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Abstract
We consider the following complementary Lidstone boundary value problem:

(–1)my(2m+1)(t) = F(t, y(t), y′(t)), t ∈ [0, 1],

y(0) = 0, y(2k–1)(0) = y(2k–1)(1) = 0, 1 ≤ k ≤ m.

By using fixed point theorems of Leggett-Williams and Avery, we offer several criteria
for the existence of three positive solutions of the boundary value problem. Examples
are also included to illustrate the results obtained. We note that the nonlinear term F
depends on y′ and this derivative dependence is seldom investigated in the literature
and a new technique is required to tackle the problem.
MSC: 34B15; 34B18
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1 Introduction
In this paper we shall consider the complementary Lidstone boundary value problem

(–)my(m+)(t) = F
(
t, y(t), y′(t)

)
, t ∈ [, ],

y() = , y(k–)() = y(k–)() = ,  ≤ k ≤m,
(.)

where m ≥  and F is continuous at least in the interior of the domain of interest. It is
noted that the nonlinear term F involves y′, a derivative of the dependent variable. Most
research papers on boundary value problems consider nonlinear terms that involve y only,
and derivative-dependent nonlinearities are seldom tackled as special techniques are re-
quired.
The complementary Lidstone interpolation and boundary value problems have been

very recently introduced in [], and drawn on by Agarwal et al. in [, ] where they con-
sider an (m + )th order differential equation together with boundary data at the odd
order derivatives

y() = a, y(k–)() = ak , y(k–)() = bk , ≤ k ≤m. (.)
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The boundary conditions (.) are known as complementary Lidstone boundary condi-
tions, they naturally complement the Lidstone boundary conditions [–] which involve
even order derivatives. To be precise, the Lidstone boundary value problem comprises an
mth order differential equation and the Lidstone boundary conditions

y(k)() = ak , y(k)() = bk ,  ≤ k ≤m – . (.)

There is a vast literature on Lidstone interpolation and boundary value problems. In fact,
the Lidstone interpolation was first introduced by Lidstone [] in  and further char-
acterized in the work of [–]. More recent research on Lidstone interpolation as well
as Lidstone spline can be found in [, –]. Meanwhile, the Lidstone boundary value
problems and several of its particular cases have been the subject matter of numerous in-
vestigations, see [, , –] and the references cited therein. In most of these works
the nonlinear terms considered do not involve derivatives of the dependent variable, only
a handful of papers [, , , ] tackle nonlinear terms that involve even order deriva-
tives. In the present work, our study of the complementary Lidstone boundary value prob-
lem (.) where F depends on a derivative certainly extends and complements the rich lit-
erature on boundary value problems and notably on Lidstone boundary value problems.
The literature on complementary Lidstone boundary value problems pales in comparison
with that on Lidstone boundary value problems - after the first work [] on complemen-
tary Lidstone boundary value problems, the recent paper [] discusses the eigenvalue
problem, while in [] the existence of at least one or two positive solutions of the comple-
mentary Lidstone boundary value problem is derived by Leray-Schauder alternative and
Krasnosel’skii’s fixed point theorem in a cone.
In the present work, we shall establish the existence of at least three positive solutions

using fixed point theorems of Leggett andWilliams [] as well as of Avery []. Estimates
on the norms of these solutions will also be provided. Besides achieving new results, we
also compare the results in terms of generality and illustrate the importance of the re-
sults through some examples. As remarked earlier, the presence of the derivative y′ in the
nonlinear term F requires a special technique to tackle the problem.
The paper is organized as follows. Section  contains the necessary definitions and fixed

point theorems. The existence criteria are developed and discussed in Section . Finally,
examples are presented in Section  to illustrate the importance of the results obtained.

2 Preliminaries
In this section we shall state some necessary definitions, the relevant fixed point theorems
and properties of certain Green’s function. Let B be a Banach space equipped with the
norm ‖ · ‖.

Definition . Let C (⊂ B) be a nonempty closed convex set. We say that C is a cone
provided the following conditions are satisfied:
(a) If x ∈ C and α ≥ , then αx ∈ C;
(b) If x ∈ C and –x ∈ C, then x = .

Definition . Let C (⊂ B) be a cone. Amap ψ is a nonnegative continuous concave func-
tional on C if the following conditions are satisfied:
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(a) ψ : C → [,∞) is continuous;
(b) ψ(ty + ( – t)z) ≥ tψ(y) + ( – t)ψ(z) for all y, z ∈ C and  ≤ t ≤ .

Definition . Let C (⊂ B) be a cone. A map β is a nonnegative continuous convex func-
tional on C if the following conditions are satisfied:
(a) β : C → [,∞) is continuous;
(b) β(ty + ( – t)z) ≤ tβ(y) + ( – t)β(z) for all y, z ∈ C and  ≤ t ≤ .

Let γ , β ,� be nonnegative continuous convex functionals onC and α,ψ be nonnegative
continuous concave functionals on C. For nonnegative numbers wi,  ≤ i ≤ , we shall
introduce the following notations:

C(w) =
{
x ∈ C | ‖x‖ < w

}
,

C(ψ ,w,w) =
{
x ∈ C | ψ(x)≥ w and ‖x‖ ≤ w

}
,

P(γ ,w) =
{
x ∈ C | γ (x) < w

}
,

P(γ ,α,w,w) =
{
x ∈ C | α(x)≥ w and γ (x) ≤ w

}
,

Q(γ ,β ,w,w) =
{
x ∈ C | β(x)≤ w and γ (x)≤ w

}
,

P(γ ,�,α,w,w,w) =
{
x ∈ C | α(x)≥ w,�(x)≤ w and γ (x)≤ w

}
,

Q(γ ,β ,ψ ,w,w,w) =
{
x ∈ C | ψ(x)≥ w,β(x)≤ w and γ (x)≤ w

}
.

The following fixed point theorems are our main tools, the first is usually called Leggett-
Williams’ fixed point theorem, and the second is known as the five-functional fixed point
theorem.

Theorem . [] Let C (⊂ B) be a cone, and w >  be given. Assume that ψ is a non-
negative continuous concave functional on C such that ψ(x) ≤ ‖x‖ for all x ∈ C(w), and
let S : C(w) → C(w) be a continuous and completely continuous operator. Suppose that
there exist numbers w, w, w, where  < w < w < w ≤ w, such that
(a) {x ∈ C(ψ ,w,w) | ψ(x) > w} 
= ∅, and ψ(Sx) > w for all x ∈ C(ψ ,w,w);
(b) ‖Sx‖ < w for all x ∈ C(w);
(c) ψ(Sx) > w for all x ∈ C(ψ ,w,w) with ‖Sx‖ > w.

Then S has (at least) three fixed points x, x and x in C(w). Furthermore, we have

x ∈ C(w), x ∈ {
x ∈ C(ψ ,w,w) | ψ(x) > w

}
and

x ∈ C(w)\
(
C(ψ ,w,w)∪C(w)

)
.

(.)

Theorem . [] Let C (⊂ B) be a cone. Assume that there exist positive numbers w,
M, nonnegative continuous convex functionals γ , β , � on C, and nonnegative continuous
concave functionals α, ψ on C, with

α(x)≤ β(x) and ‖x‖ ≤Mγ (x)

for all x ∈ P(γ ,w). Let S : P(γ ,w) → P(γ ,w) be a continuous and completely continuous
operator. Suppose that there exist nonnegative numbers wi,  ≤ i≤ ,with  < w < w such
that
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(a) {x ∈ P(γ ,�,α,w,w,w) | α(x) > w} 
= ∅, and α(Sx) > w for all
x ∈ P(γ ,�,α,w,w,w);

(b) {x ∈ Q(γ ,β ,ψ ,w,w,w) | β(x) < w} 
= ∅, and β(Sx) < w for all
x ∈ Q(γ ,β ,ψ ,w,w,w);

(c) α(Sx) > w for all x ∈ P(γ ,α,w,w) with �(Sx) > w;
(d) β(Sx) < w for all x ∈Q(γ ,β ,w,w) with ψ(Sx) < w.

Then S has (at least) three fixed points x, x and x in P(γ ,w). Furthermore, we have

β(x) < w, α(x) > w and β(x) > w with α(x) < w. (.)

We also require the definition of an L-Carathéodory function.

Definition . [] A function P : [, ]×R
 → R is an L-Carathéodory function if the

following conditions hold:
(a) The map t → P(t,u) is measurable for all u ∈R

.
(b) The map u → P(t,u) is continuous for almost all t ∈ [, ].
(c) For any r > , there exists μr ∈ L[, ] such that |u| ≤ r implies that |P(t,u)| ≤ μr(t)

for almost all t ∈ [, ].

To tackle the complementary Lidstone boundary value problem (.), let us review cer-
tain attributes of the Lidstone boundary value problem. Let gm(t, s) be the Green’s function
of the Lidstone boundary value problem

x(m)(t) = , t ∈ [, ],

x(k)() = x(k)() = ,  ≤ k ≤m – .
(.)

The Green’s function gm(t, s) can be expressed as [, ]

gm(t, s) =
∫ 


g(t,u)gm–(u, s)du, m ≥ , (.)

where

g(t, s) =

{
t(s – ),  ≤ t ≤ s ≤ ,
s(t – ),  ≤ s ≤ t ≤ .

Further, it is known that

∣∣gm(t, s)∣∣ = (–)mgm(t, s) and gm(t, s) = gm(s, t), (t, s) ∈ (, )× (, ). (.)

The following two lemmas give the upper and lower bounds of |gm(t, s)|, they play an
important role in subsequent development.We remark that the bounds in the two lemmas
are sharper than those given in the literature [, , , ].

Lemma . [] For (t, s) ∈ [, ]× [, ], we have

∣∣gm(t, s)∣∣ ≤ 
πm– sinπs.
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Lemma . [] Let δ ∈ (,  ) be given. For (t, s) ∈ [δ,  – δ]× [, ], we have

∣∣gm(t, s)∣∣ ≥ δ
πm sinπs.

3 Triple positive solutions
In this section, we shall use the fixed point theorems stated in Section  to obtain the ex-
istence of at least three positive solutions of the complementary Lidstone boundary value
problem (.). By a positive solution y of (.), we mean a nontrivial y ∈ C[, ] satisfying
(.) and y(t) ≥  for t ∈ [, ].
To tackle (.), we first consider the initial value problem

y′(t) = x(t), t ∈ [, ],

y() = 
(.)

whose solution is simply

y(t) =
∫ t


x(s)ds. (.)

Taking into account (.) and (.), the complementary Lidstone boundary value problem
(.) reduces to the Lidstone boundary value problem

(–)mx(m)(t) = F
(
t,

∫ t


x(s)ds,x(t)

)
, t ∈ [, ],

x(k–)() = x(k–)() = ,  ≤ k ≤m.
(.)

If (.) has a solution x∗, then by virtue of (.), the boundary value problem (.) has a
solution given by

y∗(t) =
∫ t


x∗(s)ds. (.)

So the existence of a solution of the complementary Lidstone boundary value problem (.)
follows from the existence of a solution of the Lidstone boundary value problem (.). It
is clear from (.) that ‖y∗‖ ≤ ‖x∗‖; moreover if x∗ is positive, so is y∗. With the tools in
Section  and a technique to handle the nonlinear term F , we shall study the boundary
value problem (.) via (.).
Let the Banach space B = C[, ] be equipped with the norm ‖x‖ = supt∈[,] |x(t)| for

x ∈ B. Define the operator S : C[, ]→ C[, ] by

Sx(t) =
∫ 


(–)mgm(t, s)F

(
s,

∫ s


x(τ ) dτ ,x(s)

)
ds

=
∫ 



∣∣gm(t, s)∣∣F
(
s,

∫ s


x(τ )dτ ,x(s)

)
ds, t ∈ [, ], (.)

where gm(t, s) is the Green’s function given in (.). A fixed point x∗ of the operator S is
clearly a solution of the boundary value problem (.), and as seen earlier y∗(t) =

∫ t
 x

∗(s)ds
is a solution of (.).
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For easy reference, we shall list the conditions that are needed later. In these conditions
the sets K and K̃ are defined by

K̃ =
{
x ∈ B | x(t)≥ , t ∈ [, ]

}
,

K =
{
x ∈ K̃ | x(t) >  on some subset of [, ] of positive measure

}
.

(.)

(C) F : [, ]×R
 →R is an L-Carathéodory function.

(C) We have

F(t,u, v)≥ , u, v ∈ K̃ , a.e. t ∈ (, ) and

F(t,u, v) > , u, v ∈ K , a.e. t ∈ (, ).

(C) There exist continuous functions f , ν , μ with f : [,∞)× [,∞) → [,∞) and ν,μ :
(, )→ [,∞) such that

μ(t)f (u, v) ≤ F(t,u, v)≤ ν(t)f (u, v), u, v ∈ K̃ , a.e. t ∈ (, ).

(C) There exists a number  < θ ≤  such that

μ(t)≥ θν(t), a.e. t ∈ (, ).

If (C) and (C) hold, then it follows from (.) that for x ∈ K̃ and t ∈ [, ],

 ≤
∫ 



∣∣gm(t, s)∣∣μ(s)f
(∫ s


x(τ )dτ ,x(s)

)
ds≤ Sx(t)

≤
∫ 



∣∣gm(t, s)∣∣ν(s)f
(∫ s


x(τ )dτ ,x(s)

)
ds. (.)

Let δ ∈ (,  ) be fixed. We define a cone C in B as

C =
{
x ∈ B

∣∣∣ x(t)≥  for t ∈ [, ], and min
t∈[δ,–δ]

x(t)≥ δθ
π

‖x‖
}
, (.)

where θ is given in (C). Clearly, we have C ⊆ K̃ .

Lemma . Let (C)-(C) hold. Then the operator S defined in (.) is continuous and
completely continuous, and S maps C into C.

Proof From (.) we have gm(t, s) ∈ C[, ] ⊆ L∞[, ], t ∈ [, ] and the map t → gm(t, s)
is continuous from [, ] to C[, ]. This together with F : [, ] × R

 → R is an L-
Carathéodory function ensures (as in [, Theorem ..]) that S is continuous and com-
pletely continuous.
Let x ∈ C. From (.) we have Sx(t) ≥  for t ∈ [, ]. Next, using (.) and Lemma .

gives for t ∈ [, ],

Sx(t)≤
∫ 



∣∣gm(t, s)∣∣ν(s)f
(∫ s


x(τ )dτ ,x(s)

)
ds

≤ 
πm–

∫ 


ν(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds. (.)

http://www.boundaryvalueproblems.com/content/2014/1/125
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Hence, we have

‖Sx‖ ≤ 
πm–

∫ 


ν(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds. (.)

Now, employing (.), Lemma ., (C) and (.), we find for t ∈ [δ,  – δ],

Sx(t) ≥
∫ 



∣∣gm(t, s)∣∣μ(s)f
(∫ s


x(τ )dτ ,x(s)

)
ds

≥ δ
πm

∫ 


μ(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds

≥ δ
πm

∫ 


θν(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds

≥ δθ
π

‖Sx‖.

This leads to

min
t∈[δ,–δ]

Sx(t)≥ δθ
π

‖Sx‖.

We have shown that Sx ∈ C. �

For subsequent results, we define the following constants for fixed δ ∈ (,  ) and
τ, τ, τ, τ ∈ [, ]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q = 
πm–

∫ 
 ν(s) sinπs ds,

r =mint∈[δ,–δ]
∫ –δ




|gm(t, s)|μ(s)ds,
p =mint∈[τ,τ]

∫ τ



|gm(t, s)|μ(s)ds,
p = 

πm–

∫ τ
τ

ν(s) sinπs ds,
p = 

πm–

∫ τ
 ν(s) sinπs ds + 

πm–

∫ 
τ

ν(s) sinπs ds.

(.)

Lemma . Let (C)-(C) hold, and assume

(C) the function ν(s) sinπs >  on a subset of [, ] of positive measure.

Suppose that there exists a number d >  such that for u, v ∈ [,d],

f (u, v) <
d
q
. (.)

Then

S
(
C(d)

) ⊆ C(d) ⊂ C(d). (.)

Proof Let x ∈ C(d). So ‖x‖ ≤ d, which implies immediately that

∫ s


x(τ )dτ ≤ d and x(s)≤ d, s ∈ [, ].

http://www.boundaryvalueproblems.com/content/2014/1/125
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Then, using (.), (C) and (.), we find for t ∈ [, ],

∣∣Sx(t)∣∣ ≤ 
πm–

∫ 


ν(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds

<


πm–

∫ 


ν(s) sinπs ds · d

q

= q · d
q
= d.

This implies ‖Sx‖ < d. Together with the fact that Sx ∈ C (Lemma .), we have shown
that Sx ∈ C(d). Conclusion (.) is now immediate. �

Using a similar argument as Lemma ., we have the following lemma.

Lemma . Let (C)-(C) hold. Suppose that there exists a number d >  such that for
u, v ∈ [,d],

f (u, v)≤ d
q
.

Then

S
(
C(d)

) ⊆ C(d).

We are now ready to establish the existence of three positive solutions for the com-
plementary Lidstone boundary value problem (.). The first result below uses Leggett-
Williams’ fixed point theorem (Theorem .).

Theorem . Let δ ∈ (,  ) be fixed. Let (C)-(C) hold, and assume

(C) for each t ∈ [δ,  – δ], the function |gm(t, s)|μ(s) >  on a subset of [  ,  – δ] of positive
measure.

Suppose that there exist numbers w, w, w with

 < w < w

(


– δ

)
< w <

πw

δθ
≤ w

such that the following hold:
(P) f (u, v) < w

q for u, v ∈ [,w];
(Q) one of the following holds:

(Q) lim supu→∞,v→∞
f (u,v)
u < 

q or lim supu→∞,v→∞
f (u,v)
v < 

q ;
(Q) there exists a number d (≥ w) such that f (u, v) ≤ d

q for u, v ∈ [,d];
(R) f (u, v) > w

r for u ∈ [w(  – δ),w(  – δ)] and v ∈ [w,w].
Then we have the following conclusions:
(a) The Lidstone boundary value problem (.) has (at least) three positive solutions

x,x,x ∈ C (where C is defined in (.)) such that

⎧⎪⎨
⎪⎩

‖x‖ < w;
x(t) > w, t ∈ [δ,  – δ];
‖x‖ > w and mint∈[δ,–δ] x(t) < w.

(.)

http://www.boundaryvalueproblems.com/content/2014/1/125
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(b) The complementary Lidstone boundary value problem (.) has (at least) three
positive solutions y, y, y such that for i = , , ,

{
yi(t) =

∫ t
 xi(s)ds, t ∈ [, ];

‖yi‖ ≤ ‖xi‖; yi(t)≥ δθ
π

‖xi‖(t – δ), t ∈ [δ,  – δ]
(.)

(where xi ’s are those in conclusion (a)).We further have

⎧⎪⎨
⎪⎩

‖y‖ < w;
y(t) > w(t – δ), t ∈ [δ,  – δ];
y(t) > δθ

π
w(t – δ), t ∈ [δ,  – δ].

(.)

Proof We shall employ Theorem . with the cone C defined in (.). First, we shall prove
that condition (Q) implies the existence of a number w, where w ≥ w, such that

S
(
C(w)

) ⊆ C(w). (.)

Suppose that (Q) holds. Then by Lemma . we immediately have (.) where we pick
w = d. Suppose now that lim supu→∞,v→∞

f (u,v)
u < 

q of (Q) is satisfied. Then there exist
N >  and ε < 

q such that

f (u, v)
u

< ε, u, v >N . (.)

Let

L = max
u,v∈[,N]

f (u, v).

Noting (.), it is then clear that for u, v ≥ ,

f (u, v)≤ L + εu. (.)

Now, pick the number w so that

w >max

{
w,L

(

q
– ε

)–}
. (.)

Let x ∈ C(w). Using (.), (.) and (.) yields for t ∈ [, ],

∣∣Sx(t)∣∣ ≤ 
πm–

∫ 


ν(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds

≤ 
πm–

∫ 


ν(s)

(
L + ε

∫ s


x(τ )dτ

)
sinπs ds

≤ 
πm–

∫ 


ν(s)(L + εw) sinπs ds

= q(L + εw)

< q
[
w

(

q
– ε

)
+ εw

]
= w.

http://www.boundaryvalueproblems.com/content/2014/1/125
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Hence, ‖Sx‖ < w and so Sx ∈ C(w)⊂ C(w). Thus, (.) follows immediately. Note that
the argument is similar if we assume that lim supu→∞,v→∞

f (u,v)
v < 

q of (Q) is satisfied.
Let ψ : C → [,∞) be defined by

ψ(x) = min
t∈[δ,–δ]

x(t).

Clearly, ψ is a nonnegative continuous concave functional on C and ψ(x) ≤ ‖x‖ for all
x ∈ C.
We shall verify that condition (a) of Theorem . is satisfied. It is obvious that

x(t) =
w +w


∈ {

x ∈ C(ψ ,w,w) | ψ(x) > w
}

and so {x ∈ C(ψ ,w,w) | ψ(x) > w} 
= ∅. Next, let x ∈ C(ψ ,w,w). Then ψ(x) ≥ w and
‖x‖ ≤ w which imply

x(s) ∈ [w,w], s ∈ [δ, – δ] and
∫ 



δ

x(τ )dτ ∈
[
w

(


– δ

)
,w

(


– δ

)]
. (.)

Using (.), (.), (C) and (R), it follows that

ψ(Sx) = min
t∈[δ,–δ]

Sx(t)

≥ min
t∈[δ,–δ]

∫ 



∣∣gm(t, s)∣∣μ(s)f
(∫ s


x(τ )dτ ,x(s)

)
ds

≥ min
t∈[δ,–δ]

∫ –δ




∣∣gm(t, s)∣∣μ(s)f
(∫ 



δ

x(τ )dτ ,x(s)
)
ds

> min
t∈[δ,–δ]

∫ –δ




∣∣gm(t, s)∣∣μ(s)ds · w

r

= r · w

r
= w.

Therefore, we have shown that ψ(Sx) > w for all x ∈ C(ψ ,w,w).
Next, by condition (P) and Lemma . (with d = w), we have S(C(w)) ⊆ C(w). Hence,

condition (b) of Theorem . is fulfilled.
Finally, we shall show that condition (c) of Theorem . holds. Let x ∈ C(ψ ,w,w) with

‖Sx‖ > w. Using (.), Lemma ., (C), (.) and the inequality πw
δθ ≤ w, we find

ψ(Sx) ≥ min
t∈[δ,–δ]

∫ 



∣∣gm(t, s)∣∣μ(s)f
(∫ s


x(τ )dτ ,x(s)

)
ds

≥ δ
πm

∫ 


μ(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds

≥ δ
πm

∫ 


θν(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds

≥ δθ
π

‖Sx‖

>
δθ
π

w ≥ w.

Hence, we have proved that ψ(Sx) > w for all x ∈ C(ψ ,w,w) with ‖Sx‖ > w.

http://www.boundaryvalueproblems.com/content/2014/1/125
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It now follows fromTheorem . that the Lidstone boundary value problem (.) has (at
least) three positive solutions x,x,x ∈ C(w) satisfying (.). It is easy to see that here
(.) reduces to (.). This completes the proof of conclusion (a).
Finally, it is observed from (.) that the complementary Lidstone boundary value prob-

lem (.) has (at least) three positive solutions y, y, y such that for i = , , ,

yi(t) =
∫ t


xi(s)ds, t ∈ [, ] and ‖yi‖ ≤ ‖xi‖. (.)

Moreover, since xi ∈ C, we get for t ∈ [δ,  – δ],

yi(t) =
∫ t


xi(s)ds≥

∫ t

δ

xi(s)ds≥
∫ t

δ

δθ
π

‖xi‖ds = δθ
π

‖xi‖(t – δ). (.)

Combining (.) and (.) gives (.) immediately.
Further, since x(t) > w for t ∈ [δ,  – δ], we have for t ∈ [δ,  – δ],

y(t) =
∫ t


x(s)ds >

∫ t

δ

x(s)ds >
∫ t

δ

w ds = w(t – δ). (.)

Hence, noting (.), (.) and (.), we get (.). This completes the proof of conclu-
sion (b). �

Weshall nowemploy the five-functional fixed point theorem (Theorem.) to give other
existence criteria. In applying Theorem . it is possible to choose the functionals and
constants in different ways, indeed we shall do so and derive two results. Our first result
below turns out to be a generalization of Theorem ..

Theorem . Let δ ∈ (,  ) be fixed. Let (C)-(C) hold. Assume that there exist numbers
τj, ≤ j ≤ , with

 ≤ τ ≤ δ ≤ τ <


< τ ≤  – δ ≤ τ ≤ 

such that

(C) for each t ∈ [τ, τ], the function |gm(t, s)|μ(s) >  on a subset of [  , τ] of positive mea-
sure;

(C) the function ν(s) sinπs >  on a subset of [τ, τ] of positive measure.

Suppose that there exist numbers wi, ≤ i ≤ , with

{
 < w < w < πw

δθ ≤ w ≤ w < qw
p

,
τw + (τ – τ)w < w(  – τ)

such that the following hold:
(P) f (u, v) < 

p
(w – wp

q ) for u ∈ [, τw + (τ – τ)w] and v ∈ [,w];
(Q) f (u, v)≤ w

q for u, v ∈ [,w];
(R) f (u, v) > w

p
for u ∈ [w(  – τ),w(  – τ)] and v ∈ [w,w].

Then we have the following conclusions:

http://www.boundaryvalueproblems.com/content/2014/1/125
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(a) The Lidstone boundary value problem (.) has (at least) three positive solutions
x,x,x ∈ C(w) (where C is defined in (.)) such that⎧⎪⎨

⎪⎩
x(t) < w, t ∈ [τ, τ];
x(t) > w, t ∈ [τ, τ];
maxt∈[τ,τ] x(t) > w and mint∈[τ,τ] x(t) < w.

(.)

(b) The complementary Lidstone boundary value problem (.) has (at least) three
positive solutions y, y, y such that (.) holds for i = , , .We further have⎧⎪⎨

⎪⎩
y(t) < τmaxs∈[,τ] x(s) + (τ – τ)w, t ∈ [τ, τ];
y(t) > w(t – τ), t ∈ [τ, τ];
y(t) > δθ

π
w(t – δ), t ∈ [δ,  – δ].

(.)

Proof We shall apply Theorem . with the cone C defined in (.). We define the follow-
ing five functionals on the cone C:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ (x) = ‖x‖,
ψ(x) =mint∈[δ,–δ] x(t),
β(x) =�(x) =maxt∈[τ,τ] x(t),
α(x) =mint∈[τ,τ] x(t).

(.)

First, we shall show that the operator Smaps P(γ ,w) into P(γ ,w). Note that P(γ ,w) =
C(w). By (Q) and Lemma . (with d = w), we immediately have S(C(w)) ⊆ C(w).
Next, to see that condition (a) of Theorem . is fulfilled, we note that

{
x ∈ P(γ ,�,α,w,w,w) | α(x) > w

} 
= ∅

since it has an element x(t) = 
 (w +w). Let x ∈ P(γ ,�,α,w,w,w). Then by definition

we have α(x)≥ w and �(x)≤ w, which imply

x(s) ∈ [w,w], s ∈ [τ, τ] and∫ 


τ

x(τ )dτ ∈
[
w

(


– τ

)
,w

(


– τ

)]
.

(.)

Noting (.), (.), (C) and (R), we find

α(Sx) = min
t∈[τ,τ]

Sx(t)

≥ min
t∈[τ,τ]

∫ 



∣∣gm(t, s)∣∣μ(s)f
(∫ s


x(τ )dτ ,x(s)

)
ds

≥ min
t∈[τ,τ]

∫ τ




∣∣gm(t, s)∣∣μ(s)f
(∫ 



τ

x(τ )dτ ,x(s)
)
ds

> min
t∈[τ,τ]

∫ τ




∣∣gm(t, s)∣∣μ(s)ds · w

p

= p · w

p
= w.

Hence, α(Sx) > w for all x ∈ P(γ ,�,α,w,w,w).

http://www.boundaryvalueproblems.com/content/2014/1/125
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We shall now verify that condition (b) of Theorem . is satisfied. Let w be such that
 < w < w. Note that

{
x ∈Q(γ ,β ,ψ ,w,w,w) | β(u) < w

} 
= ∅

because it has an element x(t) = 
 (w + w). Let x ∈ Q(γ ,β ,ψ ,w,w,w). Then we have

β(x)≤ w and γ (x)≤ w, i.e.,

x(s) ∈ [,w], s ∈ [τ, τ] and x(s) ∈ [,w], s ∈ [, ], (.)

which lead to the following:

∫ s


x(τ )dτ ≤ w, s ∈ [, τ]∪ [τ, ];

∫ s


x(τ )dτ ≤

∫ τ


x(τ )dτ =

∫ τ


x(τ )dτ +

∫ τ

τ

x(τ )dτ (.)

≤ τw + (τ – τ)w, s ∈ [τ, τ].

Using (.), (.), (.), (C), (P) and (Q) successively, we find

β(Sx) = max
t∈[τ,τ]

Sx(t)

≤ 
πm–

∫ 


ν(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds

=


πm–

(∫ τ


+

∫ τ

τ

+
∫ 

τ

)
ν(s)f

(∫ s


x(τ )dτ ,x(s)

)
sinπs ds

<
[


πm–

∫ τ


ν(s) sinπs ds +


πm–

∫ 

τ

ν(s) sinπs ds
]
w

q

+
[


πm–

∫ τ

τ

ν(s) sinπs ds
]

p

(
w –

wp
q

)

= p · w

q
+ p · 

p

(
w –

wp
q

)
= w.

Therefore, β(Sx) < w for all x ∈Q(γ ,β ,ψ ,w,w,w).
Next, we shall show that condition (c) of Theorem . is met. Let x ∈ C. Clearly, we have

�(Sx) = max
t∈[τ,τ]

Sx(t)≤ ‖Sx‖. (.)

Moreover, using the fact that S maps C into C, we find

α(Sx) = min
t∈[τ,τ]

Sx(t)≥ min
t∈[δ,–δ]

Sx(t)≥ δθ
π

‖Sx‖. (.)

Combining (.) and (.) yields

α(Sx)≥ δθ
π

�(Sx), x ∈ C. (.)

http://www.boundaryvalueproblems.com/content/2014/1/125
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Now, let x ∈ P(γ ,α,w,w) with�(Sx) > w. Then it follows from (.) and the inequality
πw
δθ ≤ w that

α(Sx)≥ δθ
π

�(Sx) >
δθ
π

w ≥ δθ
π

πw

δθ
= w. (.)

Thus, α(Sx) > w for all x ∈ P(γ ,α,w,w) with �(Sx) > w.
Finally, we shall prove that condition (d) of Theorem . is fulfilled. Let x ∈ Q(γ ,β ,w,

w) with ψ(Sx) < w. Then we have β(x)≤ w and γ (x)≤ w which give (.) and (.).
As in proving condition (b), we get β(Sx) < w. Hence, condition (d) of Theorem . is
satisfied.
It now follows from Theorem . that the Lidstone boundary value problem (.) has

(at least) three positive solutions x,x,x ∈ P(γ ,w) = C(w) satisfying (.). Furthermore,
(.) reduces to (.) immediately. This completes the proof of conclusion (a).
Finally, as in the proof of Theorem ., we see that (.) holds for the positive solutions

yi, i = , , , of the complementary Lidstone boundary value problem (.). Moreover, not-
ing that x(t) < w for t ∈ [τ, τ], we find for t ∈ [τ, τ],

y(t) =
∫ t


x(s)ds≤

∫ τ


x(s)ds =

∫ τ


x(s)ds +

∫ τ

τ

x(s)ds

< τ max
s∈[,τ]

x(s) + (τ – τ)w.

Next, noting x(t) > w for t ∈ [τ, τ], we get for t ∈ [τ, τ],

y(t) =
∫ t


x(s)ds >

∫ t

τ

x(s)ds > w(t – τ).

Lastly, using (.) and ‖x‖ ≥maxt∈[τ,τ] x(t) > w, we find for t ∈ [δ,  – δ],

y(t) ≥ δθ
π

‖x‖(t – δ) >
δθ
π

w(t – δ).

The proof of conclusion (b) is complete. �

We shall now consider the special case of Theorem . when

τ = , τ = δ, τ =  – δ and τ = .

Then, from definitions (.), we see that

p = r, p = q and p = .

In this case Theorem . yields the following corollary.

Corollary . Let δ ∈ (,  ) be fixed. Let (C)-(C) hold, and assume

(C)′ for each t ∈ [δ,  – δ], the function |gm(t, s)|μ(s) >  on a subset of [  ,  – δ] of positive
measure;

(C)′ the function ν(s) sinπs >  on a subset of [, ] of positive measure.
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Suppose that there exist numbers wi, ≤ i ≤ , with

 < w < w

(


– δ

)
< w <

πw

δθ
≤ w ≤ w

such that the following hold:
(P) f (u, v) < w

q for u, v ∈ [,w];
(Q) f (u, v)≤ w

q for u, v ∈ [,w];
(R) f (u, v) > w

r for u ∈ [w(  – δ),w(  – δ)] and v ∈ [w,w].
Then we have the following conclusions:
(a) The Lidstone boundary value problem (.) has (at least) three positive solutions

x,x,x ∈ C(w) (where C is defined in (.)) such that

⎧⎪⎨
⎪⎩

‖x‖ < w;
x(t) > w, t ∈ [δ,  – δ];
‖x‖ > w and mint∈[δ,–δ] x(t) < w.

(.)

(b) The complementary Lidstone boundary value problem (.) has (at least) three
positive solutions y, y, y such that (.) holds for i = , , .We further have

⎧⎪⎨
⎪⎩

‖y‖ < w;
y(t) > w(t – δ), t ∈ [δ,  – δ];
y(t) > δθ

π
w(t – δ), t ∈ [δ,  – δ].

(.)

Remark . Corollary . is actually Theorem .. Since Corollary . is a special case of
Theorem ., this shows that Theorem . ismore general than Theorem ..

The next theorem illustrates another application of Theorem .. Compared to the con-
ditions in Theorem ., here the numbersw, τ and τ have different ranges and condition
(P) is also different. Note that in the proof of Theorem . the functionals ψ and � are
chosen differently from those in Theorem ..

Theorem . Let δ ∈ (,  ) be fixed. Let (C)-(C) hold. Assume that there exist numbers
τj, ≤ j ≤ , with

δ ≤ τ ≤ τ <


< τ ≤ τ ≤  – δ

such that (C) and (C) hold. Suppose that there exist numbers wi, ≤ i≤ , with

{
 < w ≤ δθw

π
< w < w < πw

δθ ≤ w ≤ w < qw
p

,
τw + (τ – τ)w < w(  – τ)

such that the following hold:
(P) f (u, v) < 

p
(w – wp

q ) for u ∈ [, τw + (τ – τ)w] and v ∈ [w,w];
(Q) f (u, v)≤ w

q for u, v ∈ [,w];
(R) f (u, v) > w

p
for u ∈ [w(  – τ),w(  – τ)] and v ∈ [w,w].

Then we have conclusions (a) and (b) of Theorem ..

http://www.boundaryvalueproblems.com/content/2014/1/125
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Proof To apply Theorem ., we shall define the following functionals on the cone C (see
(.)):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ (x) = ‖x‖,
ψ(x) =mint∈[τ,τ] x(t),
β(x) =maxt∈[τ,τ] x(t),
α(u) =mint∈[τ,τ] x(t),
�(u) =maxt∈[τ,τ] x(t).

(.)

As in the proof of Theorem ., using (Q) and Lemma . we can show that S : P(γ ,
w) → P(γ ,w).
Next, to see that condition (a) of Theorem . is fulfilled, we use (R) and a similar argu-

ment as in the proof of Theorem ..
We shall now prove that condition (b) of Theorem . is satisfied. Note that

x(t) =


(w +w) ∈

{
x ∈ Q(γ ,β ,ψ ,w,w,w) | β(u) < w

} 
= ∅.

Let x ∈ Q(γ ,β ,ψ ,w,w,w). Then we have ψ(x) ≥ w, β(x) ≤ w and γ (x) ≤ w which
imply

x(s) ∈ [w,w], s ∈ [τ, τ] and x(s) ∈ [,w], s ∈ [, ] (.)

and also (.). In view of (.), (.), (.), (C), (P) and (Q), we obtain, as in the proof
of Theorem ., that β(Sx) < w. Therefore, condition (b) of Theorem . is fulfilled.
Next, using a similar argument as in the proof of Theorem ., we see that condition (c)

of Theorem . is met.
Finally, we shall verify that condition (d) of Theorem . is fulfilled. Let x ∈ C. It is clear

that

β(Sx) = max
t∈[τ,τ]

Sx(t)≤ ‖Sx‖. (.)

Noting that S maps C into C, we find

ψ(Sx) = min
t∈[τ,τ]

Sx(t)≥ min
t∈[δ,–δ]

Sx(t)≥ δθ
π

‖Sx‖. (.)

A combination of (.) and (.) gives

ψ(Sx)≥ δθ
π

β(Sx), x ∈ C. (.)

Let x ∈Q(γ ,β ,w,w) with ψ(Sx) < w. Then (.) and the inequality w ≤ δθw
π

lead to

β(Sx)≤ π

δθ
ψ(Sx) <

π

δθ
w ≤ π

δθ
δθ
π

w = w.

Thus, β(Sx) < w for all x ∈Q(γ ,β ,w,w) with ψ(Sx) < w.
Conclusion (a) now follows fromTheorem . immediately, while conclusion (b) is sim-

ilarly obtained as in Theorem .. �
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4 Examples
In this section, we shall present examples to illustrate the usefulness as well as to compare
the generality of the results obtained in Section .

Example . Consider the complementary Lidstone boundary value problem (.) with
m =  and the nonlinear term F given by

F(t,u, v) = f (u, v)

=

⎧⎪⎨
⎪⎩

w
q , (u, v) ∈ [,w]× [,w] ≡ A,

 (

d
q +

w
r ), (u, v) ∈ [w(  – δ),∞)× [w,∞) ≡ A,

φ(u, v), (u, v) ∈R
\(A ∪A),

(.)

where φ(u, v) is continuous in each argument and satisfies

⎧⎪⎨
⎪⎩

φ(, v) = φ(w, v) = φ(u, ) = φ(u,w) = w
q , u, v ∈ [,w];

φ(w(  – δ), v) = φ(u,w) = 
 (

d
q +

w
r ), u ∈ [w(  – δ),∞), v ∈ [w,∞);

 ≤ φ(u, v)≤ 
 (

d
q +

w
r ), (u, v) ∈R

\(A ∪A).
(.)

Here, δ = 
 is fixed and the wi ’s and d are in the context of Theorem . satisfying

 < w < w

(


– δ

)
< w <

πw

δθ
≤ w ≤ d and d >

qw

r
. (.)

Let the functions μ = ν ≡  (which implies θ = ). Then it is clear that (C)-(C) are ful-
filled. Moreover, by direct computation we get q = .× –, and on using Lemma .
we find

r = min
t∈[δ,–δ]

∫ –δ




∣∣gm(t, s)∣∣μ(s)ds≥ δ
πm

∫ –δ




sinπs ds = .× –.

For convenience, we take r = .× – although this will lead to more stringent condi-
tions.
Hence, (.) reduces to

 < w < .w < w < .w ≤ w ≤ d and d > .w (.)

and clearly we can easily find numbers wi ’s and d that satisfy (.).
We shall check the conditions of Theorem .. First, condition (P) is obviously satisfied.

Next, from (.) we have w
r < d

q , therefore for (u, v) ∈ [,d]× [,d] it follows that

f (u, v)≤ 


(
d
q
+
w

r

)
<



(
d
q
+
d
q

)
=
d
q
.

Hence, condition (Q) is met. Finally, (R) is satisfied since for (u, v) ∈ [w(  – δ),w(  –
δ)]× [w,w], we have

f (u, v) =



(
d
q
+
w

r

)
>



(
w

r
+
w

r

)
=
w

r
.
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By Theorem . (conclusion (b)), the boundary value problem (.) with m = , δ = 
 ,

(.) and (.) has (at least) three positive solutions y, y, y such that (from (.))

⎧⎪⎨
⎪⎩

‖y‖ < w;
y(t) > w(t – 

 ), t ∈ [  ,

 ];

y(t) > 
π w(t – 

 ), t ∈ [  ,

 ],

(.)

where wi ’s satisfy (.).

Example . Consider the complementary Lidstone boundary value problem (.) with
m =  and the nonlinear term F given by

F(t,u, v) = f (u, v)

=

⎧⎪⎨
⎪⎩


p

(w – wp
q ), (u, v) ∈ [, τw + (τ – τ)w]× [,w]≡ A,


 (

w
r + w

p
), (u, v) ∈ [w(  – τ),∞)× [w,∞)≡ A,

κ(u, v), (u, v) ∈R
\(A ∪A),

(.)

where κ(u, v) is continuous in each argument and satisfies
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ(, v) = κ(τw + (τ – τ)w, v) = κ(u, ) = κ(u,w) = 
p

(w – wp
q ),

u ∈ [, τw + (τ – τ)w], v ∈ [,w];
κ(w(  – τ), v) = κ(u,w) = 

 (
w
r + w

p
), u ∈ [w(  – τ),∞), v ∈ [w,∞);

 ≤ κ(u, v) ≤ 
 (

w
r + w

p
), (u, v) ∈R

\(A ∪A).

(.)

Here, we fix

δ = ., τ = , τ = ., τ = τ =  – δ = . (.)

and the wi’s are in the context of Theorem . satisfying

{
 < w < w < πw

δθ ≤ w ≤ w < qw
p

,
τw + (τ – τ)w < w(  – τ) and w > qw

r .
(.)

Let the functions μ = ν ≡  (which implies θ = ). Then it is clear that (C)-(C), (C)
and (C) are fulfilled. Moreover, by direct computation we have

q = .× –, p = .× –, p = .× –.

By using Lemma ., we get

p = min
t∈[.,.]

∫ .




∣∣gm(t, s)∣∣μ(s)ds
> r = min

t∈[.,.]

∫ .




∣∣gm(t, s)∣∣μ(s)ds
≥ δ

πm

∫ .




sinπs ds

= .× –.
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For convenience, we take r = .× – although this will lead to more stringent condi-
tions. Hence, (.) reduces to

{
 < w < w < .w ≤ w ≤ w < .w,
.w < .w and w > .w

or equivalently (combining the first two inequalities)

{
 < w < w < .w ≤ w ≤ w < .w < .w and
w > .w.

(.)

It is clear that we can easily find numbers wi’s that fulfill (.).
We shall check the conditions of Theorem .. First, condition (P) is obviously satisfied.

Next, since

r < p < p and
w

r
<
w

q
(i.e.,w > .w), (.)

we find for (u, v) ∈ [,w]× [,w],

f (u, v)≤ 


(
w

r
+
w

p

)
<



(
w

r
+
w

r

)
=
w

r
<
w

q
.

Hence, condition (Q) is met. Finally, (R) is satisfied since for (u, v) ∈ [w(  – τ),w(  –
τ)]× [w,w], using (.) we get

f (u, v) =



(
w

r
+
w

p

)
>



(
w

p
+
w

p

)
=
w

p
.

By Theorem . (conclusion (b)), the boundary value problem (.) with m = , (.),
(.) and (.) has (at least) three positive solutions y, y, y such that (from (.))

⎧⎪⎨
⎪⎩
y(t) < .w, t ∈ [, .];
y(t) > w(t – .), t ∈ [., .];
y(t) > 

π
w(t – .), t ∈ [., .],

(.)

where wi ’s satisfy (.).

Remark . In Example ., we see that for (u, v) ∈ [w(  – τ),w(  – τ)]× [w,w],

f (u, v) =



(
w

r
+
w

p

)
<



(
w

r
+
w

r

)
=
w

r
.

Thus, condition (R) of Corollary . is not satisfied and so Corollary . cannot be used
to establish the existence of triple positive solutions in Example .. Recalling that Corol-
lary . is actually Theorem ., this illustrates the case when Theorem . is applicable
but not Theorem .. Hence, this example shows that Theorem . is indeedmore general
than Theorem ..
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