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Abstract
In this paper, we discuss the n-dimensional diffraction problem for weakly coupled
quasilinear parabolic system on a bounded domain �, where the interfaces �k

(k = 1, . . . ,K – 1) are allowed to intersect with the outer boundary ∂� and the
coefficients of the equations are allowed to be discontinuous on the interfaces. The
aim is to show the existence of solutions by approximation method. The
approximation problem is a diffraction problem with interfaces, which do not
intersect with ∂�.
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1 Introduction
Let� be a bounded domain inR

n with boundary ∂� (n≥ ), and let� be partitioned into
a finite number of subdomains �k (k = , . . . ,K ) separated by �k , where �k , k = , . . . ,K –,
are interfaces, which do not intersect with each other. For any T > , set

QT :=� × (,T], ST := ∂� × [,T], � :=
K–⋃
k=

�k , �T := � × [,T].

In this paper, we consider the diffraction problem for quasilinear parabolic reaction-
diffusion system in the form

⎧⎪⎪⎨
⎪⎪⎩
ult –Ll(ul) = gl(x, t,u) ((x, t) ∈QT ),

[ul]�T = , [alij(x, t,ul)ulxjνi(x)]�T = ,

ul = ψ l(x, t) ((x, t) ∈ ST ∪ {� × {}}), l = , . . . ,N ,

(.)

where x = (x, . . . ,xn), u = (u, . . . ,uN ), ult := ∂ul/∂t, ulxi := ∂ul/∂xi, ulx := (ulx , . . . ,u
l
xn ),

L
l(ul) := d

dxi
(
alij

(
x, t,ul

)
ulxj

)
+ blj

(
x, t,ul

)
ulxj , l = , . . . ,N , (.)

repeated indices i or j indicate summation from  to n, ν(x) := (ν(x), . . . ,νn(x)) is the unit
normal vector to � (the positive direction of ν(x) is fixed in advance), the symbol [·]�T
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denotes the jump of a quantity across �T , and the coefficients alij(x, t,ul), blj(x, t,ul) and
gl(x, t,u) are allowed to be discontinuous on�T . In the following, we refer to the conditions
on �T in (.) as diffraction conditions.
The diffraction problems often appear in different fields of physics, ecology, and tech-

nics. In some of them, the interfaces are allowed to intersect with the outer boundary ∂�

(see [–]). The linear diffraction problems have been treated by many researchers (see
[–]). For the quasilinear parabolic and elliptic diffraction problems, when all of the in-
terfaces �k do not intersect with ∂�, the existence and uniqueness of the solutions have
been investigated in [–] by Leray-Schauder principle and the method of upper and
lower solutions. In this paper, we investigate the existence of solutions of (.) when the
interfaces are allowed to intersect with ∂�. In this case, because of the existence of the
intersection of � and ∂�, the methods in [–] can not be extended. We shall show the
existence of solutions by approximation method. The approximation problem is a diffrac-
tion problem with interfaces which do not intersect with ∂�.
The plan of the paper is as follows. In Sect. , we give the notations, hypotheses and

an example, and state the existence theorem of the solutions. Section  is devoted to the
proof of the existence theorem.

2 The hypotheses, main result and example
2.1 The notations, hypotheses andmain result
First, let us introduce more notations and function spaces.
For any set S, S̄ denotes its closure. The symbol �′ ⊂⊂ � means that �′ ⊂ � and

dist(�′, ∂�) > .
Let

{�, . . . ,�K–} =
{
�∗
 , . . . ,�

∗
K–

} ∪ {
�∗∗
 , . . . ,�∗∗

K–K

}
,

where �∗
k′ , k′ = , . . . ,K – , intersect with the outer boundary ∂�, and �∗∗

k′′ , k′′ = , . . . ,K –
K do not intersect with ∂�. Assume that the domain � is partitioned into subdomains
�∗

k′ , k′ = , . . . ,K, separated by interfaces �∗
k′ , and partitioned into �∗∗

k′′ , k′′ = , . . . ,K –
K + , separated by �∗∗

k′′ . The interface of �∗
k′ and �∗

k′+ is �∗
k′ . Then �̄ =

⋃K
k′= �̄

∗
k′ =⋃K–K+

k′′= �̄∗∗
k′′ . Set

Qk,T :=�k × (,T] for k = , . . . ,K ,

�∗ :=
K–⋃
k′=

�∗
k′ , �∗∗ :=

K–K⋃
k′′=

�∗∗
k′′ , �∗

T := �∗ × [,T], �∗∗
T := �∗∗ × [,T],

Q∗
k′ ,T :=�∗

k′ × (,T] for k′ = , . . . ,K,

Q∗∗
k′′ ,T :=�∗∗

k′′ × (,T] for k′′ = , . . . ,K –K + .

We see that �T = �∗
T ∪ �∗∗

T .
Cα(Q̄T ) is the spaces of Hölder continuous in Q̄T with exponent α ∈ (, ). W 

 (�) and
W ,

 (QT ) are the Hilbert spaces with scalar products (v,w)W 
 (�) =

∫
�
(vw + vxiwxi ) dx and

(v,w)W ,
 (QT )

=
∫∫

QT
(vw + vtwt + vxiwxi ) dxdt, respectively. Let

◦
W 

(�) :=
{
v ∈W 

 (�), v|x∈∂� = 
}
,

◦
W ,

 (QT ) :=
{
v ∈W ,

 (QT ), v|(x,t)∈ST = 
}
.
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For the vector functions with N-components we denote the above function spaces by
Cα(Q̄T ),W

(�),W,
 (QT ),

◦
W 

(�) and
◦
W ,

 (QT ), respectively.
Moreover, we recall the following.

Definition . (see [, ]) Write u in the split form

u =
(
ul, [u]al , [u]bl

)
.

The vector function g(·,u) := (g(·,u), . . . , gN (·,u)) is said to be mixed quasimonotone in
B⊂R

N with index vector (a, . . . ,aN ) if for each l = , . . . ,N , there exist nonnegative inte-
gers al , bl , satisfying

al + bl =N – ,

such that gl(·,ul, [u]al , [u]bl ) is nondecreasing in [u]al , and is nonincreasing in [u]bl for all
u ∈ B.

The following hypotheses will be used in this paper:
(H) (i) ∂� and �k , k = , . . . ,K – , are of C+α for some exponent α ∈ (, ) and there

exist θ ∈ (, ) and ρ >  such that for every open ball Kρ centered at x ∈ ∂�

and radius ρ ≤ ρ,

mes(Kρ ∩ �)≤ ( – θ)mesKρ .

Assume that for each k′ = , . . . ,K – ,

�∗
k′ : ϕ∗

k′ (x) =  (x ∈ �̄),

and

k′⋃
τ=

�̄∗
τ – �∗

k′ =
{
x : ϕ∗

k′ (x) < 
} ∩ �̄. (.)

(ii) Assume that
⎧⎨
⎩alij(x, t,ul) = alij,k′ (x, t,ul), blj(x, t,ul) = blj,k′ (x, t,ul),

gl(x, t,u) = glk′ (x, t,u) ((x, t) ∈Q∗
k′ ,T ,u ∈R

N ),k′ = , . . . ,K,
(.)

where alij,k′ (x, t,ul) and blj,k′ (x, t,ul) are defined on Q̄T ×R, glk′ (x, t,u) are defined
on Q̄T ×R

N , and all of them are allowed to be discontinuous on �∗∗
T .

(iii) There exist constant vectorsM = (M, . . . ,MN ) andm = (m, . . . ,mN ),m ≤ M,
such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

glk′ (x, t,Ml, [M]al , [m]bl ) ≤  ((x, t) ∈QT ),

glk′ (x, t,ml, [m]al , [M]bl ) ≥  ((x, t) ∈QT ),

ml ≤ ψ l(x, t)≤ Ml

((x, t) ∈ ST ∪ {� × {}}),k′ = , . . . ,K, l = , . . . ,N ,

(.)

http://www.boundaryvalueproblems.com/content/2013/1/99
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where al , bl are all independent of k′. Let

S :=
{
u ∈ C(Q̄T ) :m≤ u ≤ M

}
.

The vector functions gk′ (·,u) = (gk′ (·,u), . . . , gNk′ (·,u)), k′ = , . . . ,K, are mixed
quasimonotone in S with the same index vector (a, . . . ,aN ).

(iv) For each k′ = , . . . ,K, k′′ = , . . . ,K –K + , l = , . . . ,N , alij,k′ (x, t,ul),
blj,k′ (x, t,ul) ∈ C+α (Q̄∗∗

k′′ ,T ×R) (i, j = , . . . ,n), glk′ (x, t,u) ∈ C+α (Q̄∗∗
k′′ ,T ×S).

There exist a positive nonincreasing function ν(θ ) and a positive nondecreasing
function μ(θ ) for θ ∈ [, +∞) such that

ν
(∣∣ul∣∣) n∑

i′=
ξ 
i′ ≤ alij,k′

(
x, t,ul

)
ξiξj ≤ μ

(∣∣ul∣∣) n∑
i′=

ξ 
i′ , (.)

alij,k′ = alji,k′ ,
∣∣alij,k′

(
x, t,ul

)
;blj,k′

(
x, t,ul

)∣∣ ≤ μ
(∣∣ul∣∣), i, j = , . . . ,N . (.)

For each l = , . . . ,N , ψ l(x, t) ∈ Cα (̄ × [,T])∩W ,
 ( × (,T)) for some

domain  with � ⊂⊂ , ψ l(x, ) ∈ C+α (�̄k) (k = , . . . ,K ), and the following
compatibility condition on �∗∗ holds:

[
alij

(
x, ,ψ l(x, )

)
ψ l

xj (x, )νi(x)
]
�∗∗ = . (.)

Definition . A function u is said to be a solution of (.) if u possesses the follow-
ing properties: (i) For some α ∈ (, ), u ∈ Cα(Q̄T ) ∩ C,(Qk,T ), k = , . . . ,K . For any given
�′ ⊂⊂ � and t′ ∈ (,T), there exists α′,  < α′ < , such that ut ∈ Cα′ (�̄′ × [t′,T]) and
uxj ∈L(QT )∩ Cα′ ((�̄′ ∩ �̄k)× [t′,T]), k = , . . . ,K , j = , . . . ,n; (ii) u satisfies the equations
in (.) for (x, t) ∈ Qk,T , k = , . . . ,K , the diffraction conditions for (x, t) ∈ �T ∩QT and the
parabolic boundary conditions for (x, t) ∈ ST ∪ (� × {}).

The main result in this paper is the following existence theorem.

Theorem . Let Hypothesis (H) hold. Then problem (.) has a solution u inS.

2.2 An example
We next give an example satisfying the conditions in Hypothesis (H).

Example . In problem (.), let

n = , ϕ = (x) + (x) – , ϕ = x + (x) + ,

ϕ = x – (x) – , ϕ = (x – ) + (x) – ,

∂� : ϕ = , � : ϕ =  (x ∈ I), � : ϕ =  (x ∈ I), � : ϕ = ,

where I = [–(
√
 – )/,–] and I = [, (

√
 – )/], and let

� : ϕ < , � : ϕ < ,ϕ < , � : ϕ < ,ϕ > ,ϕ < ,

� : ϕ < ,ϕ > ,ϕ > , � : ϕ < .

http://www.boundaryvalueproblems.com/content/2013/1/99
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Figure 1 The example of the domain and the
interfaces for n = 2.

The outer boundary of domain is a circle of radius  with the center at the origin, whereas
the interface curves are two parabolas and a smaller circle of radius  (see Figure ). We
see that � and � intersect with ∂�, and � does not.
For the coefficients of the equations and the boundary values in (.) we set

alij
(
x, t,ul

)
=

⎧⎨
⎩Al

kEl(ul), i = j,

, i = j
((x, t) ∈ Qk,T ,ul ∈ R),k = , , , , i, j = , ,

blj
(
x, t,ul

) ≡ 
(
(x, t) ∈QT ,ul ∈R

)
, j = , ,

gl(x, t,u) = rlku
lf lk (u)

(
(x, t) ∈Qk,T ,u ∈R

N)
,k = , , , ,

ψ l(x, t)≡ ol, l = , . . . ,N ,

where

f lk (u) =  –
N∑
l′=

δll′ ,ku
l′ for l = , . . . ,N – , f Nk (u) =  +

N–∑
l′=

δNl′ ,ku
l′ – δNN ,ku

N ,

El(ul) ∈ C(R) with El(ul) ≥ ν, and ν, Al
k , r

l
k , δll′ ,k and ol are all positive constants for

k = , , , , l, l′ = , . . . ,N .
Then

�∗
 = �, �∗

 = �, �∗
 = �, �∗

 = �, �∗
 : ϕ < ,ϕ > ,

�∗∗
 = �, �∗∗

 : ϕ < ,ϕ > , �∗∗
 = �.

For each l = , . . . ,N , let

alij,k′
(
x, t,ul

)
= 

(
(x, t) ∈ QT ,ul ∈ R

)
, i = j, i, j = , ,k′ = , , ,

alii,k′
(
x, t,ul

)
= Al

k′El(ul) (
(x, t) ∈ QT ,ul ∈ R

)
, i = , ,k′ = , ,

alii,
(
x, t,ul

)
=

⎧⎨
⎩Al

El(ul) ((x, t) ∈Q∗∗
,T ,ul ∈ R),

Al
El(ul) ((x, t) ∈Q∗∗

,T ,ul ∈R),
i = , ,

glk′ (x, t,u) = rlk′ulf lk′ (u)
(
(x, t) ∈ QT ,u ∈R

N)
,k′ = , ,

http://www.boundaryvalueproblems.com/content/2013/1/99
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gl(x, t,u) =

⎧⎨
⎩rlulf l(u) ((x, t) ∈Q∗∗

,T ,u ∈R
N ),

rlulf l(u) ((x, t) ∈Q∗∗
,T ,u ∈ R

N ).

We find that these functions satisfy (.) and the hypothesis (iv) of (H). Setm = (, . . . , ).
Then the requirements onM in (.) become

 – δll,kM
l ≤ , Ml ≥ ol, l = , . . . ,N – .

 +
N–∑
l′=

δNl′ ,kM
l′ – δNN ,kM

N ≤ , MN ≥ oN .

It follows from these inequalities that there exist positive constant vector M, such that
m and M satisfy (.). Furthermore, the vector functions gk′ (·,u) = (gk′ (·,u), . . . , gNk′ (·,u)),
k′ = , , , are mixed quasimonotone inSwith the same index vector (, . . . , ,N –). The
above arguments show that the conditions in Hypothesis (H) can be satisfied.

3 The proof of the existence theorem
3.1 Preliminaries
Lemma . The following statements hold true:

(i) For any given x ∈ �̄, if ϕ∗
k′

(x)≤  for some k′

 ∈ {, . . . ,K – }, then

ϕ∗
θ (x) <  for all θ ∈ {

k′
 + , . . . ,K – 

}
.

(ii) There exists a positive number ε such that for any given k′ ∈ {, . . . ,K – }, if
 ≤ θ ≤ k′ – , then

ϕ∗
θ (x)≥ ε for all x ∈ {

y : ϕ∗
k′ (y) ≥ 

} ∩ �̄.

Proof By (.), if x ∈ �̄ and ϕ∗
k′

(x)≤ , then x ∈ ⋃k′


τ= �̄

∗
τ . Thus for each θ = k′

+, . . . ,K–,

x ∈ ⋃θ
τ= �̄

∗
τ – �∗

θ . Again by (.) we get ϕ∗
θ (x) < . This proves the result in (i).

For any given k′ ∈ {, . . . ,K – }, if x ∈ �̄ and ϕ∗
k′ (x) ≥ , then it follows from (i) that

ϕ∗
θ (x) >  for all θ ∈ {, . . . ,k′ – }. Since ϕ∗

θ ∈ C+α , there exist positive constants εk′ ,θ such
that

ϕ∗
θ (x) ≥ εk′ ,θ for all x ∈ {

y : ϕ∗
k′ (y) ≥ 

} ∩ �̄.

Hence, the conclusion in (ii) follows from the above relation by taking ε := mink′ ,θ εk′ ,θ .
�

For an arbitrary ε,  < ε < ε, let sε = sε(θ ) be smooth function with values between 
and  such that | d

dθ sε(θ )| ≤ C/ε for all θ ∈ R, sε(θ ) =  for θ ≤  and sε(θ ) =  for θ ≥ ε.
Define

zε,k′ (x) :=

⎧⎪⎪⎨
⎪⎪⎩

∏K–
τ= sε(ϕ∗

τ (x)) (x ∈ �̄),k′ = ,∏K–
ϑ= [ – sε(ϕ∗

ϑ (x))] (x ∈ �̄),k′ = K,∏K–
τ=k′ sε(ϕ∗

τ (x))
∏k′–

ϑ= [ – sε(ϕ∗
ϑ (x))] (x ∈ �̄),k′ = , . . . ,K – .

(.)

http://www.boundaryvalueproblems.com/content/2013/1/99
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Lemma . zε,k′ (x), k′ = , . . . ,K, are smooth functions with values between  and , and
possess the property

K∑
k′=

zε,k′ (x) =  (x ∈ �̄). (.)

Let functions ηk′ (x), k′ = , . . . ,K, be defined on �̄, and let

ηε(x) =
K∑
k′=

ηk′ (x)zε,k′ (x) (x ∈ �̄). (.)

Then for any x ∈ �̄,

ηε(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x) if ϕ∗
 (x)≤ ,

ηK (x) if ϕ∗
K–(x) ≥ ε,

ηk′ (x) if ϕ∗
k′–(x)≥ ε and ϕ∗

k′ (x)≤  for some k′ ∈ {, . . . ,K – },
ηk′–(x)sε(ϕ∗

k′–(x)) + ηk′ (x)[ – sε(ϕ∗
k′–(x))]

if  < ϕ∗
k′–(x) < ε for some k′ ∈ {, . . . ,K – }.

(.)

Proof Since (.) is a special case of (.) with ηk′ (x) ≡  for all k′ ∈ {, . . . ,K}, we only
prove (.).
Case . If ϕ∗

 (x) ≤ , then the conclusion of (i) in Lemma . implies that ϕ∗
k′ (x) ≤  and

sε(ϕ∗
k′ (x)) =  for all k′ ∈ {, . . . ,K – }. (.) yields that zε,(x) =  and zε,k′ (x) =  for k′ ≥ .

These, together with (.), imply that ηε(x) = η(x).
Case . If ϕ∗

K–(x) ≥ ε, then the conclusion of (ii) in Lemma . shows that ϕ∗
k′ (x) ≥ ε

and sε(ϕ∗
k′ (x)) =  for all k′ ∈ {, . . . ,K – }. Hence, zε,K (x) =  and zε,k′ (x) =  for all k′ ∈

{, . . . ,K – }. Again by (.) we get ηε(x) = ηK (x).
Case . If ϕ∗

k′ (x)≤  and ϕ∗
k′–(x) ≥ ε for some k′ ∈ {, . . . ,K – }, then Lemma . yields

that ϕ∗
τ ′ (x) ≤ , sε(ϕ∗

τ ′ (x)) =  for all τ ′ ∈ {k′, . . . ,K – }, and that ϕ∗
τ ′′ (x) ≥ ε, sε(ϕ∗

τ ′′ (x)) = 
for all τ ′′ ∈ {, . . . ,k′ – }. Hence, zε,k′ (x) =  and zε,τ ′ (x) =  for τ ′ = k′. Therefore, ηε(x) =
ηk′ (x).
Case . If  < ϕ∗

k′–(x) < ε for some k′ ∈ {, . . . ,K – }, then it follows from Lemma .
that ϕ∗

τ ′ (x) > ε and sε(ϕ∗
τ ′ (x)) =  for all τ ′ ∈ {, . . . ,k′ – }, and that ϕ∗

k′ (x) < . Again by the
conclusion of (i) in Lemma . we have ϕ∗

τ ′′ (x) <  and sε(ϕ∗
τ ′′ (x)) =  for all τ ′′ ∈ {k′, . . . ,K –

}. Hence, zε,k′ (x) =  – sε(ϕ∗
k′–(x)), zε,k′–(x) = sε(ϕ∗

k′–(x)) and zε,τ (x) =  for τ = k′,k′ – .
Thus, ηε(x) = ηk′–(x)sε(ϕ∗

k′–(x)) + ηk′ (x)[ – sε(ϕ∗
k′–(x))]. �

3.2 The approximation problem of (1.1)
In this subsection, we construct a problem to approximate (.).
For each l = , . . . ,N , let

⎧⎪⎪⎨
⎪⎪⎩
alijε = alijε(x, t,ul) :=

∑K
k′= a

l
ij,k′ (x, t,ul)zε,k′ (x),

bljε = bljε(x, t,ul) :=
∑K

k′= b
l
j,k′ (x, t,ul)zε,k′ (x),

glε = glε(x, t,u) :=
∑K

k′= g
l
k′ (x, t,u)zε,k′ (x) ((x, t) ∈QT ).

(.)

http://www.boundaryvalueproblems.com/content/2013/1/99
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It follows from hypothesis (iv) of (H), (.) and (.) that alijε(x, t,ul), bljε(x, t,ul) are in
C+α (Q̄∗∗

k′′ ,T × R) (i, j = , . . . ,n), glε(x, t,u) is in C+α (Q̄∗∗
k′′ ,T × S) (k′′ = , . . . ,K – K + ),

the vector function gε(·,u) = (gε(·,u), . . . , gNε (·,u)) is mixed quasimonotone in S with in-
dex vector (a, . . . ,aN ), and

ν
(∣∣ul∣∣) n∑

i′=
ξ 
i′ ≤ alijε

(
x, t,ul

)
ξiξj ≤ μ

(∣∣ul∣∣) n∑
i′=

ξ 
i′ , (.)

alijε = aljiε ,
∣∣alijε(x, t,ul);bljε(x, t,ul)∣∣ ≤ μ

(∣∣ul∣∣), i, j = , . . . ,n. (.)

We note that the functions alijε(x, t,ul), bljε(x, t,ul) and glε(x, t,u) are continuous on �∗
T , and

are allowed to be discontinuous on �∗∗
T .

For each k′′ = , . . . ,K – K, there exists �∗
τk′′ such that �∗∗

k′′ ⊂ �∗
τk′′ . Take two subdo-

mains Bk′′ ,, Bk′′ , satisfying �∗∗
k′′ ⊂ Bk′′ , ⊂⊂ Bk′′ , ⊂⊂ �∗

τk′′ . Let λk′′ = λk′′ (x) be an arbi-
trary smooth function taking values in [, ] such that λk′′ =  for x /∈ �∗

τk′′ and λk′′ =  for
x ∈ Bk′′ ,. Set

ψ l
ε = ψ l

ε(x, t)

:=
∫

|x–y|≤ε

ω
(|x – y|)

(
 –

K–K∑
k′′=

λk′′ (y)

)
ψ l(y, t) dy +

K–K∑
k′′=

λk′′ (x)ψ l(x, t) (.)

with a sufficiently smooth nonnegative averaging kernel ω(|ξ |) that is equal to zero for
|ξ | ≥  and is such that

∫
|ξ≤ ω(ξ ) dξ = . Then from the hypothesis (iv) of (H) and [,

Chapter II] we know that for each l = , . . . ,N , ψ l
ε(x, t) is in Cα (Q̄T ) ∩ W ,

 (QT ), ψ l
ε(x, )

is in C+α (�̄∗∗
k′′ ) (k′′ = , . . . ,K – K + ), ψ l

ε → ψ l in Cα (Q̄T ) and ψ l
ε → ψ l in W ,

 (QT ).
Thus,

∥∥ψ l
ε(x, t)

∥∥
Cα (Q̄T )

+
∥∥ψ l

ε

∥∥
W ,

 (QT )
≤ μ, (.)

where μ is a positive constant, independent of ε. Furthermore, (.), (.) and (.) show
that for small enough ε,

alijε
(
x, t,ul

)
= alij,τk′′

(
x, t,ul

)
,

ψ l
ε(x, t) = ψ l(x, t)

(
(x, t) ∈ Bk′′ , × [,T]

)
,k′′ = , . . . ,K –K.

These, together with (.), imply that

[
aijε

(
x, ,ψ l

ε(x, )
)
ψ l

εxj (x, )νi
]
�∗∗ = . (.)

For any given ε,  < ε < ε, consider the approximation diffraction problem of (.)

⎧⎪⎪⎨
⎪⎪⎩
ult –Ll

ε(ul) = glε(x, t,u) ((x, t) ∈QT ),

[ul]�∗∗
T
= , [alijε(x, t,ul)ulxjνi(x)]�∗∗

T
= ,

ul = ψ l
ε(x, t) ((x, t) ∈ ST ∪ {� × {}}), l = , . . . ,N ,

(.)

http://www.boundaryvalueproblems.com/content/2013/1/99
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where

L
l
ε

(
ul

)
:=

d
dxi

(
alijε

(
x, t,ul

)
ulxj

)
+ bljε

(
x, t,ul

)
ulxj .

We note that the interfaces in (.) are �∗∗
k′′ (k′′ = , . . . ,K –K) which do not intersect with

∂�. In view of (.), the compatibility condition on �∗∗ holds.

Proposition . Problem (.) has a unique piecewise classical solution uε = uε(x, t) in
S possessing the following properties:

uε ∈ Cα(Q̄T ), uεt ∈ Cα,α/(Q̄T ), uεxj ∈ Cα,α/(Q̄∗∗
k′′ ,T

) (
α ∈ (, )

)
,

uεxjt ∈L(QT ), uεxixj ∈ C
(
Q∗∗

k′′ ,T
)
, k′′ = , . . . ,K –K + .

(.)

Proof Problem (.) is a special case of [, problem (.)] without time delays. Formulas
(.) and (.) show that ũ =M, û =m are a pair of bounded and coupled weak upper and
lower solutions of (.) in the sense of [, Definition .]. We find that the conditions of
[, Theorem .] are all fulfilled. Then from [, Theorem .], we obtain that problem
(.) has a unique piecewise classical solution uε = uε(x, t) inS possessing the properties
in (.). �

3.3 The uniform estimates of uε

In the following discussion, let Kρ be an arbitrary open ball of radius ρ with center at x,
and let Qρ be an arbitrary cylinder of the form Kρ × [t – ρ, t].
For each l = , . . . ,N , consider the equality

∫ t
t

∫
�
[ulεt – Ll

ε(ulε)]ηl dxdt =
∫ t
t

∫
�
glε(x, t,

uε)ηl dxdt for any function ηl = ηl(x, t) from
◦
W ,

 (QT ) with ess supQT |ηl| < ∞ and for
any t, t from [,T]. In view of uε ∈S, it follows from (.), (.), (.) and the formula of
integration by parts that

∫
�

ulεη
l dx

∣∣∣∣
t

t
+

∫ t

t

∫
�

[
–ulεη

l
t + alijε

(
x, t,ulε

)
ulεxjη

l
xi

]
dxdt

=
∫ t

t

∫
�

[
–bljε

(
x, t,ulε

)
ulεxj + glε(x, t,uε)

]
ηl dxdt (.)

≤ C
∫ t

t

∫
�

[∣∣ulεx∣∣ + 
]∣∣ηl∣∣dxdt. (.)

Similarly, for any φl ∈ ◦
W 

(�) and for every t ∈ [,T] we get

∫
�

alijε
(
x, t,ulε

)
ulεxjφ

l
xi dx =

∫
�

[
–ulεt – bljε

(
x, t,ulε

)
ulεxj + glε(x, t,uε)

]
φl dxdt. (.)

Lemma . There exist constants α ( < α < ) and C depending only on M (:=
max(|M|, |m|)), ρ, θ, α, ν(M), μ(M) and μ, independent of ε, such that

∥∥ulε∥∥Cα,α/(Q̄T )
≤ C, (.)∥∥ulεx∥∥L(QT )

≤ C, l = , . . . ,N . (.)

http://www.boundaryvalueproblems.com/content/2013/1/99
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Proof (.) follows from (.), (.), (.), (.) and [, Chapter V, Theorem . and
Remark .]. Setting ηl = ulε – ψ l

ε in (.) and using Cauchy’s inequality, we can obtain
(.). �

Lemma . For any given k′
 ∈ {, . . . ,K}, let D ⊂⊂ �∗

k′

and t′ ∈ (,T). Then there exist

positive constants α ( < α < ) and C(d′
, t′) depending only on d′

 (:= dist(D, ∂�∗
k′

)), t′

and the parameters M, ρ, θ, α, ν(M), μ(M) and μ, independent of ε, such that for
any �∗∗

k′′ satisfying D ∩ �∗∗
k′′ = ∅,

∥∥ulεxj∥∥Cα ((D∩�∗∗
k′′ )×[t′ ,T]) ≤ C

(
d′
, t

′), j = , . . . ,n, l = , . . . ,N , (.)
∥∥ulεt∥∥Cα (D̄×[t′ ,T]) ≤ C

(
d′
, t

′), l = , . . . ,N . (.)

For any given k ∈ {, . . . ,K}, let �′′ ⊂⊂ �k and t′′ ∈ (,T). Then there exist positive con-
stants α ( < α < ) and C(d′′, t′′) depending only on d′′ (:= dist(�′′, ∂�k)), t′′ and the
parameters M, ρ, θ, α, ν((M)), μ(M) and μ, such that

∥∥ulε∥∥C+α,+α/(�̄′′×[t′′ ,T]) ≤ C
(
d′′, t′′

)
, l = , . . . ,N . (.)

Proof Choose a subdomain B satisfying D ⊂⊂ B ⊂⊂ �∗
k′

. (.) and (.) show that for

small enough ε,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
alijε(x, t,ul) = alij,k′


(x, t,ul),

bljε(x, t,ul) = blj,k′

(x, t,ul),

glε(x, t,u) = glk′

(x, t,u) ((x, t) ∈ B× (,T]), l = , . . . ,N .

(.)

Then the same proofs as those of [, formulas (.) and (.)] give (.) and (.). If
�′′ ⊂⊂ �k , then�′′ ⊂⊂ �∗

k′

∩�∗∗

k′′ for some k′
 ∈ {, . . . ,K}, k′′ ∈ {, . . . ,K –K + }. Hence,

the conclusion in (.) follows from (.), (.), (.) and the same argument as that
for [, formula (.)]. �

In the rest of this subsection, let k′
 be an arbitrary fixed number in {, . . . ,K – }, and let

D ⊂⊂ � be an arbitrary fixed subdomain satisfying D ∩ �∗
k′

= ∅, D̄ ∩ (�∗

k′
–

∪ �∗
k′
+

) =
∅ and D̄ ∩ �∗∗ = ∅. We next investigate the uniform estimates in the neighborhood of
�∗
k′

∩ D̄. Let x be any point of�∗

k′

∩ D̄. [, Chapter , Section ] and [] show that there

exists a ball Kρ with center at x such that we can straighten �∗
k′

∩Kρ out by introducing a

local coordinate system y = y(x). Our assumptions concerning � imply that we can divide
�∗
k′

∩ D̄ into a finite number of pieces and to introduce for each of them coordinates y.

Since the investigations in the rest of this subsection are local properties, we can assume
without loss of generality that the interface�∗

k′

lies in the plane xn = . Then by (.), when

(x, t) ∈D × [,T] the coefficients of problem (.) can be represented in the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
alijε(x, t,ul) = alij,k′


(x, t,ul)sε(xn) + alij,k′

+
(x, t,ul)[ – sε(xn)],

bljε(x, t,ul) = blj,k′

(x, t,ul)sε(xn) + blj,k′

+
(x, t,ul)[ – sε(xn)],

glε(x, t,u) = glk′

(x, t,u)sε(xn) + glk′

+
(x, t,u)[ – sε(xn)], l = , . . . ,N ,

(.)

http://www.boundaryvalueproblems.com/content/2013/1/99
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and the diffraction conditions on �∗
T in problem (.) can be represented in the form

[
ul

]
�∗
T
= ,

[
alnj

(
x, t,ul

)
ulxj

]
�∗
T
= , l = , . . . ,N . (.)

Lemma . Let t′ ∈ (,T). Then there exist positive constants α ( < α < ) and C(d′
, t′)

depending only on d′
 (:=min{dist(D, ∂�),dist(D,�∗

k′
–

∪�∗
k′
+

),dist(D,�∗∗)}), t′, and the
parameters M, ρ, θ, α, ν(M), μ(M) and μ, independent of ε, such that

∥∥ulεxs∥∥Cα (D̄×[t′ ,T]) ≤ C
(
d′
, t

′), s = , . . . ,n – , (.)∥∥� l
ε,n

∥∥
Cα (D̄×[t′ ,T]) ≤ C

(
d′
, t

′), � l
ε,n := alnjε

(
x, t,ulε

)
ulεxj , (.)∥∥ulεt∥∥Cα (D̄×[t′ ,T]) ≤ C

(
d′
, t

′), l = , . . . ,N . (.)

Proof It follows from (.) and Hypothesis (H) that

∣∣∣∣∂a
l
ijε(x, t,ul)

∂xs
;
∂alijε
∂t

;
∂alijε
∂ul

∣∣∣∣ +
∣∣∣∣∂b

l
jε(x, t,ul)
∂xs

;
∂bljε
∂t

;
∂bljε
∂ul

∣∣∣∣ +
∣∣∣∣∂glε(x, t,u)∂xs

;
∂glε
∂t

;
∂glε
∂ul′

∣∣∣∣
≤ C

(
(x, t) ∈ D̄ × [,T],u ∈S

)
, s = , . . . ,n – , l, l′ = , . . . ,N , (.)

and from the equations in (.) that

∣∣∣∣ d
dxn

(
alnjε

(
x, t,ulε

)
ulεxj

)∣∣∣∣ ≤ C

(∣∣ulεt∣∣ +
n–∑
s=

n∑
j=

∣∣ulεxjxs ∣∣ + ∣∣ulεx∣∣ + 

)

(
(x, t) ∈ D̄ × [,T]

)
, l = , . . . ,N . (.)

Then using (.), (.), (.), (.) and (.), we can prove (.)-(.) by a slight
modification of the proofs of [, formulas (.) and (.)]. The detailed proofs are omit-
ted. �

3.4 The proof of Theorem 2.1
From estimates (.), (.) and the Arzela-Ascoli theorem it follows that we can find a
subsequence (we retain the same notation for it) {uε} such that {uε} converges in C(Q̄T ) to
u and {uεxj} converges weakly in L(QT ) to uxj for each j = , . . . ,n. Then u ∈ Cα (Q̄T ) and
uxj ∈ L(QT ). Furthermore, the parabolic boundary conditions for uε in (.) imply that
u satisfies the parabolic boundary conditions in (.).
For any given k ∈ {, . . . ,K}, and for any �′′ ⊂⊂ �k , t′′ ∈ (,T), (.) yields that there

exists a subsequence {uε′ } (denoted by {uε} still) such that {uε} converges in C,(�̄′′ ×
[t′′,T]) to u. By letting ε → , from (.) and the equations ulεt – Ll

ε(ulε) = glε(x, t,uε) in
(.) we get that

ult –L
l(ul) = gl(x, t,u)

(
(x, t) ∈ �′′ × [

t′′,T
])
, l = , . . . ,N .

Since �′′ and t′′ are arbitrary, then u satisfies the equations in (.) for (x, t) ∈Qk,T .
For any given k′

 ∈ {, . . . ,K} and for anyD ⊂⊂ �∗
k′

, t′ ∈ (,T), we see from (.), (.)

that there exists a subsequence {uε′ } (denoted by {uε} still) such that for each j = , . . . ,n

http://www.boundaryvalueproblems.com/content/2013/1/99
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and for any �∗∗
k′′ satisfying D ∩ �∗∗

k′′ = ∅, {uεxj} converges in C((D ∩ �∗∗
k′′ ) × [t′,T]) to uxj ,

and {uεt} converges in C(D̄ × [t′,T]) to ut . Hence

uxj ∈ Cα
((
D ∩ �∗∗

k′′
) × [

t′,T
])
, ut ∈ Cα

(
D̄ × [

t′,T
])
. (.)

By letting ε →  we conclude from (.) and the diffraction conditions on �∗∗
T for uε in

(.) that

[
ul

]
�∗∗
T ∩QT

= ,
[
alij

(
x, t,ul

)
ulxjνi(x)

]
�∗∗
T ∩QT

= , l = , . . . ,N . (.)

For any given k′
 ∈ {, . . . ,K – } and D ⊂⊂ � satisfying D ∩ �∗

k′


= ∅, D̄ ∩ (�∗
k′
–

∪
�∗
k′
+

) = ∅ and D̄ ∩ �∗∗ = ∅, the estimates (.)-(.) imply that for any given t′ ∈ (,T)
there exists a subsequence {uε′ } (denoted by {uε} still) such that for each s = , . . . ,n – ,
l = , . . . ,N ,

ulεxs → ulxs , ulεt → ult ,

� l
ε,n = alnjε

(
x, t,ulε

)
ulεxj → � l in C

(
D̄ × [

t′,T
])
.

(.)

Then

ulxs ,u
l
t ,�

l ∈ Cα
(
D̄ × [

t′,T
])
. (.)

We next show that � l = alnj(x, t,ul)ulxj . For any η = η(x, t) ∈ L(D × (t′,T)),

∫ T

t′

∫
D

[
alnjε

(
x, t,ulε

)
ulεxj – alnj

(
x, t,ul

)
ulxj

]
ηdxdt

=
∫ T

t′

∫
D

(
alnjε

(
x, t,ulε

)
– alnjε

(
x, t,ul

))
ulεxjηdxdt

+
∫ T

t′

∫
D

(
alnjε

(
x, t,ul

)
– alnj

(
x, t,ul

))
ulεxjηdxdt

+
∫ T

t′

∫
D

alnj
(
x, t,ul

)(
ulεxj – ulxj

)
ηdxdt

:= Ilε, + Ilε, + Ilε,.

By (.), (.), we get

∣∣Ilε,∣∣ ≤ C
∥∥(
ulε – ul

)
η
∥∥
L(D×(t′ ,T))

∥∥ulεxj∥∥L(D×(t′ ,T))

≤ C′∥∥(
ulε – ul

)
η
∥∥
L(D×(t′ ,T)) →  as ε → ,

and by (.), (.),

∣∣Ilε,∣∣ =
∣∣∣∣
∫ T

t′

∫
D∩{x|≤xn≤ε}

(
alnj,k′



(
x, t,ul

)
– alnj,k′

+
(
x, t,ul

))
sε(xn)ulεxjηdxdt

∣∣∣∣
≤ C

∥∥ulεxj∥∥L(D×(,T))

{∫ T

t′

∫
D∩{x|≤xn≤ε}

η dxdt
}/

http://www.boundaryvalueproblems.com/content/2013/1/99
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≤ C′
{∫ T

t′

∫
D∩{x|≤xn≤ε}

η dxdt
}/

→  as ε → .

Since {uεxj} converges weakly in L(QT ) to uxj for each j = , . . . ,n, then Ilε, →  as ε → .
Hence,� l

ε,n = alnjε(x, t,ulε)ulεxj converges weakly in L(D × (t′,T)) to alnj(x, t,ul)ulxj for each
j = , . . . ,n. This, together with (.), implies that

� l = alnj
(
x, t,ul

)
ulxj ∈ Cα

(
D̄ × [

t′,T
])
, (.)

and u satisfies the diffraction conditions on �∗
T ∩QT in (.).

In view of (.) u satisfies the diffraction conditions on �T ∩QT in (.). Furthermore,
(.), (.) and (.) imply that for any k ∈ {, . . . ,K}, �′ ⊂⊂ �,

uxj ∈ Cα
((

�′ ∩ �k
) × [

t′,T
])
, ut ∈ Cα

(
�̄′ × [

t′,T
])
, j = , . . . ,n

for some α ∈ (, ). Therefore, u is a solution of (.). This completes the proof of Theo-
rem ..
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