which will be used in the next
section. Firstly, recall the continuation theorem of Mawhin.

Lemma . [] Let X and Y be two Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , respec-
tively, and � ⊂ X an open and bounded set. Suppose L : X ∩ domL → Y is a Fredholm
operator of index zero and Nλ :� → Y , λ ∈ [, ] is L-compact. In addition, if
(A) Lx 
= λNx for λ ∈ (, ), x ∈ (domL \ kerL)∩ ∂�;
(A) Nx /∈ ImL for x ∈ kerL∩ ∂�;
(A) deg{JQN |�∩kerL,� ∩ kerL, } 
= , where Q : Y → Y is a projection such that

ImL = kerQ and J : ImQ → kerL is a homeomorphism.
Then the abstract equation Lx =Nx has at least one solution in �.

Secondly, to prove the validity of the monotone iterative technique, we present the anti-
maximum comparison principle as follows.

Lemma . [] Let p ∈R, q > , σ ∈ L(a,b) and A ∈R. Suppose u is a solution of

⎧⎨
⎩
x′′(t) + p|x′(t)| + qx(t) = σ (t), t ∈ (a,b),

x(a) – x(b) = , x′(a) – x′(b) = A
(.)

for some A ≥  and σ ≥ . Then u≥  provided that p≥  and θ (q,p) ≥ b–a
 , where

θ (q,p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
p–q

arctanh
√

p–q
p ,  < q < p,


p ,  < q = p,

√
q–p

(π
 – arctan p√

q–p
),  ≤ p < q.

(.)

Finally, recall some classical integral inequalities.

Lemma . [] If u ∈ C[a,b] is such that u = , where u = 
b–a

∫ b
a u(s)ds. Then

‖u‖ ≤ b – a
π

∥∥u′∥∥
, ‖u‖∞ ≤ √

b – a
∥∥u′∥∥

. (.)

3 Extremal solution for (1.3)
Functions α,β ∈ C[a,b] are said to be a pair of lower and upper solutions to (.) if they
satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α′′(t) +Kα(t)≥ f (t,α(t),α′(t),β(t)) +Kβ(t), t ∈ (a,b),

α(a) = α(b), α′(a) ≥ α′(b),

β ′′(t) +Kβ(t)≤ f (t,β(t),β ′(t),α(t)) +Kα(t), t ∈ (a,b),

β(a) = β(b), β ′(a)≤ β ′(b).

(.)

http://www.boundaryvalueproblems.com/content/2013/1/88
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For given α,β ∈ C[a,b], we shall write β ≤ α if β(t) ≤ α(t) for all t ∈ [a,b]. In such a case,
we shall denote

[β ,α] =
{
u ∈ C[a,b] : β(t)≤ u(t) ≤ α(t), t ∈ [a,b]

}
.

Assume that there exist constants N > , M,L ≥  and K >  such that L – K ≥ , we
need the following hypotheses:
(H) For given α,β ∈ C[a,b] with β ≤ α,

∣∣f (t,x, y, z) – f (t,x, y, z)
∣∣ ≤ N |y – y|, ∀x, z ∈ [β ,α], y, y ∈ R;

(H) For β ≤ x ≤ x ≤ α, β ≤ z ≤ z ≤ α,

f (t,x, y, z) – f (t,x, y, z) ≥ M(x – x) – L(z – z);

(H)  – b–a
π
N – ( b–a

π
)K > ;

(H) b – a ≤ θ (K , N ), where θ is defined in (.).
In order to develop themonotone iterative technique for (.), we shall first consider the

existence of solutions for the following periodic problems:

⎧⎨
⎩
u′′(t) +Ku(t) = Fξ ,η(t,u′(t)), t ∈ (a,b),

u(a) = u(b), u′(a) = u′(b)
(.)

and

⎧⎨
⎩
v′′(t) +Kv(t) = Fη,ξ (t, v′(t)), t ∈ (a,b),

v(a) = v(b), v′(a) = v′(b)
(.)

for each fixed ξ ,η ∈ [β ,α], here

Fξ ,η(t,w) = f (t, ξ ,w,η) +Kη, Fη,ξ (t,w) = f (t,η,w, ξ ) +Kξ .

Lemma . Assume that (H), (H) and (H) hold.Then the problems (.) and (.) have
unique solutions.

Proof In order to apply Lemma . to (.), we choose the Banach spaces X = C[a,b] with
the norm ‖u‖ =max{‖u‖∞,‖u′‖∞}, where ‖u‖∞ =maxt∈[a,b] |u(t)|, and Y = C[a,b]. Define
the linear operator

L : domL ⊂ X → Y , (Lu)(t) = u′′(t)

and the nonlinear operator

N : X → Y , (Nu)(t) = Fξ ,η
(
t,u′(t)

)
–Ku(t),

http://www.boundaryvalueproblems.com/content/2013/1/88
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here,

domL =
{
u ∈ X : u ∈ C[a,b],u(a) = u(b),u′(a) = u′(b)

}
.

Let

(Pu)(t) = u, (Qu)(t) = u,

where u = 
b–a

∫ b
a u(s)ds. Then, kerL = {c ∈ domL : c ∈R} and

ImL =
{
u ∈ Y :

∫ b

a
u(s)ds = 

}
.

Now, ImL is closed in Y . It is easy to see that ImL = kerQ and dimkerL =  = dim ImQ =
codim ImL. Thus, L is a linear Fredholm operator with index zero.
Furthermore, let Lp = L|domL∩kerP and Kp : ImL → domL∩ kerP denoting the inverse of

Lp be given by

(Kpu)(t) =
∫ b

a
k(t, s)u(s)ds,

where

k(t, s) :=


(b – a)

⎧⎨
⎩
(s – a)(t – b – s), a ≤ s < t ≤ b,

(b – s)(a + s – t), a ≤ t ≤ s≤ b.

Obviously, QN and Kp(I – Q)N are continuous. By Arzelà-Ascoli theorem, we can show
thatKp(I–Q)N(�) is relative compact for any open bounded set� ⊂ X.Moreover,QN(�)
is bounded. Thus, N is L-compact on �.
In the following, we complete the remainder proof by four steps.
Step . Define � = {u ∈ domL \ kerL : Lu = λNu,λ ∈ (, )}. For any u ∈ �,

u′′(t) = λFξ ,η
(
t,u′(t)

)
– λKu(t). (.)

Integrating (.) on [a,b] to obtain

Ku =


b – a

∫ b

a
Fξ ,η

(
s,u′(s)

)
ds. (.)

Set x = u – u, then x ∈ domL, x = , x′ = u′. It follows from (.) and (.) that

x′′(t) = λFξ ,η
(
t,x′(t)

)
– λKx(t) –

λ

b – a

∫ b

a
Fξ ,η

(
s,x′(s)

)
ds. (.)

Notice that x = , by Lemma ., we have

‖x‖ ≤ b – a
π

∥∥x′∥∥
, ‖x‖∞ ≤ √

b – a
∥∥x′∥∥

.

http://www.boundaryvalueproblems.com/content/2013/1/88
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In view of (H), we have

∣∣Fξ ,η(t,w)
∣∣ = ∣∣f (t, ξ ,w,η) +Kη

∣∣
≤ ∣∣f (t, ξ ,w,η) – f (t, ξ , ,η)

∣∣ + ∣∣f (t, ξ , ,η)∣∣ +K |η|
≤ N |w| +C

for some constant C. Multiplying (.) by x(t) and integrating it on [a,b], we can obtain

∫ b

a

∣∣x′(t)
∣∣ dt = –λ

∫ b

a
x(t)Fξ ,η

(
t,x′(t)

)
dt + λK

∫ b

a

∣∣x(t)∣∣ dt

≤ K
∫ b

a

∣∣x(t)∣∣ dt +N
∫ b

a

∣∣x(t)∣∣∣∣x′(t)
∣∣dt +C

∫ b

a

∣∣x(t)∣∣dt

≤ K
(
b – a

π

) ∫ b

a

∣∣x′(t)
∣∣ dt +N

(∫ b

a

∣∣x(t)∣∣ dt
) 


(∫ b

a

∣∣x′(t)
∣∣ dt

) 


+C
√
b – a

(∫ b

a

∣∣x(t)∣∣ dt
) 



≤
(
K

(
b – a

π

)

+N
b – a

π

)∥∥x′∥∥
 +C

(b – a) 
π

∥∥x′∥∥
.

Notice the condition (H), we can find a constant M >  such that ‖x′‖ ≤ M and also
‖x‖∞ ≤ √

b – aM. Now,

|u| ≤ 
K(b – a)

∫ b

a

∣∣Fξ ,η
(
s,u′(s)

)∣∣ds≤ N
K(b – a)

∫ b

a

∣∣u′(t)
∣∣dt + C

K
≤ NM

K
√
b – a

+
C
K

implies

‖u‖∞ ≤ ‖x‖∞ + |u| ≤ √
b – aM +

NM

K
√
b – a

+
C
K

=:M.

Since u(a) = u(b), there exists t ∈ (a,b) such that u′(t) = . Then

∣∣u′(t)
∣∣ ≤

∫ b

a

∣∣u′′(t)
∣∣dt

≤
∫ b

a

∣∣Fξ ,η
(
t,u′(t)

)∣∣dt +K
∫ b

a

∣∣u(t)∣∣dt
≤ N

√
b – aM +C(b – a) +K(b – a)M

=:M,

i.e. ‖u′‖∞ ≤ M. Hence, � is bounded.
Step . Let � = {u ∈ kerL :QNx = }. For u ∈ �, we have u = c ∈R, and

QNc =


b – a

∫ b

a

[
Fξ ,η(t, ) –Kc

]
dt = .

http://www.boundaryvalueproblems.com/content/2013/1/88
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Then

c =


K(b – a)

∫ b

a
Fξ ,η(t, )dt and so |c| ≤ C

K
≤M,

that is, � is bounded.
Step . Let � ⊃ � ∪ � with � open and bounded. Clearly, conditions (A) and (A)

in Lemma . are satisfied. The remainder is to verify (A). To this end, we define an iso-
morphism J : ImQ → kerL by J = I . Let

H(u,μ) = μu + ( –μ)JQNu, (u,μ) ∈ � × [, ],

i.e.

H(u,μ) = μu +
 –μ

b – a

∫ b

a

(
Fξ ,η

(
s,u′(s)

)
–Ku(s)

)
ds.

It is easy to see that H(u,μ) 
=  for (u,μ) ∈ (∂� ∩ kerL)× [, ]. Hence,

deg{JQN |�∩kerL,� ∩ kerL, }
= deg

{
H(·, ),� ∩ kerL, 

}
= deg

{
H(·, ),� ∩ kerL, 

}
= deg{I,� ∩ kerL, }

= .

Lemma . yields that Lu =Nu has at least one solution.
Step . We claim that the problem (.) has a unique solution. Suppose to the contrary,

that there exist two solutions u and u of (.).
Let u = u – u, by (H) and (H),

u′′(t) +Ku(t) = Fξ ,η
(
t,u′

(t)
)
– Fξ ,η

(
t,u′

(t)
)

= f
(
t, ξ (t),u′

(t),η(t)
)
– f

(
t, ξ (t),u′

(t),η(t)
)

≥ –N
∣∣u′

(t) – u′
(t)

∣∣
= –N

∣∣u′(t)
∣∣.

Applying Lemma ., we have u(t) ≥  on [a,b]. That is, u ≥ u. Also, we can obtain
u ≥ u by the same method. Thus, u ≡ u.
By a similar argument, we can obtain the existence of unique solution for the problem

(.). �

http://www.boundaryvalueproblems.com/content/2013/1/88
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Now,we investigate the extremal solution of the periodic system (.). For givenα,β ∈ X,
we consider the approximation schemes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = α, β = β ,

α′′
n +Kαn = f (t,αn–,α′

n,βn–) +Kβn–,

β ′′
n +Kβn = f (t,βn–,β ′

n,αn–) +Kαn–,

αn(a) = αn(b), α′
n(a) = α′

n(b),

βn(a) = βn(b), β ′
n(a) = β ′

n(b),

(.)

Now, we give the main result for (.).

Theorem . Assume that α, β are a pair of lower and upper solutions of (.) defined by
(.) such that β ≤ α. Suppose that (H)-(H) hold.
Then there exist twomonotone iterative sequences {αn}, {βn} ⊂ [β ,α], non-increasing and

nondecreasing, respectively, defined by (.) such that αn → u∗, βn → v∗ (n → ∞) uni-
formly on t ∈ [a,b], and the pair (u∗, v∗) is a solution of (.) satisfying

β ≤ v∗ ≤ u∗ ≤ α.

Moreover, any solution (u, v) of (.) with β ≤ u ≤ α, β ≤ v ≤ α is such that

v∗ ≤ u≤ u∗, v∗ ≤ v≤ u∗.

Proof Let R = {(u, v) ∈ C[a,b] × C[a,b] : u ≥ , v ≤ } be an ordered normal cone, the
order is defined by

(u, v) ≤ (u, v) ⇐⇒ u ≤ u, v ≥ v

for any (u, v), (u, v) ∈ R. We define the operator T : [β ,α]× [β ,α]→ X×X by T(ξ ,η) =
(u, v), where u and v are the unique solutions of problems (.) and (.), respectively, with
given ξ ,η ∈ [β ,α]. Firstly, we claim that the mapping T has the following properties:

(i) (β ,α)≤ T(α,β)≤ (α,β);
(ii) T(ξ,η) ≤ T(ξ,η), when (ξ,η) ≤ (ξ,η), ξi,ηi ∈ [β ,α], i = , .

We start with (i). Set (α,β) = T(α,β), w = α – α. From (H) and (H), we have

w′′(t) +Kw(t) ≥ f
(
t,α(t),α′(t),β(t)

)
+Kβ(t) – f

(
t,α(t),α′

(t),β(t)
)
–Kβ(t)

≥ –N
∣∣α′(t) – α′

(t)
∣∣ = –N

∣∣w′(t)
∣∣, t ∈ (a,b).

Obviously, w(a) = w(b) and w′(a) ≥ w′(b). By Lemma ., we have w ≥ , and so α ≥ α.
A similar argument shows that β ≥ β . Thus, T(α,β)≤ (α,β). Set w = α – β , then

w′′(t) +Kw(t) ≥ f
(
t,α(t),α′

(t),β(t)
)
+Kβ(t) – f

(
t,β(t),β ′(t),α(t)

)
–Kα(t)

=
[
f
(
t,α(t),α′

(t),β(t)
)
– f

(
t,α(t),β ′(t),β(t)

)]
+

[
f
(
t,α(t),β ′(t),β(t)

)
– f

(
t,β(t),β ′(t),α(t)

)]
–K

(
α(t) – β(t)

)

http://www.boundaryvalueproblems.com/content/2013/1/88
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≥ –N
∣∣α′

(t) – β(t)
∣∣ + (M + L –K)

(
α(t) – β(t)

)
≥ –N

∣∣w′(t)
∣∣, t ∈ (a,b).

Lemma . implies that α ≥ β . Similarly, we can check that α ≥ β. Hence, (β ,α) ≤
T(α,β).
Now, we prove (ii). Let T(ξi,ηi) = (ui, vi), i = , . Set w = u – u,

w′′(t) +Kw(t) = Fξ,η
(
t,u′

(t)
)
– Fξ,η

(
t,u′

(t)
)

= f
(
t, ξ(t),u′

(t),η(t)
)
– f

(
t, ξ(t),u′

(t),η(t)
)
–K

(
η(t) – η(t)

)
=

[
f
(
t, ξ(t),u′

(t),η(t)
)
– f

(
t, ξ(t),u′

(t),η(t)
)]

+
[
f
(
t, ξ(t),u′

(t),η(t)
)
– f

(
t, ξ(t),u′

(t),η(t)
)]
–K

(
η(t) – η(t)

)
≥ –N

∣∣u′
(t) – u′

(t)
∣∣ +M

(
ξ(t) – ξ(t)

)
+ (L –K)

(
η(t) – η(t)

)
≥ –N

∣∣w′(t)
∣∣, t ∈ (a,b).

Applying Lemma ., we get u ≥ u. A similar argument shows that v ≥ v. Thus,
T(ξ,η) ≥ T(ξ,η).
To prove the sequence {αn} and {βn} are bounded, we define {(αn,βn)} by (αn+,βn+) =

T(αn,βn). Notice that {(αn,βn)} is non-increasing and {(βn,αn)} is non-decreasing. It is
clear that {αn} and {βn} are bounded. Hence, there exists a constant C >  such that
max{‖αn‖∞,‖βn‖∞} ≤ C for all n ∈N, and

α′′
n+(t) +Kαn+(t) = Fαn ,βn

(
t,α′

n+(t)
)
,

β ′′
n+(t) +Kβn+(t) = Fβn ,αn

(
t,β ′

n+(t)
)
.

Essentially, the same as in the proof of Lemma . guarantees that there exists a constant
C >  such that max{‖α′

n‖∞,‖β ′
n‖∞} ≤ C. This shows that {(αn,βn)} converges in X, i.e.

there exists (u∗, v∗) ∈ X so that (αn,βn) → (u∗, v∗), β ≤ u∗ ≤ α, β ≤ v∗ ≤ α, and also
β ≤ v∗ ≤ u∗ ≤ α from (i).
Finally, wewill prove that any other solution (u, v) ∈ X of (.) such that (β,α) ≤ (u, v) ≤

(α,β) satisfies

v∗ ≤ v ≤ u∗, v∗ ≤ u≤ u∗.

We can proceed as in the proof of (i) to show that (βn,αn) ≤ (u, v) ≤ (αn,βn), i.e. βn ≤
u ≤ αn and βn ≤ v ≤ αn, n = , , , . . . . Hence, v∗ ≤ u ≤ u∗ and v∗ ≤ v ≤ u∗, i.e. (v∗,u∗) ≤
(u, v) ≤ (u∗, v∗). �

Remark . Comparing with the main result (Theorem .) in [], we construct the ex-
plicit expression of the monotone iterative sequences {αn} and {βn} by (.) in Theo-
rem ., while reference [] didn’t do so.

Remark . Notice that if (u,u) is a solution of the auxiliary system (.), then u is a
solution of the given problem (.) under the assumption f (t,u,w,u) ≡ g(t,u,w). Thus, u∗

and v∗ are bounds on solutions of (.).

http://www.boundaryvalueproblems.com/content/2013/1/88
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If the bounds u∗ and v∗ obtained in Theorem . are equal, then u∗ = v∗ is a unique
solution of the problem (.). In particular, under appropriate assumptions, this theorem
provides an approximation scheme to the unique solution of (.).

4 Unique solution for (1.1)
Theorem . Suppose that the conditions (H)-(H) hold. Then the periodic problem (.)
has a unique solution provided that M + L > K + N

 .

Proof If u∗ > v∗, we compute

∫ b

a

[((
v∗(t)

)′′ –
(
u∗(t)

)′′) +K
(
v∗(t) – u∗(t)

)](
u∗(t) – v∗(t)

)
dt

=
∫ b

a

[(
f
(
t, v∗(t),

(
v∗(t)

)′,u∗(t)
)
– f

(
t,u∗(t),

(
u∗(t)

)′, v∗(t)
))

+K
(
u∗(t) – v∗(t)

)](
u∗(t) – v∗(t)

)
dt

≤ –(M + L –K)
∫ b

a

∣∣u∗(t) – v∗(t)
∣∣ dt

+N
(∫ b

a

∣∣u∗(t) – v∗(t)
∣∣ dt

) 

(∫ b

a

∣∣(v∗(t)
)′ –

(
u∗(t)

)′∣∣ dt
) 



=:Q.

On the other hand,

–
∫ b

a

[((
v∗(t)

)′′ –
(
u∗(t)

)′′) +K
(
v∗(t) – u∗(t)

)](
v∗(t) – u∗(t)

)
dt

=
∫ b

a

∣∣(v∗(t)
)′ –

(
u∗(t)

)′∣∣ dt –K
∫ b

a

∣∣v∗(t) – u∗(t)
∣∣ dt

=:Q.

If we denote γ = (
∫ b
a |u∗(t) – v∗(t)| dt)  and γ = (

∫ b
a |(u∗(t))′ – (v∗(t))′| dt)  , then

Q –Q = γ 
 –Kγ 

 + (M + L –K)γ 
 –Nγγ

=
(

γ –
N


γ

)

+
(
M + L – K –

N



)
γ 


> ,

which is a contradiction. �

Example . Consider the problem

⎧⎨
⎩
u′′(t) = g(t,u(t),u′(t)), t ∈ (, π ),

u() = u(π ), u′() = u′(π ).
(.)

http://www.boundaryvalueproblems.com/content/2013/1/88
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Corresponding to the problem (.), we take a = , b = π and

g(t,x, y) =
t

π × 
+
π


x –




(
π



)

x +
π


√

arctan y. (.)

Let

f (t,x, y, z) =
t

π × 
+
π


x –




(
π



)

z +
π


√

arctan y.

Consider the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′(t) + π

u(t) = f (t,u(t),u′(t), v(t)) + π

v(t), t ∈ (, π ),

v′′(t) + π

v(t) = f (t, v(t), v′(t),u(t)) + π

u(t), t ∈ (, π ),

u() = u(π ), u′() = u′(π ),

v() = v(π ), v′() = v′(π )

(.)

with K = π

 corresponding to (.). Clearly, the system (.) has α = 
π and β = –

π

as the lower and upper solutions respectively according to the definition by (.). Take
M = π

 , N = π


√
 and L = K = π

 . It is easy to check that the conditions (H)-(H) hold.

Since K > N

 ,

θ

(
K ,

N



)
=

√
K – N



(
π


– arctan

N
√

K – N


)
= 

√
 ≥ π .

Thus, (H) is satisfied. Thanks to Theorems ., the system (.) has a solution (u∗, v∗). In
view of the values of N , K , M, L, we have M + L > K + N

 . Hence, Theorem . implies
that u∗ = v∗, that is, the problem (.) has a unique solution.

Remark . When α = 
π , β = –

π , and g is given by (.), Example . does not sat-
isfy the conditions imposed in [, Theorem .] because α, β are not a pair of lower and
upper solutions of Eq. (.) in []. In fact, our definitions of the lower and upper α, β ,
and the monotone iterative sequences {αn}, {βn} are all different from [, Theorem .]. In
addition, the ultimate goal of this paper is the unique solution of (.) by constructing an
auxiliary system (.), which is one of the highlights of this article.
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