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Abstract
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1 Statement of the problem
Consider the system of functional-differential equations

u′
i(t) = pi(u, . . . ,un)(t) + fi(u, . . . ,un)(t) for a.e. t ∈ [a,b] (i = , . . . ,n) ()

together with the boundary conditions

�i(u, . . . ,un) = hi(u, . . . ,un) (i = , . . . ,n). ()

Here, pi, fi : C([a,b];Rn) → L([a,b];R) are continuous operators satisfying Carathéodory
conditions, i.e. for every r >  there exists qr ∈ L([a,b];R+) such that

n∑
i=

(∣∣pi(u, . . . ,un)(t)∣∣ + ∣∣fi(u, . . . ,un)(t)∣∣) ≤ qr(t) for a.e. t ∈ [a,b],
n∑
i=

‖ui‖C ≤ r,

and �i,hi : C([a,b];Rn) → R are continuous functionals which are bounded on every ball
by a constant, i.e. for every r >  there existsMr >  such that

n∑
i=

(∣∣�i(u, . . . ,un)∣∣ + ∣∣hi(u, . . . ,un)∣∣) ≤Mr whenever
n∑
i=

‖ui‖C ≤ r.

Furthermore, we assume that pi and �i satisfy the following condition: there exist positive
real numbers λij and μi such that λijλjm = λim whenever i, j,m ∈ {, . . . ,n}, and for every
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c >  and (uk)nk= ∈ C([a,b];Rn) we have

cpi(u, . . . ,un)(t) = pi
(
cλiu, . . . , cλinun

)
(t) for a.e. t ∈ [a,b], ()

cμi�i(u, . . . ,un) = �i
(
cλiu, . . . , cλinun

)
. ()

Remark  From the above-stated assumptions it follows that λii = , λij = /λji for every
i, j ∈ {, . . . ,n}.

In the case when pi and �i are linear bounded operators and fi(·, . . . , ·)(t) ≡ qi(t),
hi(·, . . . , ·)≡ ci, the relationship between the existence of a solution to problem (), () and
the existence of only the trivial solution to its corresponding homogeneous problem, so-
called Fredholm alternative, is well known; for more details see e.g. [–] and references
therein.
In , Lasota established the Fredholm-type theorem in the case when pi and �i are

homogeneous operators (see []). Recently, Fredholm-type theorems in the case when
pi and �i are positively homogeneous operators were established by Kiguradze, Půža,
Stavroulakis in [] and also by Kiguradze, Šremr in [].
In this paper we unify the ideas used in [] and [] to obtain a new Fredholm-type theo-

rem for the case when pi and �i are positively homogeneous operators. The consequences
of the obtained result for particular cases of problem (), () are formulated at the end of
the paper.
The following notation is used throughout the paper.
N is the set of all natural numbers;
R is the set of all real numbers, R+ = [,+∞);
R

n is the linear space of vectors x = (xi)ni= with the elements xi ∈R endowed with the
norm

‖x‖ =
n∑
i=

|xi|;

C([a,b];Rn) is the Banach space of continuous vector-valued functions
u = (ui)ni= : [a,b]→R

n with the norm

‖u‖C =
n∑
i=

max
{∣∣ui(t)∣∣ : t ∈ [a,b]

}
;

AC([a,b];Rn) is the set of absolutely continuous vector-valued functions
u : [a,b]→R

n;
L([a,b];R) is the Banach space of Lebesgue integrable functions p : [a,b]→R with
the norm

‖p‖L =
∫ b

a

∣∣p(s)∣∣ds;
L([a,b];R+) = {p ∈ L([a,b];R) : p(t) ≥  for a.e. t ∈ [a,b]};

if � is a set then meas�, int�, �, and ∂� denotes the measure, interior, closure, and
boundary of the set �, respectively.
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By a solution to (), () we understand a function (ui)ni= ∈ AC([a,b];Rn) satisfying ()
almost everywhere in [a,b] and ().

Notation  Define, for every i ∈ {, . . . ,n}, the following functions:

qi(t,ρ)
def= sup

{∣∣fi(u, . . . ,un)(t)∣∣ : ‖uk‖C ≤ ρλik ,k = , . . . ,n
}

for a.e. t ∈ [a,b],

ηi(ρ)
def= sup

{∣∣hi(u, . . . ,un)∣∣ : ‖uk‖C ≤ ρ
λik
μi ,k = , . . . ,n

}
.

2 Main result
Theorem  Let

lim
ρ→+∞

∫ b

a

qi(s,ρ)
ρ

ds = ,

lim
ρ→+∞

ηi(ρ)
ρ

=  (i = , . . . ,n).
()

If the problem

u′
i(t) = ( – δ)pi(u, . . . ,un)(t) – δpi(–u, . . . , –un)(t)

for a.e. t ∈ [a,b] (i = , . . . ,n), ()

( – δ)�i(u, . . . ,un) – δ�i(–u, . . . , –un) =  (i = , . . . ,n) ()

has only the trivial solution for every δ ∈ [, /], then problem (), () has at least one
solution.

The proof of Theorem  is based on the following result by Krasnosel’skii (see [, The-
orem ., p.]). We will formulate it in a form suitable for us.

Theorem  Let X be a Banach space, � ⊆ X be a symmetrica bounded domain with  ∈
int�. Let, moreover, A : � → � be a compactb continuous operator which has no fixed
point on ∂�. If, in addition,

A(x) – x
‖A(x) – x‖ �= A(–x) + x

‖A(–x) + x‖ for x ∈ ∂�

then A has a fixed point in �, i.e. there exists x ∈ � such that x = A(x).

Furthermore, to prove Theorem  we will need the following lemma.

Lemma  Let, for every δ ∈ [, /], problem (), () has only the trivial solution. Then
there exists r >  such that for any (ui)ni= ∈ AC([a,b];Rn) and any δ ∈ [, /], the a priori
estimate

n∑
k=

‖uk‖λk
C ≤ r

n∑
i=

(‖̃fi‖λi
L + |̃hi|

λi
μi

)
()
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holds, where

f̃i(t)
def= u′

i(t) – ( – δ)pi(u, . . . ,un)(t) + δpi(–u, . . . , –un)(t)

for a.e. t ∈ [a,b] (i = , . . . ,n),

h̃i
def= ( – δ)�i(u, . . . ,un) – δ�i(–u, . . . , –un) (i = , . . . ,n).

Proof Suppose on the contrary that for every m ∈ N there exist (uim)ni= ∈ AC([a,b];Rn)
and δm ∈ [, /] such that

n∑
k=

‖ukm‖λk
C >m

n∑
i=

(‖̃fim‖λi
L + |̃him|

λi
μi

)
, ()

where

f̃im(t)
def= u′

im(t) – ( – δm)pi(um, . . . ,unm)(t) + δmpi(–um, . . . , –unm)(t)

for a.e. t ∈ [a,b] (i = , . . . ,n), ()

h̃im
def= ( – δm)�i(um, . . . ,unm) – δm�i(–um, . . . , –unm) (i = , . . . ,n). ()

Put

ρm =
n∑
k=

‖ukm‖λk
C form ∈N, ()

vim(t) =
uim(t)
ρ

λi
m

for t ∈ [a,b],m ∈N. ()

Then

n∑
i=

‖vim‖λi
C =  form ∈N ()

and from () and (), in view of (), (), (), and (), we get

f̃im(t)
ρ

λi
m

= v′
im(t) – ( – δm)pi(vm, . . . , vnm)(t) + δmpi(–vm, . . . , –vnm)(t)

for a.e. t ∈ [a,b] (i = , . . . ,n;m ∈N), ()

h̃im
ρ

λiμi
m

= ( – δm)�i(vm, . . . , vnm) – δm�i(–vm, . . . , –vnm) (i = , . . . ,n;m ∈N). ()

On the other hand, from () and () we have

n∑
i=

(∥∥∥∥ f̃im
ρ

λi
m

∥∥∥∥λi

L
+

∣∣∣∣ h̃im
ρ

λiμi
m

∣∣∣∣
λi
μi

)
<


m

form ∈N, ()
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whence, according to [, Corollary IV..] it follows that

lim
measE→

∫
E

f̃im(s)
ρ

λi
m

ds =  uniformly form ∈N (i = , . . . ,n). ()

Therefore, (), (), and () imply that the sequences {vim}+∞
m= (i = , . . . ,n) are uniformly

bounded and equicontinuous. Thus, according to Arzelà-Ascoli theorem, without loss of
generality we can assume that there exist (vi)ni= ∈ C([a,b];Rn) and δ ∈ [, /] such that

lim
m→+∞ δm = δ, lim

m→+∞‖vim – vi‖C =  (i = , . . . ,n). ()

Furthermore, ()-() yield (vi)ni= ∈ AC([a,b];Rn) and show that it is a solution to (),
(). However, () and () result in

n∑
i=

‖vi‖λi
C = ,

which contradicts our assumptions. �

Proof of Theorem  Let X = C([a,b];Rn)×R
n and for x ∈ X, i.e. x = (u,α) = ((ui)ni=, (αi)ni=),

define the norm

‖x‖ = ‖u‖C + ‖α‖.

Then (X,‖ · ‖) is a Banach space. Let the operators T ,F ,A : X → X be defined as follows:

T(x) def=
((

ui(a) + αi +
∫ t

a
pi(u, . . . ,un)(s)ds

)n

i=
,
(
αi + �i(u, . . . ,un)

)n
i=

)
, ()

F(x) def=
((∫ t

a
fi(u, . . . ,un)(s)ds

)n

i=
,
(
–hi(u, . . . ,un)

)n
i=

)
, ()

A(x) def= T(x) + F(x), ()

and consider the operator equation

x = A(x). ()

It can easily be seen that problem (), (), and () are equivalent in the following sense:
if x = (u,α) is a solution to (), then αi =  (i = , . . . ,n) and (ui)ni= is a solution to (), ();
and vice versa if (ui)ni= is a solution to (), (), then x = (u, ) is a solution to ().
Let r >  be such that the conclusion of Lemma  is valid. According to () we can choose

ρ >  such that


ρ

n∑
i=

(∥∥qi(·,ρλi


)∥∥λi
L +

∣∣ηi(ρλiμi


)∣∣ λi
μi

)
<

r
. ()

Let, moreover,

� =

{
x ∈ X :

n∑
k=

(‖uk‖λk
C + |αk|

)
< ρ

}
. ()
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Now we will show that the operator A has a fixed point in �. According to Theorem  it
is sufficient to show that

A(x) – x �= ν
(
A(–x) + x

)
for x ∈ ∂�,ν ∈ (, ].

Assume on the contrary that there exist x = ((ui)ni=, (αi)ni=) ∈ ∂� and ν ∈ (, ] such
that

A(x) – x = ν
(
A(–x) + x

)
. ()

Then from (), in view of ()-() we obtain

x = ( – δ)T(x) – δT(–x) + ( – δ)F(x) – δF(–x),

where δ = ν/( + ν) ∈ (, /], i.e.

ui(t) = ui(a) + αi + ( – δ)
∫ t

a
pi(u, . . . ,un)(s)ds

– δ

∫ t

a
pi(–u, . . . , –un)(s)ds + ( – δ)

∫ t

a
fi(u, . . . ,un)(s)ds

– δ

∫ t

a
fi(–u, . . . , –un)(s)ds for t ∈ [a,b] (i = , . . . ,n), ()

αi = αi + ( – δ)�i(u, . . . ,un) – δ�i(–u, . . . , –un)

– ( – δ)hi(u, . . . ,un) + δhi(–u, . . . , –un) (i = , . . . ,n). ()

Now from () and () it follows that (ui)ni= ∈ AC([a,b];Rn),

αi =  (i = , . . . ,n), ()

u′
i(t) = ( – δ)pi(u, . . . ,un)(t) – δpi(–u, . . . , –un)(t)

+ ( – δ)fi(u, . . . ,un)(t) – δfi(–u, . . . , –un)(t)

for a.e. t ∈ [a,b] (i = , . . . ,n), ()

( – δ)�i(u, . . . ,un) – δ�i(–u, . . . , –un)

= ( – δ)hi(u, . . . ,un) – δhi(–u, . . . , –un) (i = , . . . ,n). ()

Moreover, since x ∈ ∂�, on account of () and () we have

ρ =
n∑
k=

‖uk‖λk
C . ()

Now the equality (), according to Notation , implies∣∣( – δ)fi(u, . . . ,un)(t) – δfi(–u, . . . , –un)(t)
∣∣ ≤ qi

(
t,ρλi


)

for a.e. t ∈ [a,b] (i = , . . . ,n), ()∣∣( – δ)hi(u, . . . ,un) – δhi(–u, . . . , –un)
∣∣ ≤ ηi

(
ρ

λiμi


)
(i = , . . . ,n). ()
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Therefore, in view of Lemma , with respect to ()-() we obtain

ρ ≤ r
n∑
i=

(∥∥qi(·,ρλi


)∥∥λi
L +

∣∣ηi(ρλiμi


)∣∣ λi
μi

)
.

However, the latter inequality contradicts (). �

3 Corollaries
If the operators pi and �i are homogeneous, i.e. if moreover

pi(–u, . . . , –un)(t) = –pi(u, . . . ,un)(t)

for a.e. t ∈ [a,b], (uk)nk= ∈ C
(
[a,b];Rn) (i = , . . . ,n), ()

�i(–u, . . . , –un) = –�i(u, . . . ,un), (uk)nk= ∈ C
(
[a,b];Rn) (i = , . . . ,n), ()

then from Theorem  we obtain the following assertion.

Corollary  Let (), (), and () be fulfilled. If the problem

u′
i(t) = pi(u, . . . ,un)(t) for a.e. t ∈ [a,b] (i = , . . . ,n), ()

�i(u, . . . ,un) =  (i = , . . . ,n) ()

has only the trivial solution then problem (), () has at least one solution.

For a particular case when pi are defined by

pi(u, . . . ,un)(t)
def= p̃i(t)

∣∣ui+(τi(t))∣∣λi sgnui+(τi(t))
for a.e. t ∈ [a,b] (i = , . . . ,n – ), ()

pn(u, . . . ,un)(t)
def= p̃n(t)

∣∣u(τn(t))∣∣λn sgnu(τn(t)) for a.e. t ∈ [a,b], ()

where p̃i ∈ L([a,b];R) and τi : [a,b]→ [a,b] are measurable functions, we have the follow-
ing assertion.

Corollary  Let (), (), (), and () be fulfilled. Let,moreover,

n∏
i=

λi = ,

and let problem (), () have only the trivial solution. Then problem (), () has at least
one solution.

Namely, for a two-dimensional system of ordinary equations and a particular case of
boundary conditions we get the following.

Corollary  Let λλ = , and let

u′
 = p̃(t)|u|λ sgnu, u′

 = p̃(t)|u|λ sgnu,
u(a) – cu(b) = , u(a) – cu(b) = 

http://www.boundaryvalueproblems.com/content/2014/1/113
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with p̃, p̃ ∈ L([a,b];R), c, c ∈R have only the trivial solution. Then the problem

u′
 = p̃(t)|u|λ sgnu + f(t), u′

 = p̃(t)|u|λ sgnu + f(t),

u(a) – cu(b) = h, u(a) – cu(b) = h

has at least one solution for every f, f ∈ L([a,b];R) and h,h ∈R.

The particular case of the system discussed in Corollary  is so-called second-order
differential equation with λ-Laplacian. Therefore, in the case when p̃ ≡ , Corollary 
yields the following.

Corollary  Let the problem

(
�λ

(
u′(t)

))′ = p(t)�λ

(
u(t)

)
,

u(a) – cu(b) = , u′(a) – cu′(b) = 

with p ∈ L([a,b];R), �λ(x) = |x|λ sgnx, c, c ∈ R have only the trivial solution. Then the
problem

(
�λ

(
u′(t)

))′ = p(t)�λ

(
u(t)

)
+ f (t),

u(a) – cu(b) = h, u′(a) – cu′(b) = h

has at least one solution for every f ∈ L([a,b];R) and h,h ∈R.
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