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1 Introduction
In [], motivated by [, ], the equation modeling nonlinear RLC circuits

(
u + f (u)

)′′ + εγ
(
u + f (u)

)′ + u + εh(t + α,u, ε) =  ()

has been studied. It is assumed that f (u) and h(t,u, ε) are smooth functions with f (u) at
least quadratic at the origin and satisfying suitable assumptions. Setting v = (u+ f (u))′ the
equation reads

(
 + f ′(u)

)
u′ = v,

v′ = –u – ε
[
h(t + α,u, ε) + γ v

]
.

()

It is assumed that, for some u ∈ R, we have f ′(u) +  =  and uf ′′(u) < . So for ε = 
() has the Hamiltonian

H(u, v) = v + 
∫ u

u
σ
(
 + f ′(σ )

)
dσ

passing through (u, ). Clearly ∇H(u, ) =
( 


)
and the Hessian ofH at (u, ) is

HH(u, ) =

(
uf ′′(u) 

 

)
,
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so that the condition uf ′′(u) <  means that (u, ) is a saddle for H. Multiplying the
second equation by  + f ′(u) we get the system

(
 + f ′(u)

)(u′

v′

)
=

(
v

–( + f ′(u)){u + ε[h(t + α,u, ε) + γ v]}

)
. ()

Note that () falls in the class of implicit differential equations (IODE) like

A(x)x′ = f (x) + εh(t,x, ε,κ), (ε,κ) ∈R×R
m, ()

with A(u, v) =
( +f ′(u) 

 

)
. Obviously, detA(u, v) =  + f ′(u) vanishes on the line (u, v) and

the condition f ′′(u) �=  implies that the line u = u consists of noncritical -singularities
for () (see [, p.]). Let NL denote the kernel of the linear map L and RL its range.
ThenRA(u, ) is the subspace having zero first component and then the right hand side
of () belongs to RA(u, ) if and only if v = . So all the singularities (u, v) with v �= 
are impasse points while (u, ) is a so called I-point (see [, pp.-]). Quasilinear
implicit differential equations, such as (), find applications in a large number of physical
sciences and have been studied by several authors [–]. On the other hand, there are
many other works on implicit differential equations [–] dealing with more general
implicit differential systems by using analytical and topological methods.
Passing from () to (), in the general case, it corresponds to multiplying () by the ad-

jugate matrix Aa(x):

ω(x)x′ = Aa(x)
[
f (x) + εh(t,x, ε,κ)

]
,

where ω(x) = detA(x). Here we note that A and x may have different dimensions in this
paper depending on the nature of the equation but the concrete dimension is clear from
that equation, so we do not use different notations for A and x. Basic assumptions in []
are ω(x) = , ω′(x) �=  and Aa(x)f (x) = , Aa(x)h(t,x, ε,κ) =  for some x (that is, x
is an I-point for ()) and the existence of a solution x(t) in a bounded interval J tending to
x as t tends to the endpoints of J .
It is well known [, ] that ω(x) =  and ω′(x) �=  imply

dimNA(x) = , RAa(x) =NA(x), and NAa(x) =RA(x), ()

and then Aa(x)f (x) =  is equivalent to the fact that f (x) ∈RA(x).
Let F(x) := Aa(x)f (x). It has been proved in [] that () implies that rankF ′(x) is at

most . So, if x ∈ R
n, with n >  then x = x cannot be hyperbolic for the map x �→ F ′(x)x.

In this paper we study coupled IODEs such as

A(x)x′
 = f (x) + εg(t,x,x, ε,κ),

A(x)x′
 = f (x) + εg(t,x,x, ε,κ),

()

with x,x ∈ R
, detA(x) =  �= (detA)′(x), f (x), gj(t,x,x, ε,κ) ∈ RA(x) and other

assumptions that will be specified below. Let us remark that () is a special kind of the
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general equation () with, among other things,

A(x) =

(
A(x) 

 A(x)

)
, x = (x,x)

hence detA(x) = detA(x)detA(x) satisfies detA(x,x) = , (detA)′(x,x) =  and
(detA)′′(x,x) �= . Thus (x,x) is not a I-point. Multiplying the first equation by Aa

(x)
and the second by Aa

(x) we obtain the system

ω(x)x′
 = F(x) + εG(x,x, t, ε,κ),

ω(x)x′
 = F(x) + εG(x,x, t, ε,κ).

()

We assume that ω(x) := detA(x), F(x) and Gj(x,x, t, ε,κ) satisfy the following assump-
tions:
(C) F ∈ C(R,R), ω ∈ C(R,R) and the unperturbed equation

ω(x)x′ = F(x) ()

possesses a noncritical singularity at x, i.e. ω(x) =  and ω′(x) �= .
(C) F(x) =  and the spectrum σ (F ′(x)) = {μ±} with μ– <  < μ+, and

x′ = F(x)

has a solution γ (s) homoclinic to x, that is, lims→±∞ γ (s) = x, and ω(γ (s)) �=  for
any s ∈R. Without loss of generality, we may, and will, assume ω(γ (s)) >  for any
s ∈R. Moreover, Gi ∈ C(R+m,R), i = ,  are -periodic in t with
Gi(x,x, t, ε,κ) =  for any t ∈ R, κ ∈ R

m and ε sufficiently small.
(C) Let γ± be the eigenvectors of F ′(x) with the eigenvalues μ∓, resp. Then

〈∇ω(x),γ±〉 >  (or else ω′(x)γ± > ).
From (C) we see that �(s) :=

( γ (s)
γ (s)
)
is a bounded solution of the equation

x′
 = F(x),

x′
 = F(x)

()

and that x persists as a singularity of (). So this paper is a continuation of [, ], but
here we study more degenerate IODE.
The objective of this paper is to give conditions, besides (C)-(C), assuring that for

|ε| � , the coupled equations () has a solution in a neighborhood of the orbit {�(s) | s ∈
R} and reaching (x,x) is a finite time. Our approachmimics that in [] and usesMelnikov
methods to derive the needed conditions. Let us briefly describe the content of this paper.
In Section  we make few remarks concerning assumptions (C)-(C). Then, in Section ,
we change time to reduce equation () to a smooth perturbation of () whose unperturbed
part has the solution �(s). Next, in Section  we derive the Melnikov condition. Finally
Section  is devoted to the application of our result to coupled equations of the form ()
for RLC circuits, while some computations are postponed to the appendix.

http://www.boundaryvalueproblems.com/content/2014/1/101
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We emphasize the fact that Melnikov technique is useful to predict the existence of
transverse homoclinic orbits in mechanical systems [, ] together with the associated
chaotic behavior of solutions. However, the result in this paper is somewhat different in
that we apply the method to show existence of orbits connecting a singularity in finite
time.

2 Comments on the assumptions
By following [, ] we note that since γ (s) → x as |s| → ∞ then γ ′(s) is a bounded so-
lution of the linear equation x′ = F(γ (s))x. Hence |γ ′(s)| ≤ ke–μ|s| for some μ > . We get
then, for s ≥ ,

∣∣γ (s) – x
∣∣≤ ∫ ∞

s

∣∣γ ′(s)
∣∣ds≤ μ–ke–μs.

So

lim sup
s→∞

log |γ (s) – x|
s

≤ –μ < .

From [, Theorem ., p. and Theorem ., p.] it follows that

lim sup
s→∞

log |γ (s) – x|
s

= μ– < , ()

and there exist a constant δ >  and a solution γ+eμ–s of x′ = F ′(x)x such that

∣∣γ (s) – x – γ+eμ–s
∣∣ =O

(
e(μ––δ)s), as s → ∞.

Note that γ+ �=  since otherwise γ (s) – x =O(e(μ––δ)s), contradicting (). Hence γ+ is an
eigenvector of the eigenvalue μ– of F ′(x). We have then∣∣∣∣γ (s) – x

eμ–s
– γ+

∣∣∣∣≤ ce–δs

for a suitable constant c ≥ . As a consequence,

lim
s→∞

γ (s) – x
eμ–s

= γ+.

Next

|γ+| – ce–δs ≤ |γ (s) – x|
eμ–s

≤ |γ+| + ce–δs.

Taking logarithms, dividing by s and letting s→ ∞ we get

lim
s→∞

log |γ (s) – x|
s

= μ–,

that is, in () lim sups→∞ can be replaced with lims→∞. Similarly, changing s with –s:

lim
s→–∞

log |γ (s) – x|
s

= μ+.

http://www.boundaryvalueproblems.com/content/2014/1/101
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Next, set

ϕ(s) :=


e–μ–s + e–μ+s
. ()

Since ϕ(s)
eμ–s →  as s→ ∞ and ϕ(s)

eμ+s →  as s → –∞ we have then

lim
s→±∞

γ (s) – x
ϕ(s)

= γ± �=  ()

and

lim
s→±∞

ω(γ (s))
ϕ(s)

= lim
s→±∞

ω′(x)(γ (s) – x) + o(γ (s) – x)
eμ∓s =

〈∇ω(x),γ±
〉
.

From (C), we know ω(γ (s)) >  for any s ∈ R, so 〈∇ω(x),γ±〉 ≥ . Hence condition (C)
means that γ (s) tends transversally to the singular manifold ω–() at x.
As in [] it is easily seen that

lim
s→±∞

γ ′(s)
ω(γ (s))

=
F ′(x)γ±
ω′(x)γ±

=
μ∓γ±

ω′(x)γ±
�=  ()

and that γ ′(s)
ω(γ (s)) solves the equation

x′ =
[
F ′(γ (s)) – F(γ (s))

ω(γ (s))
ω′(γ (s))]x = F ′(γ (s))x – ω′(γ (s))x

ω(γ (s))
F
(
γ (s)

)
. ()

So γ ′(s)
ω(γ (s)) is a bounded solution of (). Next, setting as in []

θ (s) :=
∫ s


ω
(
γ (τ )

)
dτ ()

and xh(t) = γ (θ–(t)), it is easily seen that xh(t) satisfies ω(x)x′ = F(x) whose linearization
along xh(t) is

F ′(xh(t))z = x′
h(t)ω

′(xh(t))z +ω
(
xh(t)

)
z′ = F

(
xh(t)

)ω′(xh(t))z
ω(xh(t))

+ω
(
xh(t)

)
z′

i.e.

ω
(
xh(t)

)
z′ = F ′(xh(t))z – F

(
xh(t)

)ω′(xh(t))z
ω(xh(t))

. ()

Note, then, that () is derived from () with the change x(s) = z(θ (s)). This fact should
clarify why we need to consider the linear system () instead of x′ = F ′(γ (s))x. However,
see [] for a remark concerning the space of bounded solutions of () and that of the
equation x′ = F ′(γ (s))x.
We now prove that γ ′(s)

ω(γ (s)) is the unique solution of equation () which is bounded onR.
This is a kind of nondegeneracy of γ (s).

http://www.boundaryvalueproblems.com/content/2014/1/101
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Lemma . Assume (C) and (C) hold. Then, up to a multiplicative constant, γ ′(s)
ω(γ (s)) is

the unique solution of () which is bounded on R.

Proof From [, Lemma .] it follows that the linear map:

x �→
[
F ′(x) –

μ–γ+

ω′(x)γ+
ω′(x) –μ–I

]
x

has the simple eigenvalues μ+ –μ– and –μ–. Let μ := μ+
 , then the linear map

x �→
[
F ′(x) –

μ–γ+

ω′(x)γ+
ω′(x) –μI

]
x

has the eigenvalues ±μ; moreover, since

c ≤ |γ ′(s)|
ω(γ (s))

≤ c

for two positive constants  < c < c, it follows that γ(s) := γ ′(s)
ω(γ (s)) e

–μs is a solution of

x′ =
[
F ′(γ (s)) – F(γ (s))

ω(γ (s))
ω′(γ (s)) –μI

]
x ()

satisfying

c
c

∣∣γ(s)∣∣≤ ∣∣γ(s)∣∣eμ(s–s) ≤ c
c

∣∣γ(s)∣∣
for all  ≤ s ≤ s. Then () satisfies the assumptions of [, Theorem .] and hence its
conclusion with rankP+ = , that is, the fundamental matrix X+(s) of () satisfies

∥∥X+(s)P+X–
+ (s)

∥∥≤ ke–μ(s–s),  ≤ s ≤ s,∥∥X+(s)(I – P+)X–
+ (s)

∥∥≤ keμ̃(s–s),  ≤ s ≤ s,

where  ≤ μ̃ < μ. However, it is well known (see [–]) that RP+ is the space of initial
conditions for the bounded solutions on [,∞[ of () that, then, tend to zero as s → ∞
at the exponential rate e–μs. As a consequence a solution u(s) of () is bounded on [,∞[
if and only if u(s)eμs is a bounded solution of (). Then we conclude that the space of
solutions of () that are bounded on [,∞[ is one dimensional.
Incidentally, since the fundamental matrix of () is X(s) = X+(s)eμs, we note that it sat-

isfies

∥∥X(s)P+X–(s)
∥∥≤ k,  ≤ s ≤ s,∥∥X(s)(I – P+)X–(s)

∥∥≤ ke(μ+μ̃)(s–s),  ≤ s ≤ s.

Using a similar argument in R– = ]–∞, ] with μ = μ–
 < , and [, Theorem .] instead

of [, Theorem .] with μ∗ = –μ we see that () has at most a one dimensional space

http://www.boundaryvalueproblems.com/content/2014/1/101
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of solutions bounded in R. More precisely, μ̃ with μ < μ̃ < , and a projection P– on R


exists such that

∥∥X(s)(I – P–)X–(s)
∥∥≤ k, s ≤ s ≤ ,∥∥X(s)P–X–(s)

∥∥≤ ke(μ+μ̃)(s–s), s ≤ s ≤ ,

and dimNP– = . Since γ ′(s)
ω(γ (s)) is a solution of () bounded on R we deduce that RP+ =

NP– = span{ γ ′()
ω(γ ()) } and the result follows. �

We conclude this section with a remark about condition (c) in [, Theorem .]. Con-
sider a system in R

n such as

x′ =
[
D +A(s)

]
x. ()

Then the following result holds.

Theorem . Suppose the following hold:
(i) D has two simple eigenvalues μ∗ < μ∗ and all the other eigenvalues of D have either

real part less than μ∗ or greater than μ∗;
(ii)

∫∞
 ‖A(s)‖ds < ∞;

(iii) A(s)→  as s → ∞.
Then there are as many solutions x(t) of () satisfying

k
∣∣x(s)∣∣≤ ∣∣x(t)∣∣e–μ∗(t–s) ≤ k

∣∣x(s)∣∣, for any  ≤ s≤ t, ()

as the dimension of the space of the generalized eigenvectors of the matrix D with real parts
less than or equal to μ∗; here k,k >  are two suitable positive constants. Similarly there
are as many solutions of () such that

k̃
∣∣x(s)∣∣≤ ∣∣x(t)∣∣e–μ∗(t–s) ≤ k̃

∣∣x(s)∣∣, for any  ≤ s≤ t, ()

for suitable constants k̃, k̃ > , as the dimension of the space of the generalized eigenvectors
of the matrix D with real parts greater than or equal to μ∗.

Proof Weprove the first statement concerning (). By a similar argument () is handled.
Changing variables we may assume that

D =

⎛⎜⎝μ∗  
 D– 
  D+

⎞⎟⎠
and the eigenvalues of D– have real parts less than μ∗ and those of D+ have real parts
greater than or equal to μ∗. So the system reads

x′
 = μ∗x + a(t)x +A(t)x +A(t)x,

x′
 =D–x +A(t)x +A(t)x +A(t)x,

x′
 =D+x +A(t)x +A(t)x +A(t)x,

()

http://www.boundaryvalueproblems.com/content/2014/1/101
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where a(t) ∈ R and Aij(t) are matrices (or vectors) of suitable orders. Setting yi(t) =
e–μ∗txi(t) we get

y′
 = a(t)y +A(t)y +A(t)y,

y′
 = (D– –μ∗I)y +A(t)y +A(t)y +A(t)y,

y′
 = (D+ –μ∗I)y +A(t)y +A(t)y +A(t)y.

()

Nowwe observe that y(t) is a solution of () bounded at +∞ if and only if x(t) is a solution
of () which is bounded on R when multiplied by e–μ∗t . Moreover, since |a(t)|, |A(t)|,
and |A(t)| belong to L(R), the limit limt→+∞ y(t) exists for any solution y(t) of ()
bounded on R+. So, let us fix t >  and take t ≥ t. If y(t) is a solution of () bounded at
+∞ it must be, by the variation of constants formula,

y(t) = y∞
 –

∫ ∞

t

(
a(s)y(s) +A(s)y(s) +A(s)y(s)

)
ds,

y(t) = e(D––μ∗I)(t–t)y

+
∫ t

t
e(D––μ∗I)(t–s)(A(s)y(s) +A(s)y(s) +A(s)y(s)

)
ds,

y(t) = –
∫ ∞

t
e(D+–μ∗I)(t–s)(A(s)y(s) +A(s)y(s) +A(s)y(s)

)
ds,

()

where y = y(t) and y∞
 = limt→+∞ y(t). Note that since σ (D– – μ∗I) ⊂ {λ ∈ C | �λ < }

and σ (D+ –μ∗I) ⊂ {λ ∈C | �λ > } and a(t), Aij(t) are bounded, we can interpret () as
a fixed point theorem in the Banach space of bounded function on [t, +∞[:

B :=
{
y(t) ∈ C([t,∞[

) | sup∣∣y(t)∣∣ <∞}
with the obvious norm. Since a(t),Aij(t) ∈ L(R+) we see that the map () is a contrac-
tion on B, provided t is sufficiently large, and then, for any given (y∞

 , y), it has a unique
solution y(t, y∞

 , y) ∈ B. Note that a priori y(t, y∞
 , y) is defined only on [t, +∞[ but of

course we can extend it to [,+∞[ going backward with time. We now prove that positive
constants  < c < c exist such that c ≤ |y(t, y)| ≤ c fox any t ≥ . Let t < t < t. We have

y(t) = e(D––μ∗I)(t–t)y

+
∫ t

t
e(D––μ∗I)(t–s)(A(s)y(s) +A(s)y(s) +A(s)y(s)

)
ds

and then

y(t) = e(D––μ∗I)(t–t)y +
∫ t

t
e(D––μ∗I)(t–s)(A(s)y(s) +A(s)y(s) +A(s)y(s)

)
ds

+
∫ t

t
e(D––μ∗I)(t–s)(A(s)y(s) +A(s)y(s) +A(s)y(s)

)
ds

= e(D––μ∗I)(t–t)y(t) +
∫ t

t
e(D––μ∗I)(t–s)(A(s)y(s) +A(s)y(s) +A(s)y(s)

)
ds.

http://www.boundaryvalueproblems.com/content/2014/1/101
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So, for any δ >  let t be such that supt≥t |Aij(t)| ≤ δ and set supt≥t |yj(t)| = ȳj. We have

ȳ = sup
t≥t

∣∣y(t)∣∣≤ keα(t–t)ȳ +
∫ t

t
keα(t–s)δ(ȳ + ȳ + ȳ)ds

≤ k
(
ȳ +

δ

α
(ȳ + ȳ + ȳ)

)
eα(t–t) +

kδ
|α| (ȳ + ȳ + ȳ)

with max{�μ | μ ∈ σ (D– –μ∗I)} < α < . Taking the limit as t → +∞ we get

ȳ ≤ δ

|α| (ȳ + ȳ + ȳ).

Since δ →  as t → +∞, from the above it follows that limt→∞ |y(t)| = . Similarly we
get

|y| ≤ kδβ–(ȳ + ȳ + ȳ),

where  < β <min{�μ | μ ∈ σ (D+ – μ∗I)} and then limt→∞ |y(t)| = . As a consequence
we obtain limt→∞ |y(t)| – |y(t)| =  and then

lim
t→∞

∣∣y(t)∣∣ = ∣∣y∞

∣∣.

So, provided we take y∞
 �=  we see that eventually (i.e. for t ≥ t̄, for some t̄ > )

|y∞
 |


≤ ∣∣y(t)∣∣≤ 

∣∣y∞


∣∣

and the existence of c, c >  such that

c ≤ ∣∣y(t)∣∣≤ c

for all t ≥  follows from the fact that |y(t)| cannot vanish in any bounded interval. Finally
since |x(t)| = |y(t)|eμ∗t we get, for ≤ s≤ t,

|x(t)|
|x(s)| =

|y(t)|
|y(s)|e

μ∗(t–s) ⇒ c
c
eμ∗(t–s) ≤ |x(t)|

|x(s)| ≤ c
c
eμ∗(t–s)

i.e.

c
c

∣∣x(s)∣∣≤ ∣∣x(t)∣∣e–μ∗(t–s) ≤ c
c

∣∣x(s)∣∣.
The proof is complete. �

Remark . (i) It follows from the proof of Theorem . that inequalities of () also hold
replacing (i) with the weaker assumption that μ∗ is a simple eigenvalue of D and all the
others either have real parts less than μ∗ or ≥ μ∗ (i.e. we do not need that μ∗ is simple).
Similarly inequalities of () hold if μ∗ is a simple eigenvalue ofD and all the others either
have real parts greater than μ∗ or ≤ μ∗ (i.e. we do not need that μ∗ is simple).
(ii) Note that a result related to Theorem . has been proved in [].

http://www.boundaryvalueproblems.com/content/2014/1/101
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3 Solutions asymptotic to the fixed point
It follows from ()-() that γ (s) – x = O(eμ∓s) as s → ±∞ then, since γ ′(s) = F(γ (s)) =
O(γ (s) – x) we obtain γ ′(s) =O(eμ∓s). Furthermore, from () we also get:

ω
(
γ (s)

)
=O
(
γ ′(s)

)
=O
(
eμ∓s).

As a consequence

T± :=
∫ ±∞


ω
(
γ (τ )

)
dτ < ∞.

Since ω(γ (s)) >  it follows that θ : R → ]T–,T+[ is a strictly increasing diffeomorphism
(see () for the definition of θ (s)). Then xh(t) := γ (θ–(t)) satisfies () on the interval
]T–,T+[ and

lim
t→T±

xh(t) = x.

Moreover (see ())

lim
t→t±

x′
h(t) = lim

t→t±

F(xh(t))
ω(xh(t))

= lim
s→±∞

F(γ (s))
ω(γ (s))

= μ∓
γ±

ω′(x)γ±
�= .

Hence x is not an I-point of (). In this paper we want to look for solutions of the coupled
equation () that belong to a neighborhood of {(xh(t),xh(t)) | T– < t < T+}, they are defined
in the interval ]T– + α,T+ + α[, for some α = α(ε), and tend to (x,x) at the same rate as
(xh(t),xh(t)). To this end we first perform a change of the time variable as follows. Set

t = α + θ (s) ∈ ]T– + α,T+ + α[

and plug zj(s) = xj(α + θ (s)) in (). We get

ω(zj)z′
j = ω

(
γ (s)

)(
F(zj) + εGj

(
z, z,α + θ (s), ε,κ

))
, j = , . ()

Since we are looking for solutions of () tending to (x,x) at the same rate as γ (s), in ()
we make the change of variables

zj(s) = γ (s) + ϕ(s)yj(s) = x + ϕ(s)
(
η(s) + yj(s)

)
, j = , , ()

where η(s) is the bounded function γ (s)–x
ϕ(s) . Since

ω
(
x + ϕ(s)

(
η(s) + y

))
≥ 〈∇ω(x),ϕ(s)

(
η(s) + y

)〉
–K

∣∣ϕ(s)(η(s) + y
)∣∣

= ϕ(s)
[〈∇ω(x),η(s) + y

〉
–Kϕ(s)

∣∣η(s) + y
∣∣] ()

for a suitable constant K >  and any s ∈R, |y| ≤  we get, using (C), ():

ω
(
x + ϕ(s)

(
η(s) + y

))≥ 

ϕ(s)

〈∇ω(x),γ±
〉
>  ()

http://www.boundaryvalueproblems.com/content/2014/1/101
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for |s| >  large and |y| < δ sufficiently small. Then () and ω(γ (t)) >  imply the existence
ofM >  and δ >  so that

ω
(
x + ϕ(s)

(
η(s) + y

))≥Mϕ(s)

for any s ∈R and |y| ≤ δ. Now plugging () into () we derive the equations

y′
j =

ω(γ (s))
ϕ(s)ω(γ (s) + ϕ(s)yj)

F
(
γ (s) + ϕ(s)yj

)
–
F(γ (s))
ϕ(s)

–
ϕ′(s)
ϕ(s)

yj

+ ε
ω(γ (s))

ϕ(s)ω(γ (s) + ϕ(s)yj)
Gj
(
γ (s) + ϕ(s)y,γ (s) + ϕ(s)y, θ (s) + α, ε,κ

)
,

j = , . ()

From () it follows that

ϕ′(s)
ϕ(s)

=
μ–e–μ–(s) +μ+e–μ+(s)

e–μ–(s) + e–μ+(s)
→ μ∓ as s→ ±∞.

Next we note that from Gj(x,x, t, ε,κ) =  it follows that the quantities

Gj(γ (s) + ϕ(s)y,γ (s) + ϕ(s)y,α + θ (s), ε,κ)
ϕ(s)

=
Gj(x + ϕ(s)(η(s) + y),x + ϕ(s)(η(s) + y),α + θ (s), ε,κ)

ϕ(s)
, j = , 

are bounded uniformly in s ∈ R and κ ∈R
m, y, y, ε bounded.

The linearization of () at y = , ε =  is

y′
j =
[
F ′(γ (s)) – F(γ (s))ω′(γ (s))

ω(γ (s))
–

ϕ′(s)
ϕ(s)

I

]
yj, j = , . ()

Taking the limit as s→ +∞ we get the systems

y′
j =
[
F ′(x) –

μ–γ+

ω′(x)γ+
ω′(x) –μ–I

]
yj, j = , . ()

Similarly taking the limit as s→ –∞ we get the systems

y′
j =
[
F ′(x) –

μ+γ–

ω′(x)γ–
ω′(x) –μ+I

]
yj, j = , . ()

From the proof of Lemma . (see also [, Lemma .]) we know that () has the positive
simple eigenvalues μ+ –μ– and –μ–, and () has the negative simple eigenvalues μ– –μ+

and –μ+. From the roughness of exponential dichotomies it follows that both equations
in () have an exponential dichotomy on both R+ and R– with projections, resp. P+ = 
and P– = I. Hence (see also []) all solutions of the system

y′ = –
[
F ′(γ (s))∗ – ω′(γ (s))∗F(γ (s))∗

ω(γ (s))
–

ϕ′(s)
ϕ(s)

I

]
y, ()

http://www.boundaryvalueproblems.com/content/2014/1/101
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adjoint to (), are bounded as |s| → ∞. We let ψ(s) and ψ(s) be any two linearly inde-
pendent solutions of ().

4 Melnikov function and the original equation
In this section we will give a condition for solving () for y(t), y(t) near the solution
y(t) = y(t) =  of the same equation with ε = . Writing

F (y) := y′ –
ω(γ (s))

ϕ(s)ω(γ (s) + ϕ(s)y)
F
(
γ (s) + ϕ(s)y

)
+
F(γ (s))
ϕ(s)

+
ϕ′(s)
ϕ(s)

y ()

and

Hj(y, y,η, ε) := –
ω(γ (s))

ϕ(s)ω(γ (s) + ϕ(s)yj)

×Gj
(
γ (s) + ϕ(s)y,γ (s) + ϕ(s)y, θ (s) + α, ε,κ

)
, j = , , ()

we look for solutions y(t), y(t) :R →R
 of

F (y) + εH(y, y,η, ε) = ,

F (y) + εH(y, y,η, ε) = 
()

in the Banach space of C-functions on R, bounded together with their derivatives and
with small norms. We observe that F () =  and equation F ′()y =  reads

y′ =
[
F ′(γ (s)) – F(γ (s))ω′(γ (s))

ω(γ (s))
–

ϕ′(s)
ϕ(s)

]
y. ()

In Section  (see also [, ]) we have seen that () has an exponential dichotomy on both
R+ andR+ with projections P+ = I–P– = . So the only bounded solution y(t) ofF ′()y = 
is y(t) = . In other wordsNF ′() = {}. So we are lead to prove the following.

Theorem . Let Y , X be Banach spaces, ε ∈ R be a small parameter and η ∈ R
d . Let

F : Y → X, H, : Y × Y ×R
d+ → X, (y, y,η, ε) �→ H,(y, y,η, ε) be C-functions such

that
(a) F () = ;
(b) NF ′() = {};
(c) there exist ψ, . . . ,ψd ∈ X∗ such thatRF ′() = {ψ, . . . ,ψd}◦.

SetM :Rd →R
d by

M(η) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψH(, , ,η, )
...

ψdH(, , ,η, )
ψH(, , ,η, )

...
ψdH(, , ,η, )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
()

http://www.boundaryvalueproblems.com/content/2014/1/101
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and suppose there exists η̄ ∈R
d such thatM(η̄) =  and the derivativeM′(η̄) is invertible.

Then there exist r >  and unique C-function η = η(ε), defined in a neighborhood of ε =
 ∈R such that

lim
ε→

η(ε) = η̄ ()

and for η = η(ε), ε �= , () has a unique solution (y(ε), y(ε)) ∈ Y × Y satisfying

∥∥(y(ε), y(ε))∥∥≤ r.

Moreover, yj(ε) = ε̃yj(ε) for C-functions ỹj(ε) ∈ Y and we have

F ′()̃yj() +Hj(, , , η̄, ) = , j = , . ()

Proof We look for solutions (y, y,η) of () that are close to (y, y,η) = (, , η̄). Let
P : X → X be the projection such that RP =RF ′(). Note codimRF ′() = d. From the
implicit function theorem, we solve the projected equations

PF (y) + εPH(y, y,η, ε) = ,

PF (y) + εPH(y, y,η, ε) = 

for unique y, = Y,(η, ε) ∈ Y such that

Y,(η, ) = ,

provided |ε| ≤ ε is sufficiently small and η in a fixed closed ball � ⊂R
d with η̄ ∈ ◦

�. Note
that Y, are C-smooth. Setting Q = I – P, we need to solve the bifurcation equations:

QF
(
Yj(η, ε)

)
+ εQHj

(
Y(η, ε),Y(η, ε),η, ε

)
= , j = , . ()

Observe that

Qx =  ⇔ x ∈RP =RF ′() ⇔ ψix =  for all i = , . . . ,d. ()

Then QF ′() =  and so

QF
(
Yj(η, ε)

)
=Oj

(
ε
)
, j = , ,

uniformly with respect to η. We conclude that () can be written as

εQHj(, ,η, ) = –QRj(η, ε), j = , , ()

where

Rj(η, ε) :=F
(
Yj(η, ε)

)
+ ε
[
Hj
(
Y(η, ε),Y(η, ε),η, ε

)
–Hj(, ,η, )

]
.

http://www.boundaryvalueproblems.com/content/2014/1/101
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Note that Rj(η, ε) are C-functions of (η, ε) and that ε–Rj(η, ε) = O(ε) uniformly with re-
spect to η, so

R̃j(η, ε) :=

{
–ε–Rj(η, ε), if ε �= ,
, if ε = 

is C in (η, ε). By (), system () is equivalent to

M(η) =

(
ψiR̃(η, ε)
ψiR̃(η, ε)

)
i=,...,d

=O(ε). ()

Because of the assumptions we can apply the implicit function theorem to () to obtain
a C-function η(ε) defined in a neighborhood of ε =  satisfying () and such that ()
holds. Setting

yj(ε) := Yj
(
η(ε), ε

)
, j = , 

we see that y(ε), y(ε) are bounded C-solutions of () with η = η(ε) such that y() = ,
y() = . Then we can write y(ε) = ε̃y(ε), y(ε) = ε̃y(ε)) for continuous ỹ(ε), ỹ(ε) ∈ Y
where

F
(
ε̃yj(ε)

)
+ εHj

(
ε̃y(ε), ε̃y(ε),η(ε), ε

)
= , j = , .

Clearly () follows differentiating the above equality at ε = . The proof is complete. �

Remark . Note that, because ofM(η̄) = , () is equivalent to

PF ′()̃yj() +Hj(, , , η̄, ) = , j = , ,

which has the unique solution

ỹj() = –
[
PF ′()

]–Hj(, , , η̄, ), j = , . ()

Now we apply Theorem . to () with F (y), H(y, y,η, ε), H(y, y,η, ε) as in (),
() and

Y = C
b
(
R,R), X = C

b
(
R,R), η = (α,κ) ∈R×R

m,

where Ck
b(R,R) is the Banach space of Ck-functions bounded together with their deriva-

tives with the usual sup-norm.
We already observed that F () =  andNF ′() = . Moreover,

RF ′() =
{
x = (x,x) ∈ X

∣∣∣ ∫ ∞

–∞
ψ∗

i (s)xi(s)ds = , i = , 
}
,

where ψi(s) have been defined in the previous Section . So d =  and m = . We recall,
from [], that ψj(s) = ϕ(s)vj(θ (s)) where vj(t) are solutions of the adjoint equation of ():

ω
(
xh(t)

)
v′ =

ω′(xh(t))∗

ω(xh(t))
F
(
xh(t)

)∗v – F ′(xh(t))∗v, t ∈ ]T–,T+[, ()

http://www.boundaryvalueproblems.com/content/2014/1/101
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and vj() =RP∗
– ∩NP∗

+. Hence () reads

M(α,κ) =

⎛⎜⎜⎜⎜⎝
∫∞
–∞

ψ∗
 (s)

ϕ(s) G(γ (s),γ (s),α + θ (s), ,κ)ds∫∞
–∞

ψ∗
 (s)

ϕ(s) G(γ (s),γ (s),α + θ (s), ,κ)ds∫∞
–∞

ψ∗
 (s)

ϕ(s) G(γ (s),γ (s),α + θ (s), ,κ)ds∫∞
–∞

ψ∗
 (s)

ϕ(s) G(γ (s),γ (s),α + θ (s), ,κ)ds

⎞⎟⎟⎟⎟⎠
or passing to time t = θ (s):

M(α,κ) =

⎛⎜⎜⎜⎜⎝
∫ T+
T– v∗

 (t)
G(xh(t),xh(t),t+α,,κ)

ω(xh(t))
dt∫ T+

T– v∗
(t)

G(xh(t),xh(t),t+α,,κ)
ω(xh(t))

dt∫ T+
T– v∗

 (t)
G(xh(t),xh(t),t+α,,κ)

ω(xh(t))
dt∫ T+

T– v∗
(t)

G(xh(t),xh(t),t+α,,κ)
ω(xh(t))

dt

⎞⎟⎟⎟⎟⎠ . ()

A direct application of Theorem . gives the following.

Theorem . Let m =  and M(α,κ) be given as in () where v(t), v(t) are two inde-
pendent bounded solutions (on R) of the adjoint equation (). Suppose that ᾱ and κ̄ exist
so that

M(ᾱ, κ̄) =  and
∂M

∂(α,κ)
(ᾱ, κ̄) ∈GL(,R). ()

Then there exist ε̄ > , ρ > , unique C-functions α(ε) and κ(ε)with α() = ᾱ and κ() = κ̄ ,
defined for |ε| < ε̄, and a unique solution (z(s, ε), z(s, ε)) of () with α = α(ε), κ = κ(ε),
 < |ε| < ε̄, such that

sup
s∈R

∣∣zj(s, ε) – γ (s)
∣∣ϕ(s)– < ρ, j = , . ()

Moreover,

sup
s∈R

∣∣zj(s, ε) – γ (s)
∣∣ϕ(s)– =O(ε), j = , .

Remark . (i) Equation () implies

zj(s, ε) = γ (s) + ε̃yj(s, ε)ϕ(s), j = , ,

for C-functions ỹj(s, ε) with sup|ε|≤ε̄ sups∈R |̃yj(s, ε)| <∞. Then we have

zj(s, ε) = γ (s) + ε̃yj(s, ε)ϕ(s) = γ (s) + ε̃yj(s, )ϕ(s) + εwj(s, ε)ϕ(s)

with wj(s, ε) = ỹj(s, ε) – ỹj(s, ), so limε→ sups∈R |wj(s, ε)| = . Hence

lim
ε→

sup
s∈R

∣∣zj(s, ε) – γ (s) – ε̃yj(s, )ϕ(s)
∣∣ϕ(s)–ε– = , j = , , ()

http://www.boundaryvalueproblems.com/content/2014/1/101
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which gives a first order approximation of zj(s, ε). Next, ỹj(s, ) can be computed using ()
adapted to this case. Hence ỹj(s, ) are bounded solutions of

y′
j =
[
F ′(γ (s)) – F(γ (s))ω′(γ (s))

ω(γ (s))
–

ϕ′(s)
ϕ(s)

]
yj +


ϕ(s)

Gj
(
γ (s),γ (s), θ (s) + ᾱ, κ̄

)
.

Since () has exponential dichotomies on both R+ (with projection P+ = ) and R– (with
projection P– = I) it follows that

ỹj(s, ) =

{
–
∫∞
s X(s)X–(z) 

ϕ(z)Gj(γ (z),γ (z), θ (z) + ᾱ, κ̄)dz for s≥ ,∫ s
–∞ X(s)X–(z) 

ϕ(z)Gj(γ (z),γ (z), θ (z) + ᾱ, κ̄)dz for s≤ .
()

X(s) is the fundamental solution of (). Note formulas () are well defined at s = , i.e.,
ỹj(–, ) = ỹj(+, ), due to the first assumption of (). Next, passing to time t = θ (s) and
taking zj(t) := ϕ(θ–(t))̃yj(θ–(t), ), we get

zj(t) =
∫ θ–(t)

–∞
ϕ
(
θ–(t)

)
X
(
θ–(t)

)
X–(z)ϕ(z)–Gj

(
γ (z),γ (z), θ (z) + ᾱ, κ̄

)
dz

=
∫ t

T–
ϕ
(
θ–(t)

)
X
(
θ–(t)

)
X–(θ–(u)

)
ϕ
(
θ–(u)

)–Gj(xh(u),xh(u),u + ᾱ, κ̄)
ω(xh(u))

du

for T– < t ≤  and

zj(t) = –
∫ T+

t
ϕ
(
θ–(t)

)
X
(
θ–(t)

)
X–(θ–(u)

)
ϕ
(
θ–(u)

)–Gj(xh(u),xh(u),u + ᾱ, κ̄)
ω(xh(u))

du

for  ≤ t < T+. Note that zj(t) solves

ω
(
xh(t)

)
z′ = F ′(xh(t))z – F

(
xh(t)

)ω′(xh(t))z
ω(xh(t))

+Gj
(
xh(t),xh(t), t + ᾱ, κ̄

)
with supt∈ ]T–,T+[ |zj(t)|ϕ(θ–(t))– < ∞, and ϕ(θ–(t))X(θ–(t)) is a fundamental solution of
().
(ii) Using (), the functions xj(t, ε) := zj(θ–(t – α(ε)), ε) are bounded solutions of () in

the interval ]T– + α(ε),T+ + α(ε)[ such that

lim
ε→

sup
t∈ ]T–,T+[

∣∣xj(t + α(ε), ε
)
– xh(t) – εzj(t)

∣∣ϕ(θ–(t)
)–

ε– = .

Summarizing, we obtain the following corollary of Theorem ..

Corollary . Let m =  and M(α,κ) be given as in () where v(t), v(t) are two inde-
pendent bounded solutions (on R) of the adjoint equation (). Suppose that ᾱ and κ̄ exist
so that

M(ᾱ, κ̄) =  and
∂M

∂(α,κ)
(ᾱ, κ̄) ∈GL(,R).

Then there exist ε̄ > , ρ > , unique C-functions α(ε) and κ(ε)with α() = ᾱ and κ() = κ̄ ,
defined for |ε| < ε̄, and a unique solution (x(t, ε),x(t, ε)) of () with α = α(ε), κ = κ(ε),

http://www.boundaryvalueproblems.com/content/2014/1/101
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 < |ε| < ε̄, such that

sup
T–<t<T+

∣∣xj(t + α(ε), ε
)
– xh(t)

∣∣ϕ(θ–(t)
)– < ρ, j = , .

Moreover,

sup
T–<t<T+

∣∣xj(t + α(ε), ε
)
– xh(t)

∣∣ϕ(θ–(t)
)– =O(ε), j = , .

5 Applications to RLC circuits
In this section we study the coupled equations

(
u + u

)′′ + εγ
(
u + u

)′ + u – ελ
(
u + u

)′′ + ε sin t = ,(
u + u

)′′ + εγ
(
u + u

)′ + u – ελ
(
u + u

)′′ + εχ sin(t +� ) = ,
()

which ismotivated by [, ]. Note that () is obtained by coupling two equationsmodeling
nonlinear RLC circuits as in (). Here γ, γ, λ, χ and � are positive parameters. Setting
wj = (uj + uj )′, j = , , () reads

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u + )u′

 = w,
w′
 + εγw + u – ελw′

 + ε sin t = ,
(u + )u′

 = w,
w′
 + εγw + u – ελw′

 + εχ sin(t +� ) = .

()

By solving the second and fourth equations of () for w′
 and w′

, we get:⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u + )u′

 = w,
w′
 = –u + ε

sin t+λu+γw+ελ(χ sin(t+� )+λu+γw)
ελ– ,

(u + )u′
 = w,

w′
 = –u + ε

χ sin(t+� )+λu+γw+ελ(sin t+λu+γw)
ελ– ,

()

provided |ελ| �= . Since ω(u,w) = ω(u) = u + , to write the system () in the form ()
with parameter κ = (γ,γ,λ) and (χ ,� ) fixed, we have to multiply the second and fourth
equation by u, + , respectively, and we obtain the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u + )u′

 = w,
(u + )w′

 = –(u + )u + ε(u + ) sin t+λu+γw+ελ(χ sin(t+� )+λu+γw)
ελ– ,

(u + )u′
 = w,

(u + )w′
 = –(u + )u + ε(u + )χ sin(t+� )+λu+γw+ελ(sin t+λu+γw)

ελ– ,

()

with (uncoupled) unperturbed equation for ε =  (see ()):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u + )u′

 = w,
(u + )w′

 = –(u + )u,
(u + )u′

 = w,
(u + )w′

 = –(u + )u.

()
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Neglecting left multiplicators u +  (u = u,u) in (), we obtain the following system
(see condition (C)):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u′
 = w,

w′
 = –(u + )u,

u′
 = w,

w′
 = –(u + )u.

()

Clearly, condition (C) is satisfied with x = (– 
 , ) and

F(x) =
(
w, –(u + )u

)∗, ω(x) = u + , x = (u,w)∗.

The equation u′′ + (u + )u =  has the prime integral u′ + 
u

 + u. A solution u(s)
satisfying lims→∞ u(s) = – 

 has to satisfy u
′ + 

u
 +u – 

 = ⇔ u′ + (u–)(u+ 
 )

 =
 with the solution

u(s) =



(
 –  tanh

s


)

bounded on R. Hence

γ (s) =
(



(
 –  tanh

s


)
, – csch s sinh

s


)∗
.

Note ω(γ (s)) = u(s) +  = 
 sech

 s
 > . From

F ′(x) =

(
 
 

)
,

we get μ± = ± and γ± = (,±)∗. Since ∇ω(x) = (, )∗, we derive 〈∇ω(x),γ±〉 =  > ,
and condition (C) holds as well. Next, we have

G(x,x, t, ε,κ) =
u + 
ελ – 

(


sin t + λu + γw + ελ(χ sin(t +� ) + λu + γw)

)
,

G(x,x, t, ε,κ) =
u + 
ελ – 

(


χ sin(t +� ) + λu + γw + ελ(sin t + λu + γw)

)
;

hence Gi(x,x, t, ε,κ) =  and assumption (C) is also verified. Here xi = (ui,wi)∗, i = , .
Furthermore by ()

θ (s) =
∫ s


ω
(
γ (τ )

)
dτ =

∫ s





sech

τ


dτ =  tanh

s

,

so T± =± and

xh(t) = γ
(
θ–(t)

)
=



(
 –

t


, t
(
t


– 
))∗

.
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Thus

ω
(
xh(t)

)
=


(
 – t

)
, ∇ω

(
xh(t)

)
= (, )∗,

F(xh(t))
ω(xh(t))

=


(
–t, t – 

)∗, F ′(xh(t)) = (  
t
 –  

)
.

So now () has the form

z′
 =

t
 – t

z +


 – t
z,

z′
 = –z,

()

which has the solution x′
h(t) = (– t

 ,

 (t

 – )). In other words, we deal with

z′′
 =

t
 – t

z′
 –


 – t

z, ()

possessing the solution 
 (t

 – ). Following [, p.], the second solution of () is
given by




((
t – 

)
arctanh

t

– t

)
.

Consequently a fundamental matrix solution of () has the form

Z(t) =

(
– t



 (

(t–)
t– – t arctanh t

 )

 (t

 – ) 
 (t

 – ) arctanh t
 –

t


)
.

Note detZ(t) = 
–t . The adjoint system of () is (see ())

ζ ′
 =

t
t – 

ζ + ζ,

ζ ′
 =


t – 

ζ

()

with the fundamental matrix solution

Z–∗(t) =

(

 ( – t)((t – ) arctanh t

 – t) 
 (t

 – )(t – )

 (t

 – ) – 
 t(t

 – ) arctanh t



 t(t

 – )

)
.

Note limt→± Z–∗(t) =
(  
 

)
. Thus we take

v(t) =

(

 (t

 – )(t – (t – ) arctanh t
 )


 (t

 – ) – 
 t(t

 – ) arctanh t


)

and

v(t) =

(

 (t

 – )(t – )

 t(t

 – )

)
.
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We now computeM(α,κ). We have (see the appendix)

∫ T+

T–
v∗
 (t)

G(xh(t),xh(t), t + α, ,κ)
ω(xh(t))

dt

=


(
λ +  sinα

(
�( cos –  sin) + cos(– – Ci + log – Si)

+ sin( + Ci –  log – Si)
))

= aλ + a sinα, ()

where Si(t) =
∫ t


sin s
s ds is the sine integral function, Ci(t) = –

∫∞
t

cos s
s ds is the cosine inte-

gral function [, p.] and � is the Euler constant. Similarly

∫ T+

T–
v∗
(t)

G(xh(t),xh(t), t + α, ,κ)
ω(xh(t))

dt

= –
γ


–  cosα( cos +  sin) = aγ + a cosα ()

and ∫ T+

T–
v∗
 (t)

G(xh(t),xh(t), t + α, ,κ)
ω(xh(t))

dt = aλ + aχ sin(α +� ),

∫ T+

T–
v∗
(t)

G(xh(t),xh(t), t + α, ,κ)
ω(xh(t))

dt = aγ + aχ cos(α +� ).
()

Note

a = , a
.= ., a = –




, a
.= ..

Consequently, the Melnikov function is now

M(α,κ) =

⎛⎜⎜⎜⎝
aλ + a sinα

aγ + a cosα
aλ + aχ sin(α +� )
aγ + aχ cos(α +� )

⎞⎟⎟⎟⎠ . ()

The equationM(α,κ) =  is equivalent to

λ = –
a
a

sinα = –
a
a

χ sin(α +� ),

γ = –
a
a

cosα, γ = –
a
a

χ cos(α +� ).
()

So having χ >  and � >  such that the equation

sinα – χ sin(α +� ) =  ()

has a simple zero α with sinα < , cosα >  and cos(α + � ) > , formulas () give a
simple zero (α,γ,,γ,,λ) of () with positive γ,, γ,, λ, and Corollary . can be
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applied to (). If χ cos� �= , then () is equivalent to

tanα =
χ sin�

 – χ cos�
. ()

Hence assuming � ∈ ]π , π [ and χ cos� < , the right hand side of () is negative, and
then

α = arctan
χ sin�

 – χ cos�
∈
]
–

π


, 
[

()

satisfies sinα <  and cosα > . Since α satisfies () and sinα < , condition cos(α +
� ) >  is equivalent to tan(α +� ) < . Then using (), we derive

 > tan(α +� ) =
sin�

cos� – χ
, � �= π


. ()

When cos� < , then () is not satisfied, since sin� < . So we take � ∈ ] π , π [ and
() gives also χ < cos� . Clearly χ < cos� implies  > χ cos� .
Summarizing we see that for any fixed χ and � satisfying

 < χ < cos� , � ∈
]
π

, π
[
, ()

the Melnikov function () has a simple zero (α,γ,,γ,,λ) given by () and (), and
γ, > , γ, > , λ > . Hence in the region given by () we apply Corollary . to ()
with parameters γ, γ, λ near γ,, γ,, λ determined by () and (), i.e.,

λ = –
aχ sin�

a
√
 + χ – χ cos�

,

γ, = –
a( – χ cos� )

a
√
 + χ – χ cos�

,

γ, = –χ
a(cos� – χ )

a
√
 + χ – χ cos�

()

for any fixed � and χ satisfying (). Summarizing, we get the following.

Theorem . For any fixed � , χ satisfying () and then α, γ,, γ,, λ given by ()
and (), there is an ε >  and smooth functions α,γ,γ,λ : ]–ε, ε[→ R with α() = α,
γ() = γ,, γ() = γ,, λ() = λ, such that for any ε ∈ ]–ε, ε[\{}, system () with γ =
γ(ε), γ = γ(ε), λ = λ(ε), possesses a unique solution (u(ε, t),u(ε, t)) on ]– + α(ε),  +
α(ε)[ such that

lim
ε→

sup
t∈ ]–,[

∣∣∣∣uj(ε, t + α(ε)
)
–



(
 –

t



)∣∣∣∣( – t
)– = ,

lim
ε→

sup
t∈ ]–,[

∣∣∣∣u′
j
(
ε, t + α(ε)

)
+
t


∣∣∣∣ = .
()
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Proof We apply Corollary . to (). Since, in this case, ϕ(θ–(t)) = 

–t
+t , according to

Corollary . () has a solution (uj(t),wj(t)), j = , , such that

lim
ε→

sup
t∈ ]–,[

∣∣∣∣uj(ε, t + α(ε)
)
–



(
 –

t



)∣∣∣∣( – t
)– = ,

lim
ε→

sup
t∈ ]–,[

∣∣∣∣wj
(
ε, t + α(ε)

)
–

t


(
t


– 
)∣∣∣∣( – t

)– = .
()

Now, wj(ε, t) = ( +uj(ε, t))u′
j(ε, t) and

t
 (

t
 – ) = ( +uh(t))u′

h(t), where uh(t) =

 ( –

t
 ).

So, taking t′ := t + α(ε),

wj
(
ε, t′
)
–

t


(
t


– 
)

=
(
 + uj

(
ε, t′
))
u′
j
(
ε, t′
)
–
(
 + uh(t)

)
u′
h(t)

=
(
 + uj

(
ε, t′
))(

u′
j
(
ε, t′
)
– u′

h(t)
)
+ 
(
uj
(
ε, t′
)
– uh(t)

)
u′
h(t)

=
(
 + uh(t)

)(
u′
j
(
ε, t′
)
– u′

h(t)
)
+ 
(
uj
(
ε, t′
)
– uh(t)

)(
u′
j
(
ε, t′
)
– u′

h(t)
)

+ 
(
uj
(
ε, t′
)
– uh(t)

)
u′
h(t)

=
[
 – t


+ 
(
uj
(
ε, t′
)
– uh(t)

)](
u′
j
(
ε, t′
)
– u′

h(t)
)

–
t

(
uj
(
ε, t′
)
– uh(t)

)
and then[

wj
(
ε, t′
)
–

t


(
t


– 
)](

 – t
)–

=
[


+ 

uj(ε, t′) – uh(t)
 – t

](
u′
j
(
ε, t′
)
– u′

h(t)
)
–
t

uj(ε, t′) – uh(t)

 – t
, ()

or, equivalently,

[


+ 

uj(ε, t′) – uh(t)
 – t

](
u′
j
(
ε, t′
)
– u′

h(t)
)

=
[
wj
(
ε, t′
)
–

t


(
t


– 
)](

 – t
)– + t


uj(ε, t′) – uh(t)

 – t
. ()

Since sup–<t< |uj(ε, t′) – uh(t)|( – t)– =O(ε) we see that, for ε sufficiently small,



<
∣∣∣∣  + 

uj(ε, t′) – uh(t)
 – t

∣∣∣∣ < 

,

and hence, using () and (),

lim
ε→

sup
–<t<

∣∣u′
j
(
ε, t′
)
– u′

h(t)
∣∣ = . ()
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Vice versa, if () and the first of () hold, then () gives

lim
ε→

sup
–<t<

∣∣∣∣wj
(
ε, t + α(ε)

)
–

t


(
t


– 
)∣∣∣∣( – t

)– = .

Hence () and () are equivalent. The proof is complete. �

Of course, solutions given by Theorem . vary smoothly with respect (� ,χ ) satisfying
().

Remark . Missed in the above analysis is the second possibility when � ∈ ],π [. Then
sin� >  and () is negative if

κ cos� > , ()

so we get � ∈ ], π
 [ and κ > . Then inequality of () is satisfied since κ >  > cos� . So

we conclude that the result of Theorem . is valid also for

κ cos� > , � ∈
]
,

π



[
,

λ =
aχ sin�

a
√
 + χ – χ cos�

,

γ, =
a( – χ cos� )

a
√
 + χ – χ cos�

,

γ, = χ
a(cos� – χ )

a
√
 + χ – χ cos�

.

Appendix
Let v(t) = 

 (t
 – ) – 

 t(t
 – ) arctanh t

 be the second component of v(t). Note that
v(t) is an even function and then

∫ T+

T–
v∗
 (t)

G(xh(t),xh(t), t + α, ,κ)
ω(xh(t))

dt

= –
∫ 

–
v(t)

[
γ

t


(
t


– 
)
+

λ



(
 –

t



)
+ sin t cosα + sinα cos t

]
dt

= –
∫ 

–
v(t)

[
λ



(
 –

t



)
+ sinα cos t

]
dt

=
λ



∫ 

–
v(t)

(
t – 

)
dt –

∫ 

–
v(t) cos t dt sinα. ()

Similarly,

∫ T+

T–
v∗
 (t)

G(xh(t),xh(t), t + α, ,κ)
ω(xh(t))

dt

=
λ



∫ 

–
v(t)

(
t – 

)
dt – χ

∫ 

–
v(t) cos t dt sin(α +� ). ()
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Now, using limt→±∓ (t – ) arctanh(t) =  and integration by parts of the second integral,

∫ 

–
v(t)

(
t – 

)
dt

=
∫ 

–

[


(
t – 

)
–


t
(
t – 

)
arctanh

t


](
t – 

)
dt

=



–



∫ 

–
t
(
t – 

)(
t – 

)
arctanh

t

dt

=



–



[
t(t – )


arctanh

t

–
∫ t(t – )




 – t
dt
]
–

=



–



∫ 

–
t
(
t – 

)
dt =




+



= .

Furthermore, since∫ 

–
v(t) cos t dt =

∫ 

–

[


(
t – 

)
–


t
(
t – 

)
arctanh

t


]
cos t dt,

we compute

∫ 

–

(
t – 

)
cos t dt = (sin +  cos),

and

I(t) :=
∫

t
(
t – 

)
cos t arctanh

t

dt

=
(

(
– + t

)
cos t + t

(
– + t

)
sin t

)
arctanh

t


+
∫ ((– + t) cos t + t(– + t) sin t)

– + t
dt.

Next∫ (– + t) cos t + t(– + t) sin t
– + t

dt

=
∫
( cos t + t sin t)dt – 

∫ – cos t + t sin t
– + t

dt

= –t cos t +  sin t – 
∫ – cos t + t sin t

– + t
dt.

Furthermore,∫
cos t

– + t
dt =




∫
cos t
t – 

dt –



∫
cos t
t + 

dt

=



∫
cos( – z)

z
dz
∣∣∣
z=–t

–



∫
cos(v – )

v
dv
∣∣∣
v=t+

=



(∫
cos cos z + sin sin z

z
dz
∣∣∣
z=–t
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–
∫

cos v cos + sin v sin
v

dv
∣∣∣
v=t+

)
=


(
cosCi( – t) + sinSi( – t)

)
–


(
cosCi( + t) + sinSi( + t)

)
=


(
cos

(
Ci( – t) –Ci( + t)

)
+ sin

(
Si( – t) – Si( + t)

))
,

and ∫ t sin t
– + t

dt =



∫
sin t
t – 

dt +



∫
sin t
t + 

dt

=


(
sinCi( – t) – cosSi( – t)

)
+


(
cosSi( + t) – sinCi( + t)

)
=


(
cos

(
Si( + t) – Si( – t)

)
+ sin

(
Ci( – t) –Ci( + t)

))
.

Hence

I(t) =
(

(
– + t

)
cos t + t

(
– + t

)
sin t

)
arctanh

t

– t cos t +  sin t

+ 
(
Ci( – t)( cos –  sin) +Ci( + t)(– cos +  sin)

+ ( cos +  sin)
(
Si( – t) – Si( + t)

))
.

Clearly I() = .Next, using arctanh t
 =


 (ln– ln(–t))+o(),Ci(–t) = �+ ln(–t)+o()

as t → –, we derive

I(t) = Ci( + t)(– cos +  sin) +


(
 cos t

(
–t + o()

(
– + t

)
+
(
– + t

)
ln
)

+ 
(
� + o()

)
( cos –  sin) +

(
 + t

(
– + t

)(
o() + ln

))
sin t

+ ( cos +  sin)
(
Si( – t) – Si( + t)

))
+


(
–
(
– + t

)
cos t + ( cos –  sin) – t

(
– + t

)
sin t

)
ln( – t).

Setting f (t) := 
 (–(– + t) cos t + ( cos –  sin) – t(– + t) sin t) we see f () = , so

f (t) ln(– t) = f ′(t′)(t–) ln(– t), t′ ∈ (t, ) and using limt→–(t–) ln(– t) = , we obtain

I(–) = lim
t→–

I(t) =  cos(– + � – Ci + ln – Si)

–  sin(– + � – Ci + ln + Si).

Summarizing we arrive at

∫ 

–
v(t) cos t dt

=


(sin +  cos) –



I(–)

= sin(– + � – Ci + ln + Si) + cos( – � + Ci – ln + Si).
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So inserting the above computations into () and (), we get () and the first formula
of (). Next, since the second component v(t) = 

 t(t
 – ) of v(t) is odd, we get

∫ T+

T–
v∗
(t)

G(xh(t),xh(t), t + α, ,κ)
ω(xh(t))

dt

= –
∫ 

–
v(t)

(
sin(t + α) +

λ



(
 –

t



)
+

γ


t
(
t


– 
))

dt

= –
∫ 

–
v(t) sin t dt cosα +




γ

∫ 

–
v(t)t

(
 – t

)
dt.

But ∫ 

–
v(t)t

(
 – t

)
dt = –

∫ 

–



t
(
t – 

) dt = –



and ∫ 

–
v(t) sin t dt =

∫ 

–



t
(
t – 

)
sin t dt =  sin +  cos.

So we obtain (). Similarly,

∫ T+

T–
v∗
(t)

G(xh(t),xh(t), t + α, ,κ)
ω(xh(t))

dt

= –
∫ 

–
v(t)

(
χ sin(t + α +� ) +

λ



(
 –

t



)
+

γ


t
(
t


– 
))

dt

= –
∫ 

–
v(t) sin t dt cos(α +� ) +




γ

∫ 

–
v(t)t

(
 – t

)
dt

= –( sin +  cos) cos(α +� ) –



γ,

which implies the second formula of ().
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