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Abstract
We establish the existence of positive solution for the following class of degenerate
quasilinear elliptic problem

(P)

{
–Luap + V(x)|x|–ap∗ |u|p–2u = f (u) in RN ,

u > 0 in RN ; u ∈ D1,p
a (RN),

where –Luap = –div(|x|–ap|∇u|p–2∇u), 1 < p < N, –∞ < a < N–p
p , a ≤ e≤ a + 1,

d = 1 + a – e, and p∗ := p∗(a, e) = Np
N–dp denote the Hardy-Sobolev’s critical exponent, V

is a bounded nonnegative vanishing potential and f has a subcritical growth at
infinity. The technique used here is a truncation argument together with the
variational approach.
MSC: 35B09; 35J10; 35J20; 35J70

1 Introduction
Consider the following degenerate quasilinear elliptic problem in RN :

(P)

⎧⎨
⎩–Luap +V (x)|x|–ap∗ |u|p–u = f (u) in RN ,

u >  in RN ; u ∈D,p
a (RN ),

where –Luap = –div(|x|–ap|∇u|p–∇u),  < p <N , –∞ < a < N–p
p , a≤ e ≤ a+, d = +a–e,

and p∗ := p∗(a, e) = Np
N–dp denote the Hardy-Sobolev’s critical exponent, V : RN → R is a

bounded, nonnegative and vanishing potential and f : R → R a continuous function with
a subcritical growth at infinity. Here, D,p

a (RN ) is the completion of the C∞
 (RN ) with the

norm |u| = (
∫
RN |x|–ap|∇u|p dx) p . We impose the following hypotheses on f and V :

f : R→ R is a continuous function verifying

(f) lim sups→+
sf (s)

|x|–ap∗ sp∗ < ∞, uniformly in x.

(f) There exists α ∈ (p,p∗) such that lim sups→∞
sf (s)

|x|–ap∗ sα < ∞, uniformly in x.
(f) There exists θ > p such that θF(s)≤ sf (s), for all s > .

V : RN → R is a continuous function verifying

(V) V (x) ≥ , for all x ∈ RN .
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(V) There are � >  and r >  such that inf|x|>r V (x)|x| p
[N–p(a+)]
(p–)(N–p) ≥ �.

Remark . The conditions (f) and (f) imply the following:

∣∣sf (s)∣∣ ≤ C|x|–ap∗ |s|α with α ∈ (
p,p∗), for all s ∈ R. ()

Example . An example for the function f is given by

f (t) =

⎧⎨
⎩|x|–ap∗ tλ–, if  ≤ t ≤ ,

|x|–ap∗ tα–, if t ≥ ,

with λ > p∗ and α given by (f).
By vanishing potential we mean a potential that vanish on some bounded domain or

become very close to zero at infinity. An important example for a such potential is given
by

V (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
, if |x| ≤ r – ,

�r–
p[N–p(a+)]
(p–)(N–p) (|x| – r + ), if r –  < |x| ≤ r,

�|x|– p[N–p(a+)]
(p–)(N–p) , if |x| ≥ r,

with � > .

Consider first the case a = , that is –Luap is the p-Laplacian operator, and the potential
is bounded from below by a positive constant V > .
Equations involving the p-Laplacian operator appear in many problems of nonlinear

diffusion. Just to mention, in nonlinear optics, plasma physics, condensed matter physics
and inmodeling problems in non-Newtonian fluids. Formore information on the physical
background, we refer to [].
For the case p = , we cite [–], and references therein. In [], in addition to the above

assumptions, the authors consider a local condition, namely,

min
x∈�

V < min
x∈∂�

V ,

where � ⊂ RN is a open bounded set, instead of the global condition imposed by Rabi-
nowitz in []. For p 
= , see [–].
Now, consider that V is the zero mass case, that is lim|x|→∞ V (x) = . When p = , we

cite [–] and the recent paper [] by Alves and Souto.
Let us now consider the case a 
=  and the potential bounded from below by a positive

constant V > .
In this case, the equations arise in problems of existence of stationary waves for

anisotropic Schrödinger equation (see []) and others problems (for example, see [,
]). We cite [] for p = ; and [, ] for p 
= . For the case V ≡ , we cite [], for
p =  and a 
= ; and [], for p 
=  and a = .
The result presented here for  < p < N and a 
=  extends that one in [] for p = 

and a = . In [], the presence of Hilbertian structure and some compact embeddings
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provide the convergence of the gradient. In the case studied here, with the absence of this
structure, we do not obtain the convergence so directly. To overcome this problem, we use
a result found in [, ], whose ideas come from [, ], when the domain is a smooth
and bounded. In addition to this difficulty, there are others. For instance, in the present
situation, our space is no longer Hilbert, which forces us to obtain new estimates. Since
the problem involves singular terms, the estimates are more refined and for which the
principal ingredient is the Caffarelli-Kohn-Nirenberg’s inequality (see []). Now we state
the main result of this work.

Theorem . Suppose that V and f satisfy, respectively, (V) and (V) and (f) to (f).
Then there is a constant �∗ = �∗(V∞, θ ,p, c) >  such that the problem (P) has a positive
solution, for all � ≥ �∗, being V∞ the maximum of the f in the ball of RN centered in the
origin with radius .

In order to prove this theorem, we first build an auxiliary problem (AP), and then we
solve the problem (AP) using variational methods. To finish, we show that the solution of
(AP) is also a solution of (P). These steps are the content of the next three sections.
Hereafter, C is a positive constant which can change value in a sequence of inequalities.

We denote BR = BR() the ball in RN centered in the origin with radius R. The weak (⇀)
and strong (→) convergences are always taken as n → ∞ and

∫
A f means

∫
A f (x)dx. The

weighted Lp spaces are denoted by Lpα(A) = {u : RN → R :
∫
A |x|–α|u|p < ∞}. When α = ,

we denote ‖ · ‖Lp(A) the usual norm in Lp(A), with  ≤ p≤ ∞. For A = RN , we use ‖ · ‖p.

2 The auxiliary problem
As usual, since we are looking for positive solutions of problem (P), we set f (t) = , for all
t ≤ . The hypothesis (V) allows us to consider the space

E =
{
u ∈D,p

a
(
RN)

:
∫
RN

V |x|–ap∗ |u|p <∞
}
,

with norm

‖u‖ =
(∫

RN
|x|–ap|∇u|p +V |x|–ap∗ |u|p

) 
p
.

Associated to the problem (P), we define on E, the Euler-Lagrange functional

I(u) =
∫
RN

|x|–ap|∇u|p +V |x|–ap∗ |u|p –
∫
RN

F(u),

being F(s) =
∫ s
 f (t)dt. From the assumptions on f , it follows that I is C with Gâteaux

derivative

I ′(u)v =
∫
RN

|x|–ap|∇u|p–∇u∇v +V |x|–ap∗ |u|p–uv –
∫
RN

f (u)v, v ∈ E.

http://www.boundaryvalueproblems.com/content/2013/1/92


Bastos et al. Boundary Value Problems 2013, 2013:92 Page 4 of 16
http://www.boundaryvalueproblems.com/content/2013/1/92

To obtain solutions of problem (P), we introduce some truncation of the function f . Con-
sider k = pθ

θ–p > p, r >  and define

g(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
f (t), |x| ≤ r,

f (t), |x| > r and f (t) ≤ V
k |x|–ap∗ |t|p–t,

V
k |x|–ap∗ |t|p–t, |x| > r and f (t) > V

k |x|–ap∗ |t|p–t.
()

Now we define the auxiliary problem:

(AP)

⎧⎨
⎩–Luap +V (x)|x|–ap∗ |u|p–u = g(x,u) in RN ,

u >  in RN ; u ∈D,p
a (RN ).

()

Associated to the problem (AP), we define, on E, the Euler-Lagrange functional

J(u) =

p

∫
RN

|x|–ap|∇u|p +V |x|–ap∗ |u|p –
∫
RN

G(x,u) =

p
‖u‖p –

∫
RN

G(x,u),

beingG(x, s) =
∫ s
 g(x, t)dt. From the assumptions on f , it follows that J is C with Gâteaux

derivative

J ′(u)v =
∫
RN

|x|–ap|∇u|p–∇u∇v +V |x|–ap∗ |u|p–uv –
∫
RN

g(x,u)v, v ∈ E.

3 Solving the problem (AP)
In this section, we show that the problem (AP) has a least energy solution, but first
we define some minimax levels. To begin with we set in the space D,p

a (B), the norm
‖|u‖| = (

∫
B

|x|–ap|∇u|p + V∞|x|–ap∗ |u|p) p and we define the functional I given by I(u) =

p
∫
B

|x|–ap|∇u|p +V∞|x|–ap∗ |u|p – ∫
B
F(u). Here,D,p

a (B) is the completion of the C∞
 (B)

with the norm |u| = (
∫
B

|x|–ap|∇u|p) p .

Lemma . The functional I has the mountain pass geometry, namely,
. ∃r,ρ >  such that I(u) ≥ ρ for ‖|u‖| = r.
. ∃e ∈D,p

a (B) such that ‖|e‖| ≥ r and J(e) ≤ .

Proof By using the growth of f given in Remark . and the Caffarelli-Kohn-Nirenberg’s
inequality (see []), we get

∫
B
F(u) ≤ ∫

B
c|x|–ap∗ |u|p∗ ≤ c‖|u‖|p∗ , and hence I(u) ≥


p‖|u‖|p – c‖|u‖|p∗ . Since p∗ > p, there exists r such that ρ := 

p r
p
 – crp

∗
 > . Thus, we

have I(u) ≥ ρ for ‖|u‖| = r. By (f), it follows that there exist θ > p and C >  such that
F(s)≥ C|s|θ . Now u ∈D,p

a (B) implies I(tu) ≤ tp
p ‖|u‖|p–tθC

∫
B

|u|θ . Since θ > p, there
exists a t large enough such that, taking e = tu, we have I(e) <  and ‖|e‖| ≥ r. �

Lemma . The functional J has the mountain pass geometry, namely,
. ∃r,ρ >  such that J(u) ≥ ρ for ‖u‖ = r.
. ∃e ∈ E such that ‖e‖ ≥ r and J(e)≤ .

Proof From the definition of G, we have
∫
RN G(x,u) ≤ ∫

RN F(u). Thus, like the previous
lemma, we have J(u) ≥ ρ := 

p r
p
 – crp

∗
 >  for ‖u‖ = r. Take the same u ∈D,p

a (B) of the

http://www.boundaryvalueproblems.com/content/2013/1/92
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proof of the previous lemma. Thus, u ∈ E and G(x,u) = F(u). With the same argument,
we have J(tu) ≤ tp

p ‖u‖p – tθC
∫
RN |u|θ . Since θ > p, there exists a t large enough such

that, taking e = tu, we have J(e) <  and ‖e‖ ≥ r. �

Next, we are going to define twominimax levels, whichwill play an important role in our
arguments. Note that is possible to take t such that e = tu satisfies two previous lemmas.
This allows to define the minimax levels c and c by

c = inf
γ∈�

max
t∈[,]

J
(
γ (t)

)
with � =

{
γ ∈ C

(
[, ],E

)
: γ () =  and γ () = e

}

and

c = inf
γ∈�

max
t∈[,]

I
(
γ (t)

)
with � =

{
γ ∈ C

(
[, ],D,p

a (B)
)
: γ () =  and γ () = e

}

respectively. Since J(u) ≤ I(u) inD,p
a (B), we have c≤ c, by their definitions. Now using

the above lemma together with the mountain pass theorem [, Theorem .], we con-
clude that there exists a Palais-Smale sequence ((PS) sequence for short) (un) ⊂ E for J ,
i.e., (un) satisfies J(un)→ c and J ′(un)→ .

Lemma . Suppose (V) and (f) to (f) and let (un) ⊂ E be a (PS) sequence for the func-
tional J . Then (un) is bounded in E.

Proof Define the set A = {x ∈ RN : |x| ≤ R or f (u(x)) ≤ V (x)
k |x|–ap∗ |u(x)|p–u(x)}. In A, we

have G(x,u) = F(u). By using (f), we conclude that there is θ > p such that –G(x,u) +

θ
ug(x,u) ≥ . So, we have


p

∫
A
|x|–ap|∇u|p +V |x|–ap∗ |u|p –

∫
A
G(x,u)

–

θ

(∫
A
|x|–ap|∇u|p +V |x|–ap∗ |u|p –

∫
A
ug(x,u)

)

≥
(

p
–

θ

)∫
A
|x|–ap|∇u|p +V |x|–ap∗ |u|p ≥ (p – )

pk

∫
A
|x|–ap|∇u|p +V |x|–ap∗ |u|p.

Now consider the set B = Ac = {x ∈ RN : |x| > R and f (u(x)) > V (x)
k |x|–ap∗ |u(x)|p–u(x)}. In

B, we have
∫
B ug(x,u) >  and G(x,u) = V

pk |x|–ap
∗ |u|p. Then


p

∫
B
|x|–ap|∇u|p +V |x|–ap∗ |u|p –

∫
B
G(x,u)

–

θ

(∫
B
|x|–ap|∇u|p +V |x|–ap∗ |u|p –

∫
B
ug(x,u)

)

≥ 
k

∫
B
|x|–ap|∇u|p +V |x|–ap∗ |u|p –

∫
B

V
pk

|x|–ap∗ |u|p

≥ (p – )
pk

∫
B
|x|–ap|∇u|p +V |x|–ap∗ |u|p.

Therefore, we get J(u) – 
θ
J ′(u)u≥ (p–)

pk ‖u‖p. In particular, the above equation holds for
the (PS) sequence (un) for J , andwe have J(un)– 

θ
J ′(un)un ≥ (p–)

pk ‖un‖p. On the other hand,

http://www.boundaryvalueproblems.com/content/2013/1/92
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we have J(un) → c, θ > p >  and J ′(un) un
‖un‖ → , since J ′(un) → . Thus, we get J(un) –


θ
J ′(un)un ≤ M + 

θ
‖un‖ ≤ M + ‖un‖, for some constantM > . Then we have (p–)

pk ‖un‖p ≤
M + ‖un‖, which can be rewritten as

‖un‖
(
(p – )‖un‖p– – pk

) ≤ pkM. ()

Assuming ‖un‖ → ∞, equation () implies that (p – )‖un‖p– – pk → . So ‖un‖ →
( pk
p– )


p– , which is a contradiction. Therefore, ‖un‖ is bounded in E. �

Lemma . Suppose (V) and (f) to (f). Then the functional J satisfies the Palais-Smale
condition, i.e., every (PS) sequence has a convergent subsequence.

Proof Observe that, given the (PS) sequence (un), by Lemma ., there exists u ∈ E such
that un ⇀ u, because E is reflexive space.a Thus, it is enough to show that ‖un‖ → ‖u‖.
We divide this task in the four claims below.
. Claim 

∫
RN ung(x,un) →

∫
RN ug(x,u).

. Claim 
∫
RN ug(x,un) →

∫
RN ug(x,u).

. Claim 
∫
RN V |x|–ap∗ |un|p–unu→ ∫

RN V |x|–ap∗ |u|p.
. Claim 

∫
RN |x|–ap|∇un|p–∇un∇u → ∫

RN |x|–ap|∇u|p.
Assuming Claims  to  for now, we proceed with the proof of lemma.
Since J ′(un)un → , we have

∫
RN |x|–ap|∇un|p +V |x|–ap∗ |un|p –

∫
RN ung(x,un) = on(), and

by Claim , we get

lim sup
n→∞

‖un‖p =
∫
RN

ug(x,u). ()

As J ′(un)u → , we get
∫
RN |x|–ap|∇un|p–∇un∇u + V |x|–ap∗ |un|p–unu –

∫
RN ug(x,un) =

on(). Passing the limit in the above equation and using Claims ,  and , we get

‖u‖p =
∫
RN

|x|–ap|∇u|p +V |x|–ap∗ |u|p =
∫
RN

ug(x,u). ()

Using equations () and (), we have ‖un‖ → ‖u‖. �

In order to prove the claims, for a given ε > , we choose r satisfying, the following two
conditions:
. max{∫Br\Br |x|–ap∗ |u|p∗ ,

∫
Bcr

V |x|–ap∗ |u|p} ≤ ε.
. η = ηr ∈ C∞

 (Bc
r) is such that η ≡  in Bc

r and  ≤ η ≤ , |∇η| ≤ 
rd , for all x ∈ RN .

Observe that condition  follows by integrability of |x|–ap∗ |u|p∗ and V |x|–ap∗ |u|p. Note
that, when one of these conditions holds for some r, it also verifies for every r ≥ r. Thus,
we can choose an r that satisfies both conditions.

Remark . From now on, we consider the function g defined in () with r = r satisfying
conditions  and  above. From the growth of g and the choice of r, we conclude:
. g(x, t) = f (t), G(x, t) = F(t) in Br ;
. g(x, t)≤ V

k |x|–ap∗ |t|p–t, G(x, t) ≤ V
pk |x|–ap

∗ |t|p in Bc
r ;

.
∫
Bcr

|ug(x,u)| ≤ ∫
Bcr

|u|Vk |x|–ap∗ |u|p– ≤ 
k
∫
Bcr

V |x|–ap∗ |u|p < ε.

http://www.boundaryvalueproblems.com/content/2013/1/92
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Verification of claims
In all proofs, except for Claim , we consider separately integration in Br and Bc

r .
Claim : In Br , by combining the dominated convergence theorem with the com-

pact embedding of E in Lrα(Br),  ≤ r < p∗ and α < (a + )r + N( – r
p ) (see [, Theo-

rem .]), we obtain
∫
Br

ung(x,un) →
∫
Br

ug(x,u). On the other hand, when integrating in
Bc
r we do not have the compact embedding of E in Lrα(Bc

r). In this case, we first estimate∫
Bcr

|x|–ap|∇un|p + V |x|–ap∗ |un|p, by using the cut-off function η defined before. As (ηun)
is also bounded we have J ′(un)(ηun) → , namely,∫

RN
|x|–ap|∇un|p–∇un∇(ηun) +V |x|–ap∗ |un|p–unηun = on() +

∫
RN

ηg(x,un)un. ()

Since η ≡  in Br , equation () holds in Bc
r . Adding to this, the fact that g(x, t) ≤

V
k |x|–ap∗ |t|p–t in Bc

r we have∫
Bcr

η
(|x|–ap|∇un|p +V |x|–ap∗ |un|p

)
+ |x|–ap|∇un|p–∇un(∇η)un

=
∫
Bcr

|x|–ap|∇un|p–∇un∇(ηun) +V |x|–ap∗ |un|p–unηun

= on() +
∫
Bcr

ηg(x,un)un ≤ on() +
∫
Bcr

η
V
k

|x|–ap∗ |un|p.

From this, we obtain∫
Bcr

η
(|x|–ap|∇un|p +V |x|–ap∗ |un|p

)

≤ on() +
∫
Bcr

η
V
k

|x|–ap∗ |un|p +
∫
Bcr

|x|–ap|un||∇un|p–|∇η|

≤ on() +
∫
Bcr

η
V
k

|x|–ap∗ |un|p +
∫
Br\Br

|x|–ap|un||∇un|p–|∇η|

+
∫
Bcr

|x|–ap|un||∇un|p–|∇η|

≤ on() +

k

∫
Bcr

η
(|x|–ap|∇un|p +V |x|–ap∗ |un|p

)
+


rd

∫
Br\Br

|x|–ap|un||∇un|p–.

Thus, we have∫
Bcr

η
(|x|–ap|∇un|p +V |x|–ap∗ |un|p

)

≤ on() +
(
 –


k

)– 
rd

∫
Br\Br

|x|–ap|un||∇un|p–. ()

Using the boundedness of (un) in E, i.e., ‖un‖ ≤ C, strong convergence of (un) in Lpap(Br \
Br) and Hölder’s inequality we conclude that

lim sup
n→∞

∫
Br\Br

|x|–ap|un||∇un|p– ≤ C
(∫

Br\Br
|x|–ap|u|p

) 
p

≤ Cω
d
N
N (r)d

(∫
Br\Br

|x|–ap∗ |u|p∗
) 

p∗
, ()

http://www.boundaryvalueproblems.com/content/2013/1/92
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where ωN is the volume of the unit sphere in RN . Therefore, given ε > , by the choice of
r and by equations () and (), we infer that

lim sup
n→∞

∫
Bcr

|x|–ap|∇un|p +V |x|–ap∗ |un|p

≤ lim sup
n→∞

∫
Bcr

η
(|x|–ap|∇un|p +V |x|–ap∗ |un|p

)

≤ lim sup
n→∞

[
on() +

(
 –


k

)– 
rd

∫
Br\Br

|x|–ap|un||∇un|p–
]

≤ Cω
d
N
N

(∫
Br\Br

|x|–ap∗ |u|p∗
) 

p∗ ≤ ε.

Hence,

lim sup
n→∞

∫
Bcr

|x|–ap|∇un|p +V |x|–ap∗ |un|p = . ()

Using this fact, we conclude that

lim sup
n→∞

∫
Bcr

ung(x,un) ≤ lim sup
n→∞


k

∫
Bcr

V |x|–ap∗ |un|p

≤ lim sup
n→∞


k

∫
Bcr

|x|–ap|∇un|p +V |x|–ap∗ |un|p = .

Now, using Remark ., we have lim supn→∞
∫
Bcr

|ung(x,un) – ug(x,u)| = .
Therefore,

∫
Bcr

ung(x,un) →
∫
Bcr

ug(x,u) and the proof of Claim  is completed.
Claim : The proof of this fact is made as in the proof of Claim .
Claim : In Br the proof proceeds like in Claim . For integration in Bc

r , we estimate
the value of

∫
Br

V |x|–ap∗ |un|p–unu by using the Hölder’s inequality

∫
Bcr

V |x|–ap∗ |un|p–unu ≤
(∫

Bcr
V |x|–ap∗ |u|p

) 
p
(∫

Bcr
V |x|–ap∗ |un|p

) 
p′

≤ C
(∫

Bcr
V |x|–ap∗ |un|p

) 
p′

≤ C
(∫

Bcr
|x|–ap|∇un|p +V |x|–ap∗ |un|p

) 
p′
. ()

Using equations () and (), we have

lim sup
n→∞

∫
Bcr

V |x|–ap∗ |un|p–unu ≤ lim sup
n→∞

C
(∫

Bcr
|x|–ap|∇un|p +V |x|–ap∗ |un|p

) 
p′
= .

From this fact, we get
∫
Bcr

V |x|–ap∗ |un|p–unu → ∫
Bcr

V |x|–ap∗ |u|p and the proof of this
claim is completed.
Claim : Let p′ be dual of p. Since u ∈ D,p

a (RN ) = {u : RN → RN : |x|–au ∈ Lp∗ (RN ) and
|x|–a∇u ∈ Lp(RN )},b we see that h = |x|–a|∇u| ∈ Lp(RN ) and wn = |x|–a(p–)|∇un|p–∇un ∈
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Lp′ (RN ). As ‖un‖ is bounded, we conclude that ‖wn‖Lp′ (RN ) is also bounded. Moreover,
(un) satisfies the hypothesis of Lemma ., below. So that we have ∇un → ∇u a.e. x ∈ RN ,
which give us wn → w = |x|–a(p–)|∇u|p–∇u a.e. x ∈ RN . Using a theorem [, Theo-
rem .], we conclude that wn ⇀ w in Lp′ (RN ). Thus, we have

∫
RN wnh → ∫

RN wh, and
hence

∫
RN |x|–ap|∇un|p–∇un∇u → ∫

RN |x|–ap|∇u|p.

Lemma . Let E and J be respectively the space and functional defined in Section . Let
(un) ⊂ E a bounded sequence such that un ⇀ u in E and J ′(un) → . Then, passing to a
subsequence if necessary, we have ∇un → ∇u, a.e. x ∈ RN .

The proof of this lemma follows using the same ideas made in [] and [], for a
bounded domain. It can be found in [, Claim ] and [, Lemma ].
Using Lemmas ., ., . and the mountain pass theorem, in [, Theorem .], we

conclude that there exists u ∈ Ewhich is a critical point for the functional J , in theminimax
level c. Moreover, u is the least energy solution to the problem (AP).

4 The solution of (AP) is solution of (P)
Now, our aim is to show that the solution found in the previous section is also a solution
of the problem (P). It is sufficient to verify f (u)≤ V

k |x|–ap∗ |u|p–u, for all x ∈ Bc
r .

Lemma . Any least energy solution u of (AP) satisfies the estimate ‖u‖p ≤ pkc
p– .

Proof Since u is a critical point in the minimax level c ≤ c, by Lemma ., we have
(p–)
pk ‖u‖p ≤ J(u) – 

θ
J ′(u)u = c≤ c. So that ‖u‖p ≤ pkc

p– . �

Remark . The constant pkc
p– depends only on V∞, θ and f .

Lemma . Let h be such that |x|–ap∗ |h|q is integrable, with pq > N . Consider H : RN ×
R → R, and b : RN → R nonnegative and continuous functions such that |H(x, s)| ≤
h(x)|x|–ap∗ |s|p–, for all s > . Let v ∈ E be a weak solution of (AP):

–Lvap + b|x|–ap∗ |v|p–v =H(x, v) in RN .

Then there exists a constant M =M(q,‖h‖Lqap∗ (RN )) >  such that ‖v‖∞ ≤ M‖|x|–av‖p∗ .

Proof Given m ∈N and β > , set Am = {x ∈ RN : |v|β– ≤ m}, Bm = RN \Am and

vm =

⎧⎨
⎩v|v|p(β–) in Am,

mpv in Bm.

Thus

∇vm =

⎧⎨
⎩(pβ – p + )|v|p(β–)∇v in Am,

mp∇v in Bm.

Then vm ∈ E and using it as the test function in (AP). we have
∫
RN

|x|–ap|∇v|p–∇v∇vm + b|x|–ap∗ |v|p–vvm =
∫
RN

H(x, v)vm. ()

http://www.boundaryvalueproblems.com/content/2013/1/92
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By definition of vm, we get∫
RN

|x|–ap|∇v|p–∇v∇vm

= (pβ – p + )
∫
Am

|x|–ap|v|p(β–)|∇v|p +mp
∫
Bm

|x|–ap|∇v|p ()

and ∫
RN

b|x|–ap∗ |v|p–vvm =
∫
Am

b|x|–ap∗ |v|pβ +mp
∫
Bm

b|x|–ap∗ |v|p > . ()

Using equations () and (), we have
∫
Am

|x|–ap|v|p(β–)|∇v|p

≤ (pβ – p + )–
∫
RN

|x|–ap|∇v|p–∇v∇vm + b|x|–ap∗ |v|p–vvm. ()

Putting

wm =

⎧⎨
⎩v|v|β– in Am,

mv in Bm,

we have

∇wm =

⎧⎨
⎩β|v|β–∇v in Am,

m∇v in Bm.

Thus,∫
RN

|x|–ap|∇wm|p = βp
∫
Am

|x|–ap|v|p(β–)|∇v|p +mp
∫
Bm

|x|–ap|∇v|p. ()

Now, taking into account (), we get
∫
RN

b|x|–ap∗ |wm|p =
∫
Am

b|x|–ap∗ |v|pβ +mp
∫
Bm

b|x|–ap∗ |v|p

=
∫
RN

b|x|–ap∗ |v|p–vvm. ()

Using (), () and (), we have
∫
RN

|x|–ap|∇wm|p + b|x|–ap∗ |wm|p –
∫
RN

|x|–ap|∇v|p–∇v∇vm + b|x|–ap∗ |v|p–vvm

=
(
βp – pβ + p – 

)∫
Am

|x|–ap|v|p(β–)|∇v|p. ()

Combining (), () and (), we obtain
∫
RN

|x|–ap|∇wm|p + b|x|–ap∗ |wm|p ≤ βp
∫
RN

H(x, v)vm. ()

http://www.boundaryvalueproblems.com/content/2013/1/92
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Let S be the best constant for inequality (
∫
RN |x|–ap∗ |u|p∗ )

p
p∗ ≤ S

∫
RN |x|–ap|∇u|p, for all u ∈

D,p
a (RN ). (See [].) By the inequality (), the boundedness of H and the definitions of

vm and S, we get (
∫
Am

|x|–ap∗ |wm|p∗ )
p
p∗ ≤ Sβp ∫

RN h(x)|x|–ap∗ |v|pβ . Since |wm| = |v|β in Am,
we have

(∫
Am

|x|–ap∗ |v|p∗β

) p
p∗ ≤ Sβp

∫
RN

h(x)|x|–ap∗ |v|pβ .

Makingm → ∞ and using the monotone convergence theorem, we get

(∫
RN

|x|–ap∗ |v|p∗β

) p
p∗ ≤ Sβp

∫
RN

h(x)|x|–ap∗ |v|pβ .

Since pq >N , σ = N
q(N–p) > . Thus, we can consider β = σ j for j = , , , . . . and, using the

Hölder’s inequality, we have

∥∥|x|– a
σ j v

∥∥pσ j

p∗σ j ≤ Sσ jp
∫
RN

h(x)|x|–ap∗ |v|pσ j

≤ Sσ jp
[∫

RN
|x|–ap∗ ∣∣h(x)∣∣q] 

q
[∫

RN

∣∣|x|– a
σ j– |v|∣∣pσ jq

] 
q

≤ Mσ
jp
[∫

RN

∣∣|x|– a
σ j– |v|∣∣pσ jq

] 
q ≤ Mσ

jp∥∥|x|– a
σ j– v

∥∥pσ j

pσ jq
,

beingM = S[
∫
RN |x|–ap∗ |h(x)|q] q . Note thatM is independent of j. Thus, we get

∥∥|x|– a
σ j v

∥∥
p∗σ j ≤ M


pσ j
 σ

j
σ j

∥∥|x|– a
σ j– v

∥∥
pσ jq

for all j = , , , . . . . ()

For j =  and j = , we have pσq = p∗ and pσ q = p∗σ . Applying this in (), we have

∥∥|x|– a
σ v

∥∥
p∗σ

≤ M

pσ
 σ


σ

∥∥|x|–av∥∥p∗ and

∥∥|x|– a
σ v

∥∥
p∗σ ≤ M


pσ
 σ


σ

∥∥|x|– a
σ v

∥∥
p∗σ

.

By iterating, we have

∥∥|x|– a
σ v

∥∥
p∗σ ≤ σ


σ + 

σ M

p (


σ + 

σ
)


∥∥|x|–av∥∥p∗ .

Thus, we get

∥∥|x|– a
σ j v

∥∥
p∗σ j ≤ σ


σ + 

σ
+···+ j

σ j M

p (


σ + 

σ
+···+ 

σ j
)


∥∥|x|–av∥∥p∗ for all j = , , , . . . .

Then we can say that, for all t ≥ p∗, we have

‖v‖t ≤ σ
σ

(σ–) M


p(σ–)


∥∥|x|–av∥∥p∗ .

http://www.boundaryvalueproblems.com/content/2013/1/92
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PuttingM := σ
σ

(σ–) M


p(σ–)
 , we get

‖v‖∞ = lim
t→∞‖v‖t ≤ lim

t→∞M
∥∥|x|–av∥∥p∗ =M

∥∥|x|–av∥∥p∗ .

As σ depends on q, we have, by definition ofM, thatM =M(q,‖h‖Lqap∗ (RN )) > . �

Remark . In the previous lemma, the constant M does not depend on the potential b
of the problem (AP).

Lemma. There exists a constantM >  such that ‖u‖∞ ≤ M, for all u positive solution
of (AP).

Proof Take r from the definition of g and define A = {x ∈ RN : |x| ≤ r or f (u(x)) ≤
V (x)
k |x|–ap∗ |u(x)|p–u(x)} and B = RN \ A = {x ∈ RN : |x| > r and f (u(x)) > V (x)

k |x|–ap∗ ×
|u(x)|p–u(x)}. Now define H and b by

H(x, t) =

⎧⎨
⎩f (t) in A,

 in B
and b(x) =

⎧⎨
⎩V (x) in A,

( – 
k )V (x) in B.

We will show that, if u is solution of (AP), then u is weak solution of (AP).
In particular, we recall that H(x,u) = f (u) = g(x,u), in A, and g(x,u) = V

k |x|–ap∗ |u|p–u,
in B. Using the fact that RN is the disjoint union of A and B and the definitions above, for
a given φ ∈ E, we write

∫
RN

|x|–ap|∇u|p–∇u∇φ + b|x|–ap∗ |u|p–uφ –
∫
RN

H(x,u)φ

=
∫
RN

|x|–ap|∇u|p–∇u∇φ +V |x|–ap∗ |u|p–uφ –
∫
RN

g(x,u)φ = .

Hence, u verifies
∫
RN |x|–ap|∇u|p–∇u∇φ +b|x|–ap∗ |u|p–uφ =

∫
RN H(x,u)φ, for all φ ∈ E.

From (f) and (f), we obtain |f (s)| ≤ c|x|–ap∗ |s|α–, for all s > , with α ∈ (p,p∗). From the
definition of H , it follows that |H(x,u)| ≤ |f (u)| ≤ h(x)|x|–ap∗ |u|p–, with h(x) = c|u|α–p.
Taking q = p∗

α–p , we have |x|–ap∗ |h|q = |x|–ap∗ |u|p∗ that is integrable. Then u satisfies the
hypotheses of Lemma ., that is,

‖u‖∞ ≤ M
∥∥|x|–au∥∥

p∗ . ()

Using the definition of the constant S and Lemma ., we have

∥∥|x|–au∥∥
p∗ =

(∫
RN

|x|–ap∗ |u|p∗
) 

p∗ ≤
(
S
∫
RN

|x|–ap|∇u|p
) 

p

≤ (
S‖u‖p) 

p ≤
(
S
pkc
p – 

) 
p
. ()

Combining equations () and (), we obtain ‖u‖∞ ≤M(S pkc
p– )


p :=M. �
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Lemma . Let r be as in the definition of g and consider R ≥ r. Let u a be any positive
solution of (AP). Then we have

u(x)≤ ‖u‖∞R
N–p
p–
 |x|–N–p(a+)

p– ≤ MR
N–p
p–
 |x|–N–p(a+)

p– for all x ∈ Bc
R .

Proof Consider v(x) =MR
N–p
p–
 |x|–N–p(a+)

p– . By Lemma ., we have ‖u‖∞ ≤ M. So u ≤ v,
for |x| = R. It follows that (u – v)+ = , in |x| = R, and the function given by

w =

⎧⎨
⎩, |x| < R,

(u – v)+, |x| ≥ R

is so that w ∈D,p
a (RN ). Moreover, w ∈ E, because u, v ∈ E. Let us show now that (u– v)+ =

, in |x| ≥ R. Taking w as the test function, using the hypotheses on g and V and the fact
that u is positive solution of (AP), we have

∫
RN

|x|–ap|∇u|p–∇u∇w =
∫
RN

g(x,u)w –
∫
RN

V |x|–ap∗ |u|p–uw

=
∫
BcR

g(x,u)w –
∫
BcR

V |x|–ap∗ |u|p–uw

=
(

k
– 

)∫
BcR

V |x|–ap∗ |u|p–uw≤ . ()

Here, we considered that k > . Using the radially symmetric form of the operator –Lvap
(see [, ]), we have that –div(|x|–ap|∇v|p–∇v) =  in Bc

R . In the weak form, it is

∫
BcR

|x|–ap|∇v|p–∇v∇φ =  for all φ ∈ E.

Hence,
∫
RN

|x|–ap|∇v|p–∇v∇w =
∫
BcR

|x|–ap|∇v|p–∇v∇w = . ()

Putting A = {x ∈ RN : |x| ≥ R and u(x) > v(x)} and B = RN \A, we have

w =

⎧⎨
⎩u – v in A,

 in B.

By () and (), we obtain, for all  < p <N , that

∫
A
|x|–ap[|∇u|p–∇u – |∇v|p–∇v

]
[∇u –∇v]

=
∫
A

[|x|–ap|∇u|p–∇u – |x|–ap|∇v|p–∇v
]∇w

=
∫
RN

|x|–ap|∇u|p–∇u∇w –
∫
RN

|x|–ap|∇v|p–∇v∇w≤ . ()
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Consider  ≤ p < N . Using the Tolksdorf ’s inequality (see [, Lemma .] or [,
Lemma .]) and equation (), we obtain

∫
RN

|x|–ap|∇w|p =
∫
A
|x|–ap|∇u –∇v|p

≤ c
∫
A
|x|–ap[|∇u|p–∇u – |∇v|p–∇v

]
[∇u –∇v]≤ .

In the case  < p < , in addition to the above arguments used, we also use the Hölder’s
inequality. Then

∫
RN

|x|–ap|∇w|p

=
∫
A
|x|–ap|∇w|p =

∫
A
|x|–ap(|∇u –∇v|) p



≤ c
∫
A
|x|–ap([|∇u|p–∇u – |∇v|p–∇v

]
[∇u –∇v]

) p

(|∇u| + |∇v|) (–p)p



≤ c
{∫

A
|x|–ap[|∇u|p–∇u – |∇v|p–∇v

]
[∇u –∇v]

} p

{∫

A
|x|–ap[|∇u| + |∇v|]p}

–p


≤ .

Then
∫
RN |x|–ap|∇w|p ≤  for all  < p <N . Thus, we have w = , in RN , which implies that

(u – v)+ = , in |x| ≥ R. From this, we conclude that u ≤ v in RN , and lemma is proved.
�

Proof of Theorem . We will show that f (u) ≤ V
k |x|–ap∗ |u|p–u in Bc

r , for all solution u of

(AP). By Remark  we have |sf (s)| ≤ C|x|–ap∗ |s|p∗ , which gives us f (u)
|x|–ap∗ |u|p–u ≤ C|u| P

N–p .
Now, note that the hypothesis (V) holds for all R > R. Hence, for R = r > R, we can use

(V) and Lemma .. Thus, for each x in Bc
r , and �∗ = kCM

P
N–p
 R

p
p–
 , we have

f (u)
|x|–ap∗ |u|p–u ≤ C|u| P

N–p ≤ C
∣∣MR

N–p
p–
 |x|–N–p(a+)

p–
∣∣ P
N–p

= CM
P
N–p
 R

p
p–


V

V |x| p
[N–p(a+)]
(p–)(N–p)

=
�∗

k
V

V |x| p
[N–p(a+)]
(p–)(N–p)

≤ �∗

�

V
k
.

Now, taking �∗ ≤ � it follows that f (u)
|x|–ap∗ |u|p–u ≤ V

k , for every x in Bc
r , which give us f (u) ≤

V
k |x|–ap∗ |u|p–u, in Bc

r . �
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