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1 Introduction
The theory of fractional differential equations and inclusions has developed into an im-
portant field of investigation due to its extensive applications in numerous branches of
physics, economics, and engineering sciences [–]. The nonlocal behavior exhibited by a
fractional-order differential operator makes it distinct from the integer-order differential
operator. It means that the future state of a dynamical system or process involving frac-
tional derivatives depends on its current state as well its past states. In fact, differential
equations of arbitrary order are capable of describing memory and hereditary proper-
ties of several materials and processes. This characteristic of fractional calculus has con-
tributed to its popularity and has convinced many researchers of the need to shift their
focus from classical integer-order models to fractional-order models. There has been a
great surge in developing new theoretical aspects such as periodicity, asymptotic behav-
ior, and numerical methods for fractional equations. For some recent work on the topic,
see [–] and the references cited therein.
In this paper, we consider the following boundary value problemof fractional differential

inclusions with fractional integral boundary conditions:
⎧⎨
⎩–Dαx(t) ∈ AF(t,x(t)) + BIβG(t,x(t)),  < α ≤ , t ∈ [, ],

Dδx() =Dδ+x() = , Dδx() =
∫ η

 Dδx(s)ds,  < η < ,
(.)

where  < δ ≤ ,  < α – δ < , β > , D(·) denotes the Riemann-Liouville fractional deriva-
tive of order (·), F ,G : [, ] × R → P(R) are multivalued maps, P(R) is the family of all
nonempty subsets of R and A, B are real constants.

©2014 Alsaedi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2014/1/25
mailto:bashirahmad_qau@yahoo.com
http://creativecommons.org/licenses/by/2.0


Alsaedi et al. Boundary Value Problems 2014, 2014:25 Page 2 of 14
http://www.boundaryvalueproblems.com/content/2014/1/25

We establish two new existence results for the problem (.). The first result relies on a
nonlinear alternative for contractive maps, while in the second result, we shall combine
the nonlinear alternative of Leray-Schauder type for single-valued maps with a selection
theorem due to Bressan and Colombo for lower semi-continuous multivalued maps with
nonempty closed and decomposable values.
The paper is organized as follows. In Section , we recall some preliminary facts that we

need in the sequel and Section  deals with the main results.

2 Preliminaries
Let us recall some basic definitions of the fractional calculus [–].

Definition . The Riemann-Liouville derivative of fractional order q for a continuous
function g : (,∞) →R is defined as

Dq
+g(t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–g(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Definition . The Riemann-Liouville fractional integral of order q for a function g :
(,∞)→R is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

Observe that the substitution x(t) = Iδy(t) =D–δy(t) transforms the problem (.) to the
following form:

⎧⎨
⎩–Dα–δy(t) ∈ AF(t, Iδy(t)) + BIβG(t, Iδy(t)), t ∈ [, ],

y() = , y′() = , y() =
∫ η

 y(s)ds.
(.)

To define the solutions of the problem (.), we need the following lemma. Though the
proof of this lemma involves standard arguments, we trace its proof for the convenience
of the reader.

Lemma. For any h ∈ C(, )∩L(, ), the unique solution of the linear fractional bound-
ary value problem

⎧⎨
⎩–Dα–δy(t) = h(t), t ∈ [, ],

y() = y′() = , y() =
∫ η

 y(s)ds,  < η < ,
(.)

is

y(t) = –Iα–δh(t) +
(α – δ)tα–δ–

α – δ – ηα–δ

(
Iα–δh() – Iα–δ+h(η)

)
.
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Proof It is well known [] that the solution of fractional differential equation in (.) can
be written as

y(t) = –Iα–δh(t) + ctα–δ– + ctα–δ– + ctα–δ–, (.)

where c, c, c ∈ R are arbitrary constants. Using the boundary conditions in (.), we find
that c = , c = , and

c =
α – δ

α – δ – ηα–δ

(
Iα–δh() – Iα–δ+h(η)

)
.

Substituting these values in (.) yields

y(t) = –Iα–δh(t) +
(α – δ)tα–δ–

α – δ – ηα–δ

(
Iα–δh() – Iα–δ+h(η)

)
.

Notice that α �= δ + ηα–δ in view of the given values of the parameters involved in the
expression. This completes the proof. �

Thus, the solution of the equation –Dαx(t) = h(t) subject to the boundary conditions
given by (.) can be written as

x(t) = Iδy(t)

= Iδ
[
–Iα–δh(t) +

(α – δ)tα–δ–

α – δ – ηα–δ

(
Iα–δh() – Iα–δ+h(η)

)]

= –Iαh(t) +
(α – δ)

α – δ – ηα–δ

(
Iα–δh() – Iα–δ+h(η)

)∫ t



(t – s)δ–

�(δ)
sα–δ– ds

= –Iαh(t) +
(α – δ)

α – δ – ηα–δ

(
Iα–δh() – Iα–δ+h(η)

)

×
{
tα–

�(δ)

∫ 


( – ν)δ–να–δ– dν

}
,

where we have used the substitution s = νt in the integral of the last term. Using the rela-
tion for the Beta function B(·, ·),

B(β + ,α) =
∫ 


( – u)α–uβ du =

�(α)�(β + )
�(α + β + )

,

we find that

x(t) = –Iαh(t) +
(α – δ)

α – δ – ηα–δ

(
Iα–δh() – Iα–δ+h(η)

){ tα–

�(δ)

(
�(δ)�(α – δ)

�(α)

)}

= –Iαh(t) +
�(α – δ + )tα–

(α – δ – ηα–δ)�(α)
(
Iα–δh() – Iα–δ+h(η)

)
.

Let C = C([, ],R) denote the Banach space of all continuous functions from [, ]→R

endowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [, ]}.
To establish the main results of this paper, we use the following form of the nonlinear

alternative for contractive maps [, Corollary .].
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Theorem . Let X be a Banach space, and D a bounded neighborhood of  ∈ X. Let
H : X → Pcp,c(X) (here Pcp,c(X) denotes the family of all nonempty, compact and convex
subsets of X) and H : D̄ →Pcp,c(X) two multivalued operators satisfying
(a) H is contraction, and
(b) H is upper semi-continuous (u.s.c. for shortly) and compact.

Then, if H =H +H, either
(i) H has a fixed point in D̄ or
(ii) there is a point u ∈ ∂D and λ ∈ (, ) with u ∈ λH(u).

Definition . Amultivalued map F : [, ]×R →Pcp,c(R) is said to be L-Carathéodory
if

(i) t → F(t,x) is measurable for each x ∈R,
(ii) x → F(t,x) is upper semi-continuous for almost all t ∈ [, ], and
(iii) for each real number ρ > , there exists a function hρ ∈ L([, ],R+) such that

∥∥F(t,u)∥∥ := sup
{|v| : v ∈ F(t,u)

} ≤ hρ(t), a.e. t ∈ [, ]

for all u ∈ R with ‖u‖ ≤ ρ .

Denote

SF ,x =
{
v ∈ L

(
[, ],R

)
: v(t) ∈ F

(
t,x(t)

)
a.e. t ∈ [, ]

}
.

Lemma . (Lasota and Opial []) Let X be a Banach space. Let F : [, ]×R →Pcp,c(R)
be an L Carathéodory multivalued map and let � be a linear continuous mapping from
L([, ],R) to C([, ],X). Then the operator

� ◦ SF : C
(
[, ],R

) →Pcp,c
(
C

(
[, ],R

))
, x �→ (� ◦ SF )(x) =�(SF ,x)

is a closed graph operator in C([, ],R)×C([, ],R).

3 Existence results
Before presenting the main results, we define the solutions of the boundary value prob-
lem (.).

Definition . A function x ∈ AC([, ],R) is said to be a solution of the problem (.)
if Dδx() = Dδ+x() = , Dδx() =

∫ η

 Dδx(s)ds and there exist functions f ∈ SF ,x, g ∈ SG,x
such that

x(t) = –A
∫ t



(t – s)α–

�(α)
f (s)ds – B

∫ t



(t – s)α+β–

�(α + β)
g(s)ds

+Qtα–
[
A

∫ 



( – s)α–δ–

�(α – δ)
f (s)ds + B

∫ 



( – s)α–δ+β–

�(α – δ + β)
g(s)ds

–A
∫ η



(η – s)α–δ

�(α – δ + )
f (s)ds – B

∫ η



(η – s)α–δ+β

�(α – δ + β + )
g(s)ds

]
,
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where

Q =
�(α – δ + )

(α – δ – ηα–δ)�(α)
. (.)

In the sequel, we set

Z =
|A|

�(α + )
+

|A||Q|
�(α – δ + )

+
|A||Q|ηα–δ+

�(α – δ + )
, (.)

Z =
|B|

�(α + β + )
+

|B||Q|
�(α – δ + β + )

+
|B||Q|ηα–δ+β+

�(α – δ + β + )
. (.)

Theorem . Assume that

(H) F : [, ]×R→Pcp,c(R) is an L Carathéodory multivalued map;
(H) there exists a function k ∈ C([, ],R+) such that

H
(
F(t,x),F(t, y)

) ≤ k(t)‖x – y‖ a.e. t ∈ [, ],

for all x, y ∈ C([, ],R) and Z‖k‖ < , where Z is given by (.);
(H) G : [, ]×R →Pcp,c(R) is an L Carathéodory multivalued map;
(H) there exists a function q ∈ C([, ],R) with q(t) >  for a.e. t ∈ [, ] and a nondecreas-

ing function ψ :R+ → (,∞) such that

∥∥G(t,x)∥∥ := sup
{|v| : v ∈G(t,x)

} ≤ q(t)ψ
(‖x‖) a.e. t ∈ [, ],

for all x ∈R;
(H) there exists a numberM >  such that

( – Z‖k‖)M
ZF + Z‖q‖ψ(M)

> , (.)

where Z, Z are given by (.) and (.), respectively, and F =
∫ 
 ‖F(t, )‖dt.

Then the problem (.) has a solution on [, ].

Proof To transform the problem (.) to a fixed-point problem, let us define an operator
N : C([, ],R)−→P(C([, ],R)) by

N (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ C([, ],R) :

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–A
∫ t


(t–s)α–
�(α) f (s)ds – B

∫ t


(t–s)α+β–

�(α+β) g(s)ds

+Qtα–[A
∫ 


(–s)α–δ–

�(α–δ) f (s)ds

+ B
∫ 


(–s)α–δ+β–

�(α–δ+β) g(s)ds –A
∫ η


(η–s)α–δ

�(α–δ+) f (s)ds

– B
∫ η


(η–s)α–δ+β

�(α–δ+β+)g(s)ds]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

for f ∈ SF ,x, g ∈ SG,x, where Q is given by (.).
We study the integral inclusion in the space C([, ],R) of all continuous real valued

functions on [, ] with supremum norm ‖ · ‖. Define two multivalued maps N,N :

http://www.boundaryvalueproblems.com/content/2014/1/25
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C([, ],R)→P(C([, ],R)) by

N(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h ∈ C([, ],R) :

h(t) =

⎧⎪⎪⎨
⎪⎪⎩
–A

∫ t


(t–s)α–
�(α) f (s)ds

+AQtα–[
∫ 


(–s)α–δ–

�(α–δ) f (s)ds

–A
∫ η


(η–s)α–δ

�(α–δ+) f (s)ds]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for f ∈ SF ,x and

N(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h ∈ C([, ],R) :

h(t) =

⎧⎪⎪⎨
⎪⎪⎩
–B

∫ t


(t–s)α+β–

�(α+β) g(s)ds

+ BQtα–[
∫ 


(–s)α–δ+β–

�(α–δ+β) g(s)ds

– B
∫ η


(η–s)α–δ+β

�(α–δ+β+)g(s)ds]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for g ∈ SG,x.
Observe that N =N +N. We shall show that the operators N and N satisfy all the

conditions of Theorem . on [, ]. For the sake of clarity, we split the proof into a se-
quence of steps and claims.
Step . We show thatN is a multivalued contraction on C([, ],R).
Let x, y ∈ C([, ],R) and u ∈N(x). Then u ∈P(C([, ],R)) and

u(t) = –A
∫ t



(t – s)α–

�(α)
v(s)ds

+AQtα–
[∫ 



( – s)α–δ–

�(α – δ)
v(s)ds –A

∫ η



(η – s)α–δ

�(α – δ + )
v(s)ds

]
,

for some v ∈ SF ,x. Since H(F(t,x),F(t, y)) ≤ k(t)‖x – y‖, there exists w ∈ F(t, y) such that
|v(t)–w(t)| ≤ k(t)‖x–y‖. Thus themultivalued operatorU is defined byU(t) = SF ,y∩K (t),
where

K (t) =
{
w ∈R

∣∣ ∣∣v(t) –w(t)
∣∣ ≤ k(t)‖x – y‖}

has nonempty values and is measurable. Let v be a measurable selection for U (which
exists by Kuratowski-Ryll-Nardzewski’s selection theorem [, ]). Then v ∈ F(t, y) and
|v(t) – v(t)| ≤ k(t)‖x – y‖ a.e. on [, ].
Define

u(t) = –A
∫ t



(t – s)α–

�(α)
v(s)ds

+AQtα–
[∫ 



( – s)α–δ–

�(α – δ)
v(s)ds –

∫ η



(η – s)α–δ

�(α – δ + )
v(s)ds

]
.

It follows that u ∈N(y) and

∣∣u(t) – u(t)
∣∣ ≤

∣∣∣∣–A
∫ t



(t – s)α–

�(α)
[
v(s) – v(s)

]
ds

+AQtα–
[∫ 



( – s)α–δ–

�(α – δ)
[
v(s) – v(s)

]
(s)ds

http://www.boundaryvalueproblems.com/content/2014/1/25
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–
∫ η



(η – s)α–δ

�(α – δ + )
[
v(s) – v(s)

]
(s)ds

]∣∣∣∣
≤ |A|

∫ 



( – s)α–

�(α)
∣∣v(s) – v(s)

∣∣ds
+ |A||Q|

∫ 



( – s)α–δ–

�(α – δ)
∣∣v(s) – v(s)

∣∣ds
+ |A||Q|

∫ η



(η – s)α–δ

�(α – δ + )
∣∣v(s) – v(s)

∣∣ds
≤

{ |A|
�(α + )

+
|A||Q|

�(α – δ + )
+

|A||Q|ηα–δ+

�(α – δ + )

}
‖k‖‖x – y‖.

Taking the supremum over the interval [, ], we obtain

‖u – u‖ ≤
{ |A|

�(α + )
+

|A||Q|
�(α – δ + )

+
|A||Q|ηα–δ+

�(α – δ + )

}
‖k‖‖x – y‖. (.)

Combining the inequality (.) with the corresponding one obtained by interchanging the
roles of x and y, we get

H
(
N(x),N(y)

) ≤
{ |A||Q|

�(α + )
+

|A||Q|
�(α – δ + )

+
|A||Q|ηα–δ+

�(α – δ + )

}
‖k‖‖x – y‖,

for all x, y ∈ C([, ],R). This shows thatN is a multivalued contraction as

Z‖k‖ =
{ |A|

�(α + )
+

|A||Q|
�(α – δ + )

+
|A||Q|ηα–δ+

�(α – δ + )

}
‖k‖ < .

Step . We shall show that the operator N is u.s.c. and compact. It is well known [,
Proposition .] that if an operator is completely continuous and has a closed graph, then
it is u.s.c. Therefore wewill prove thatN is completely continuous and has a closed graph.
This step involves several claims.

Claim I N maps bounded sets into bounded sets in C([, ],R).

Let Br = {x ∈ C([, ],R) : ‖x‖ ≤ r} be a bounded set in C([, ],R).
Now for each u ∈N(x), there exists a w ∈ SG,x such that

u(t) = –B
∫ t



(t – s)α+β–

�(α + β)
w(s)ds

+ BQtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
w(s)ds –

∫ η



(η – s)α–δ+β

�(α – δ + β + )
w(s)ds

]
.

Then for each t ∈ [, ],

∣∣u(t)∣∣ ≤ |B|
∫ t



(t – s)α+β–

�(α + β)
∣∣w(s)∣∣ds

+ |B||Q|
[∫ 



( – s)α–δ+β–

�(α – δ + β)
∣∣w(s)∣∣ds + ∫ η



(η – s)α–δ+β

�(α – δ + β + )
∣∣w(s)∣∣ds]

http://www.boundaryvalueproblems.com/content/2014/1/25
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≤ |B|
∫ 



( – s)α+β–

�(α + β)
q(t)ψ

(‖x‖)ds
+ |B||Q|

[∫ 



( – s)α–δ+β–

�(α – δ + β)
q(t)ψ

(‖x‖)ds
+

∫ η



(η – s)α–δ+β

�(α – δ + β + )
q(t)ψ

(‖x‖)ds]

≤ ψ
(‖x‖)‖q‖{ |B|

�(α + β + )
+

|B||Q|
�(α – δ + β + )

+
|B||Q|ηα–δ+β+

�(α – δ + β + )

}
,

which implies that

‖u‖ ≤ ψ(r)‖q‖
{ |B|

�(α + β + )
+

|B||Q|
�(α – δ + β + )

+
|B||Q|ηα–δ+β+

�(α – δ + β + )

}
.

HenceN is bounded.

Claim II N maps bounded sets into equicontinuous sets.

As in the proof of Claim I, let Br be a bounded set and u ∈N(x) for some x ∈ Br . Then
there exists w ∈ SG,x such that

u(t) = –B
∫ t



(t – s)α+β–

�(α + β)
w(s)ds

+ BQtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
w(s)ds –

∫ η



(η – s)α–δ+β

�(α – δ + β + )
w(s)ds

]
.

Then for any t, t ∈ [, ] with t ≤ t we have

∣∣u(t) – u(t)
∣∣

≤ |B|
∫ t



[(t – s)α+β– – (t – s)α+β–]
�(α + β)

∣∣w(s)∣∣ds + |B|
∫ t

t

(t – s)α+β–

�(α + β)
∣∣w(s)∣∣ds

+ |B||Q|∣∣tα– – tα–
∣∣[∫ 



( – s)α–δ+β–

�(α – δ + β)
∣∣w(s)∣∣ds + ∫ η



(η – s)α–δ+β

�(α – δ + β + )
∣∣w(s)∣∣ds]

≤ |B|
∫ t



[(t – s)α+β– – (t – s)α+β–]
�(α + β)

q(s)ψ(r)ds

+ |B|
∫ t

t

(t – s)α+β–

�(α + β)
q(s)ψ(r)ds

+ |B||Q|∣∣tα– – tα–
∣∣[∫ 



( – s)α–δ+β–

�(α – δ + β)
q(s)ψ(r)ds

+
∫ η



(η – s)α–δ+β

�(α – δ + β + )
q(s)ψ(r)ds

]
.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br

as t – t → . Therefore it follows by the Arzelá-Ascoli theorem that N : C([, ],R) →
P(C([, ],R)) is completely continuous.

http://www.boundaryvalueproblems.com/content/2014/1/25
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Claim III Next we prove thatN has a closed graph.

Let xn → x∗, hn ∈ N(xn) and hn → h∗. Then we need to show that h∗ ∈ B(x∗). Associ-
ated with hn ∈ B(xn), there exists vn ∈ SG,xn such that for each t ∈ [, ],

hn(t) = –B
∫ t



(t – s)α+β–

�(α + β)
vn(s)ds

+ BQtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
vn(s)ds –

∫ η



(η – s)α–δ+β

�(α – δ + β + )
vn(s)ds

]
.

Thus it suffices to show that there exists v∗ ∈ SG,x∗ such that for each t ∈ [, ],

h∗(t) = –B
∫ t



(t – s)α+β–

�(α + β)
v∗(s)ds

+ BQtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
v∗(s)ds –

∫ η



(η – s)α–δ+β

�(α – δ + β + )
v(s)ds

]
.

Let us consider the linear operator � : L([, ],R)→ C([, ],R) given by

v �→ �(v)(t) = –B
∫ t



(t – s)α+β–

�(α + β)
v(s)ds

+ BQtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
v(s)ds –

∫ η



(η – s)α–δ+β

�(α – δ + β + )
v(s)ds

]
.

Observe that

∥∥hn(t) – h∗(t)
∥∥ =

∥∥∥∥–B
∫ t



(t – s)α+β–

�(α + β)
(
vn(u) – v∗(u)

)
ds

+ BQtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
(
vn(u) – v∗(u)

)
ds

–
∫ η



(η – s)α–δ+β

�(α – δ + β + )
(
vn(u) – v∗(u)

)
ds

]∥∥∥∥ → ,

as n → ∞. Thus, it follows by Lemma . that � ◦ SG is a closed graph operator. Further,
we have hn(t) ∈ �(SG,xn ). Since xn → x∗, we have

h∗(t) = –B
∫ t



(t – s)α+β–

�(α + β)
v∗(s)ds

+ BQtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
v∗(s)ds –

∫ η



(η – s)α–δ+β

�(α – δ + β + )
v(s)ds

]

for some v∗ ∈ SG,x∗ .
HenceN has a closed graph (and therefore it has closed values). In consequence,N is

compact valued.
Therefore the operators N and N satisfy all the conditions of Theorem .. So the

conclusion of Theorem . applies and either condition (i) or condition (ii) holds. We
show that the conclusion (ii) is not possible. If x ∈ λN(x) + λN(x) for λ ∈ (, ), then
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there exist v ∈ SF ,x and v ∈ SG,x such that

x(t) = λ

{
–A

∫ t



(t – s)α–

�(α)
v(s)ds

+QAtα–
[∫ 



( – s)α–δ–

�(α – δ)
v(s)ds –

∫ η



(η – s)α–δ

�(α – δ + )
v(s)ds

]}

+ λ–
{
–B

∫ t



(t – s)α+β–

�(α + β)
v(s)ds

+QBtα–
[∫ 



( – s)α–δ+β–

�(α – δ + β)
v(s)ds

–
∫ η



(η – s)α–δ+β

�(α – δ + β + )
v(s)ds

]}
. (.)

By hypothesis (H), for all t ∈ [, ], we have

∥∥F(t,x)∥∥ = H
(
F(t,x), 

) ≤H
(
F(t,x),F(t, )

)
+H

(
F(t, ), 

)
≤ H

(
F(t,x),F(t, )

)
+

∥∥F(t, )∥∥.
Hence for any a ∈ F(t,x),

|a| ≤ ∥∥F(t,x)∥∥ ≤H
(
F(t,x),F(t, )

)
+

∥∥F(t, )∥∥
≤ k(t)‖x‖ + ∥∥F(t, )∥∥,

for all t ∈ [, ]. Then we have

∣∣x(t)∣∣ ≤ |A|
{∫ t



(t – s)α–

�(α)
[
k(s)‖x‖ + ∥∥F(t, )∥∥]

ds

+ |Q||A|
[∫ 



( – s)α–δ–

�(α – δ)
[
k(s)‖x‖ + ∥∥F(t, )∥∥]

ds

–
∫ η



(η – s)α–δ

�(α – δ + )
[
k(s)‖x‖ + ∥∥F(t, )∥∥]

ds
]}

+ |B|
{∫ t



(t – s)α+β–

�(α + β)
q(s)ψ

(‖x‖)ds
+ |Q||B|

[∫ 



( – s)α–δ+β–

�(α – δ + β)
q(s)ψ

(‖x‖)ds
–

∫ η



(η – s)α–δ+β

�(α – δ + β + )
q(s)ψ

(‖x‖)ds]}

≤
{ |A|

�(α + )
+

|A||Q|
�(α – δ + )

+
|A||Q|ηα–δ+

�(α – δ + )

}(‖k‖‖x‖ + F
)

+
{ |B|

�(α + β + )
+

|B||Q|
�(α – δ + β + )

+
|B||Q|ηα–δ+β+

�(α – δ + β + )

}
‖q‖ψ(‖x‖)

= Z
(‖k‖‖x‖ + F

)
+ Z‖q‖ψ

(‖x‖).
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Thus,

‖x‖ ≤ Z
(‖k‖‖x‖ + F

)
+ Z‖q‖ψ

(‖x‖). (.)

Now, if condition (ii) of Theorem . holds, then there exist λ ∈ (, ) and x ∈ ∂Br such that
x = λN (x). Then x is a solution of (.) with ‖x‖ =M and consequently, the inequality (.)
yields

( – Z‖k‖)M
ZF + Z‖q‖ψ(M)

≤ ,

which contradicts (.). Hence,N has a fixed point in [, ] by Theorem ., which in fact
is a solution of the problem (.). This completes the proof. �

3.1 The lower semi-continuous case
This section is devoted to the study of the case that the maps in (.) are not necessarily
convex-valued. We establish the existence result for the problem at hand by applying the
nonlinear alternative of Leray-Schauder type and a selection theorem due to Bressan and
Colombo [] for lower semi-continuous maps with decomposable values. Before pre-
senting this result, we revisit some basic concepts.
Let X be a nonempty closed subset of a Banach space E and G : X → P(E) be a multi-

valued operator with nonempty closed values.G is lower semi-continuous (l.s.c.) if the set
{y ∈X :G(y)∩B �= ∅} is open for any open setB in E. LetM be a subset of [, ]×R.M is
L⊗Bmeasurable ifM belongs to the σ algebra generated by all sets of the form J ×D,
where J is Lebesgue measurable in [, ] and D is Borel measurable in R. A subset S of
L([, ],R) is decomposable if for all u, v ∈ S and measurable J ⊂ [, ] = J , the function
uχJ + vχJ–J ∈ S , where χJ stands for the characteristic function of J .

Definition . Let Y be a separable metric space and let W : Y → P(L([, ],R)) be a
multivalued operator.We sayW has a property (BC) ifW is lower semi-continuous (l.s.c.)
and has nonempty closed and decomposable values.

Let F : [, ]×R→P(R) be a multivalued map with nonempty compact values. Define
a multivalued operator F : C([, ]×R) →P(L([, ],R)) associated with F as

F (x) =
{
v ∈ L

(
[, ],R

)
: v(t) ∈ F

(
t,x(t)

)
for a.e. t ∈ [, ]

}
,

which is called the Nemytskii operator associated with F .

Definition . Let F : [, ]×R →P(R) be a multivalued function with nonempty com-
pact values. We say F is of lower semi-continuous type (l.s.c. type) if its associated Ne-
mytskii operatorF is lower semi-continuous and has nonempty closed and decomposable
values.

Lemma . ([]) Let Y be a separable metric space and let W : Y → P(L([, ],R)) be
a multivalued operator satisfying the property (BC). Then W has a continuous selection,
that is, there exists a continuous function (single-valued) w : Y → L([, ],R) such that
w(x) ∈W(x) for every x ∈ Y .
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Theorem . Assume that (H), (H), (H), and the following condition hold:

(H) F ,G : [, ]×R→P(R) are nonempty compact-valued multivalued maps such that
(a) (t,x) �−→ F(t,x), (t,x) �−→G(t,x) are L⊗B measurable,
(b) x �−→ F(t,x, ) x �−→G(t,x) are lower semicontinuous for each t ∈ [, ];

Then the boundary value problem (.) has at least one solution on [, ].

Proof It follows from (H), (H), and (H) that F and G are of l.s.c. type. Then from
Lemma ., there exist continuous functions f , g : C([, ],R) → L([, ],R) such that
f (x) ∈F (x), g(x) ∈ G(x) for all x ∈ C([, ],R).
Consider the problem

⎧⎨
⎩–Dαx(t) = Af (x(t)) + BIβg(x(t)),  < α ≤ , t ∈ [, ],

Dδx() =Dδ+x() = , Dδx() =
∫ η

 Dδx(s)ds,  < η < .
(.)

Observe that if x ∈ AC([, ]) is a solution of (.), then x is a solution to the prob-
lem (.).Now,wedefine twomultivalued operators Ñ, Ñ : C([, ],R)−→P(C([, ],R))
by

Ñx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
–A

∫ t


(t–s)α–
�(α) f (x(s))ds

+AQtα–[
∫ 


(–s)α–δ–

�(α–δ) f (x(s))ds

–A
∫ η


(η–s)α–δ

�(α–δ+) f (x(s))ds],

and

Ñx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
–B

∫ t


(t–s)α+β–

�(α+β) g(x(s))ds

+ BQtα–[
∫ 


(–s)α–δ+β–

�(α–δ+β) g(x(s))ds

– B
∫ η


(η–s)α–δ+β

�(α–δ+β+)g(x(s))ds].

Clearly Ñ, Ñ : C([, ],R) → C([, ],R) are continuous. Also the argument in Theo-
rem . guarantees that Ñ and Ñ satisfy all the conditions of the nonlinear alternative
for contractive maps in the single-valued setting [] and hence the problem (.) has a
solution. �

Example . Consider the following fractional boundary value problem:
⎧⎨
⎩–D/x(t) ∈ F(t,x(t)) + I/G(t,x(t)), t ∈ [, ],

D/x() =D/x() = , D/x() =
∫ /
 D/x(s)ds,

(.)

where

F(t,x) =
[
–


( + t)

–
sinx

( + t)
– ,–




]
, G(t,x) =

[ |x|
(|x| + )

,
|x|

(|x| + )

]
.

We have

sup
{|u| : u ∈ F(t,x)

} ≤  +


( + t)
+


( + t)

, H
(
F(t,x),F(t, x̄)

) ≤ k(t)|x – x̄|
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with k(t) = 
(+t) . Using the given data, we find that

Q =
�(α – δ + )

(α – δ – ηα–δ)�(α)
� ., ‖k‖ = /,

‖q‖ = /, ψ(M) = , F = .,

Z =
|A|

�(α + )
+

|A||Q|
�(α – δ + )

+
|A||Q|ηα–δ+

�(α – δ + )
� .,

Z =
|B|

�(α + β + )
+

|B||Q|
�(α – δ + β + )

+
|B||Q|ηα–δ+β+

�(α – δ + β + )
� ..

Clearly Z‖k‖ < , and by the condition:

( – Z‖k‖)M
ZF + Z‖q‖ψ(M)

> ,

it is found that M >M, where M � .. Thus, all the assumptions of Theorem .
are satisfied. Hence, the conclusion of Theorem . applies to the problem (.).
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