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Abstract
In this paper, using the theory of fixed point index on a cone and the Leray-Schauder
fixed point theorem, we present the multiplicity of positive solutions for the singular
nonlocal boundary-value problems involving nonlinear integral conditions and the
existence of at least one positive solution for the singular nonlocal boundary-value
problems with sign-changed nonlinearities.
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1 Introduction
Nonlocal boundary-value problems with linear and nonlinear integral conditions have
seen a great deal of study lately (see [–], and references therein) because of their in-
teresting theory and their applications to various problems, such as heat flow in a bar of
finite length [, ]. In this paper, we consider the existence of positive solutions of the
nonlinear boundary-value problem (BVP) of the form

–y′′ = q(t)f
(
t, y(t)

)
, t ∈ (, ) (.)

with integral boundary conditions

y() =H
(
φ(y)

)
, y() = , (.)

where φ(y) is a linear functional on C[, ] given by

φ(y) =
∫ 


y(s)dα(s)

involving a Stieltjes integral with a signed measure.
In [], Goodrich considered the following problem:

–y′′ = λg
(
t, y(t)

)
, t ∈ (, ) (.)
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with integral boundary conditions

y() =H
(
φ(y)

)
, y() =  (.)

and deduced the existence of at least one positive solution to the BVP (.)-(.) in which
H(φ(y)) has either asymptotically sublinear or asymptotically superlinear growth, and in
[] Goodrich demonstrated that if the nonlinear functional H(φ(y)) satisfies a certain
asymptotic behavior, then the BVP (.)-(.) possesses at least one positive solution. For
the case that H is linear and φ(y) =

∫ 
 y(s)dα(s) involves a signed measure, Webb and In-

fante discussed the multiplicity of positive solutions for nonlocal boundary-value prob-
lems [–]. For the case that H is linear and the Borel measure associated with the
Lebesgue-Stieltjes integral is positive, we can find some results on the existence of positive
solutions [, , , ]. The results in the above literature are obtained under the condition
that f (t,x) is continuous on (, )× [, +∞), i.e., f has no singularity at x = . And it is well
known that study of singular two-point boundary-value problems for the second-order
differential equation (.) (singular in the dependent variable) is very important and there
are many results on the existence of positive solutions [, –]. But there are fewer re-
sults on the existence of positive solutions for the singular BVP (.)-(.) [, ]. One goal
in this paper is to consider the existence of positive solutions under the condition that
f (t,x) is singular at x = . Our paper has the following features.
Firstly, in order to overcome the difficulties of the singularity of f we establish a new

cone and get the new condition (.) which is different from that in [, ]. Moreover, we
get amultiplicity of positive solutions for BVP (.)-(.) different from that in [, , –]
under the condition that H(y) or f (t, y) is superlinear at y = +∞.
Secondly, when f is singular and sign-changed, we get the existence of at least one posi-

tive solution to the BVP (.)-(.) which is different from that in [, , , , –] where f
is nonnegative and continuous at x = . Moreover, the results are different from that in [,
, , ] where integral boundary conditions are linear and the Borel measure is positive.
Our paper is organized as follows. In Section , we present some lemmas and preliminar-

ies. Section  discusses the existence of multiple positive solutions for the BVP (.)-(.)
when f is positive. In Section , we discuss the existence of at least one positive solution
of BVP (.)-(.) when f is singular and sign-changed.

2 Preliminaries
In this paper, the following lemmas are needed.

Lemma . (see []) Let � be a bounded open set in real Banach space E, P a cone of
E, θ ∈ � and A : � ∩ P → P continuous and compact. Suppose λAx �= x, ∀x ∈ ∂� ∩ P,
λ ∈ (, ]. Then

i(A,� ∩ P,P) = .

Lemma . (see []) Let � be a bounded open set in real Banach space E, P a cone of
E, θ ∈ � and A : � ∩ P → P continuous and compact. Suppose Ax� x, ∀x ∈ ∂� ∩ P. Then

i(A,� ∩ P,P) = .
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Lemma . (see [, ]) Let E be a Banach space, R > , BR = {x ∈ E : ‖x‖ ≤ R}, and
F : BR → E a continuous compact operator. If x �= λF(x) for any x ∈ E with ‖x‖ = R and
 < λ < , then F has a fixed point in BR.

Let us begin by stating the hypotheses which we shall impose on the BVP (.)-(.).

(C) Assume that there are three linear functionals φ,φ,φ : C([, ])→ R such that

φ(y) = φ(y) + φ(y).

Moreover, assume that there exists a constant ε >  such that

φ(y) ≥ ε‖y‖

holds for each y ∈ P, where P is the cone introduced in (.) below [].
(C) The functionals φ(y) and φ(y) are linear and, in particular, have the form

φ(y) :=
∫ 


y(t)dα(t), φ(y) :=

∫ 


y(t)dα(t),

where α,α : [, ]→ R satisfy α,α ∈ BV ([, ]) with

∫ 


( – t)dα(t) ≥ ,

∫ 


( – t)dα(t) ≥ 

and

∫ 


k(t, s)dα(t)≥ ,

∫ 


k(t, s)dα(t)≥ 

hold, where the latter holds for each s ∈ [, ] and k(t, s) is defined in (.) below [].
(C) Let H : R → R be a real-valued, continuous function. Moreover, H : (, +∞) →

(, +∞).
(C)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f : [, ]× (,∞) → (,∞) is continuous

and there exists a function ψ

continuous on [, ] and positive on (, ) such that

f (t, y) ≥ ψ(t) on (, )× (, ].

(C)

q ∈ C(, ), q >  on (, ) and
∫ 


( – t)q(t)dt < ∞.

LetC[, ] = {y : [, ]→ R : y(t) is continuous on [, ]}with norm ‖y‖ =maxt∈[,] |y(t)|.
It is easy to see that C[, ] is a Banach space.

http://www.boundaryvalueproblems.com/content/2014/1/38
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Assume that (C) hold. Define

P =
{
y ∈ C[, ] : y is concave on [, ] with y(t) ≥  for all t ∈ [, ],

φ(y) ≥ ,φ(y) ≥ 
}
. (.)

It is easy to prove P is a cone of C[, ] and we have the following lemma.

Lemma . (see []) Let y ∈ P (defined in (.)). Then

y(t) ≥ t( – t)‖y‖ for t ∈ [, ].

3 Multiplicity of positive solutions for the singular boundary-value problems
with positive nonlinearities

In this section, we consider the existence of multiple positive solutions for the BVP (.)-
(.). To show that the BVP (.)-(.) has a solution, for y ∈ P, we define

(Tεy)(t) = ( – t)H
(
φ(y)

)
+

∫ 


k(t, s)q(s)f

(
s,max

{
ε, y(s)

})
ds,

t ∈ [, ], ≥ ε > , (.)

where

k(t, s) =

{
( – t)s, ≤ s ≤ t ≤ ,
( – s)t, ≤ t ≤ s ≤ .

(.)

Lemma . Suppose (C)-(C) hold. Then Tε : P → P is continuous and compact for all
≥ ε > .

Proof It is easy to prove that Tε is well defined and (Tεy)(t) ≥  for all t ∈ P. For y ∈ P, we
have

{
(Tεy)′′(t)≤  on (, ),
(Tεy)() =H(φ(y)), (Tεy)() = ,

and so

(Tεy)(t) is concave on [, ]. (.)

Moreover, from (C), we may estimate

φ(Tεy) =
∫ 


( – t)dα(t)H

(
φ(y)

)
+

∫ 



∫ 


k(t, s)q(s)f

(
s,max

{
ε, y(s)

})
dsdα(t)

=
∫ 


( – t)dα(t)H

(
φ(y)

)
+

∫ 


q(s)f

(
s,max

{
ε, y(s)

})∫ 


k(t, s)dα(t)ds

≥  (.)

http://www.boundaryvalueproblems.com/content/2014/1/38
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and

φ(Tεy) =
∫ 


( – t)dα(t)H

(
φ(y)

)
+

∫ 



∫ 


k(t, s)q(s)f

(
s,max

{
ε, y(s)

})
dsdα(t)

=
∫ 


( – t)dα(t)H

(
φ(y)

)
+

∫ 


q(s)f

(
s,max

{
ε, y(s)

})∫ 


k(t, s)dα(t)ds

≥ . (.)

Combining (.), (.), and (.),Tε : P → P. A standard argument shows thatTε : P → P
is continuous and compact [, , ]. �

Define

�r :=
{
x ∈ P ∩C((, ),R)

: ‖x‖ ≤ r and x satisfies

x′′(t) + q(t)f
(
t,max

{
ε,x(t)

})
= , < t < ,x() =H

(
φ(x)

)
,x() = , ∀≥ ε > 

}
.

Lemma . If �r �= ∅ and (C) hold, there exists a δr >  such that

x()≥ δrt( – t), ∀t ∈ [, ],x ∈ �r .

Proof Suppose x ∈ �r . There are two cases to consider.
() ‖x‖ > . Lemma . implies that

x(t)≥ t( – t)‖x‖ ≥ t( – t), t ∈ [, ]. (.)

()  < ‖x‖ ≤ . Condition (C) guarantees that

x(t) = ( – t)H
(
φ(x)

)
+

∫ 


k(t, s)q(s)f

(
s,max

{
ε,x(s)

})
ds

≥
∫ 


k(t, s)q(s)ψ(s)ds := γ(t), t ∈ [, ].

Since γ ′′
 (t) ≥ , γ() = , and γ() = , we know that γ is concave on [, ] and γ(t) ≥ 

for all t ∈ [, ]. And from (C), a similar argument as (.) and (.) shows that φ(γ) ≥ 
and φ(γ) ≥ . Then γ ∈ P and Lemma . implies that

γ(t) ≥ t( – t)‖γ‖, ∀t ∈ [, ]. (.)

Let δ =min{,‖γ‖}. From (.) and (.), one has

x(t)≥ δt( – t), ∀t ∈ [, ],

which means that

r ≥ ‖x‖ ≥ δ.
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Thus

φ(x) =
∫ 


x(s)dα(s) +

∫ 


x(s)dα(s)≤ c‖x‖ ≤ cr,

where

c
def.=

∫ 



∣∣dα(s)
∣∣ + ∫ 



∣∣dα(s)
∣∣

and (C) guarantees that

φ(x)≥ φ(x)≥ ε‖x‖.

And so

x() =H
(
φ(x)

) ≥ min
s∈[εδ,cr]

H(s) := δr > .

The concavity x(t) yields

x(t)≥ δr( – t) > , ∀t ∈ [, ],x ∈ �r .

The proof is complete. �

For R > , let

�R =
{
x ∈ C[, ] : ‖x‖ < R

}
.

We have the following lemmas.

Lemma . Suppose that (C)-(C) hold and there exists an a ∈ (,  ) such that

lim
y→+∞

f (t, y)
y

= +∞ (.)

uniformly on [a,  – a]. Then, there exists an R′ >  such that for all R≥ R′

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

Proof From (.), there exists an R >  such that

f (t, y) ≥N∗y, ∀y≥ R, (.)

where

N∗ >


a
∫ –a
a k(a, s)q(s)ds

.

http://www.boundaryvalueproblems.com/content/2014/1/38
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Let R′ = R
a and

�R :=
{
x ∈ C[, ] : ‖x‖ < R

}
, ∀R≥ R′.

Now we show

Tεy� y for y ∈ P ∩ ∂�R,∀ < ε ≤ . (.)

Suppose that there exists a y ∈ P ∩ ∂�R with Tεy ≤ y. Then, ‖y‖ = R. Since y(t) is
concave on [, ] (since y ∈ P) we find from Lemma . that y(t) ≥ t(– t)‖y‖ ≥ t(– t)R
for t ∈ [, ]. For t ∈ [a,  – a], one has

y(t) ≥ aR ≥ aR′ = R, ∀t ∈ [a,  – a],

which together with (.) yields

f
(
t,max

{
ε, y(t)

})
= f

(
t, y(t)

) ≥N∗y(t)≥N∗aR, ∀t ∈ [a,  – a]. (.)

Then we have, using (.),

y(a) ≥ Tεy(a) = ( – a)H
(
φ(y)

)
+

∫ 


k(a, s)q(s)f

(
s,max

{
ε, y(s)

})
ds

≥
∫ –a

a
k(a, s)q(s)f

(
s,max

{
ε, y(s)

})
ds

=
∫ –a

a
k(a, s)q(s)f

(
s, y(s)

)
ds

≥ N∗Ra
∫ –a

a
k(a, s)q(s)ds

> R = ‖y‖,

which is a contradiction. Hence equation (.) is true. Lemma . guarantees that

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

The proof is complete. �

Lemma . Suppose that (C)-(C) hold and

lim
s→+∞

H(s)
s

= +∞. (.)

Then, there exists an R′ >  such that for all R ≥ R′

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

Proof From equation (.), there exists an R >  such that

H(s)≥N∗s, ∀s≥ R, (.)

http://www.boundaryvalueproblems.com/content/2014/1/38
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where

N∗ >

ε

(
ε defined in (C)

)
.

Let R′ = R
ε

and

�R =
{
x ∈ C[, ] : ‖x‖ < R

}
, ∀R≥ R′.

Now we show

Tεy� y for y ∈ P ∩ ∂�R,∀ < ε ≤ . (.)

Suppose that there exists a y ∈ P ∩ ∂�R with Tεy ≤ y. Then, ‖y‖ = R. Now (C)
guarantees that

φ(y) = φ(y) + φ(y)≥ ε‖y‖ = εR ≥ R,

which together with equation (.) implies that

y() ≥ Tεy() =H
(
φ(y)

) ≥N∗φ(y) >

ε

ε‖y‖ > ‖y‖.

This is a contradiction. Hence (.) is true. Lemma . guarantees that

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

The proof is complete. �

Theorem . Suppose (C)-(C) hold and the following conditions are satisfied:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≤ f (t, y) ≤ g(y) + h(y) on [, ]× (,∞) with

g >  continuous and nonincreasing on (,∞),

h≥  continuous on [,∞), and
h
g nondecreasing on (,∞)

(.)

and

sup
r∈(,+∞)

min

{


 + h(r)
g(r)

∫ r



dy
g(y)

,
r

maxy∈[,cr]H(y)

}
>max{,b} (.)

hold; here

b =
∫ 


( – s)q(s)ds, c =

∫ 



∣∣dα(s)
∣∣ + ∫ 



∣∣dα(s)
∣∣.

Then the BVP (.)-(.) has at least one positive solution.

http://www.boundaryvalueproblems.com/content/2014/1/38
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Proof From equation (.), choose ε >  and r >  with ε <min{, r} such that

min

{


 + h(r)
g(r)

∫ r



dy
g(y)

,
r

maxy∈[,cr]H(y)

}
>max{,b}. (.)

Let

� =
{
y ∈ C[, ] : ‖y‖ < r

}
,

and n > 
ε
. For n ∈ {n,n +, . . .}, we define T 

n
as in equation (.). Lemma . guarantees

that T 
n
: P → P is continuous and compact.

Now we show that

y �= λT 
n
y, ∀y ∈ ∂� ∩ P,λ ∈ (, ]. (.)

Suppose that there is a y ∈ ∂� ∩ P and λ ∈ [, ] with y = λT 
n
y, i.e., y satisfies

{
y′′
(t) + λq(t)f (t,max{ 

n , y(t)}) = ,  < t < ,
y() = λH(φ(y)), y() = .

(.)

Then y′′
(t) ≤  on (, ). From equation (.), we have y() = λH(φ(y)) ≤

maxy∈[,cr]H(y) < r, which together with y() =  < r implies that there exists a t ∈ (, )
with y(t) = ‖y‖ = r, y′

(t) =  and y′
(t)≤  for all t ∈ (t, ). For t ∈ (, ), from equations

(.) and (.), we have

–y′′
(t)≤ g

(
max

{

n
, y(t)

}){
 +

h(max{ 
n , y(t)})

g(max{ 
n , y(t)})

}
q(t)

≤ g
(
max

{

n
, y(t)

}){
 +

h(r)
g(r)

}
q(t). (.)

We integrate equation (.) from t (t < t) to t to obtain

–y′
(t)≤ g

(
max

{

n
, y(t)

}){
 +

h(r)
g(r)

}∫ t

t
q(s)ds

≤ g
(
y(t)

){
 +

h(r)
g(r)

}∫ t

t
q(s)ds (.)

and then integrate equation (.) from t to  to obtain

∫ y(t)

y()

dy
g(y)

≤
{
 +

h(r)
g(r)

}∫ 

t

∫ s

t
q(τ )dτ ds

=
{
 +

h(r)
g(r)

}∫ 

t
( – s)q(s)ds

≤
{
 +

h(r)
g(r)

}∫ 


( – s)q(s)ds,

http://www.boundaryvalueproblems.com/content/2014/1/38
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i.e.,

∫ r



dy
g(y)

≤
{
 +

h(r)
g(r)

}∫ 


( – s)q(s)ds,

which contradicts equation (.). Therefore, equation (.) is true. Lemma . implies
that

i(T 
n
,� ∩ P,P) = ,

which yields the result that there exists a yn ∈ � ∩ P such that

T 
n
yn = yn,

i.e., �r �= ∅ in Lemma .. Now Lemma . guarantees that there exists a δr >  such that

yn() ≥ δr , yn(t) ≥ δr( – t), ∀t ∈ [, ],x ∈ {n,n + , . . .}. (.)

Now we consider the set {yn}∞n=n . Obviously, ‖yn‖ ≤ r means that

the functions belonging to
{
yn(t)

}
are uniformly bounded on [, ]. (.)

Now we show that

the functions belonging to
{
yn(t)

}
are equicontinuous on [, ]. (.)

There are two cases to consider.
() There exists a subsequence {yni} of {yn} with yni () =H(φ(yni )) < ‖yni‖. Without loss

of generality, we assume that yn() = H(φ(yn)) < ‖yn‖, n ∈ {n,n + , . . .}, which together
with yn() =  implies that there exists a tn satisfying that y′

n(tn) =  with y′
n(t) ≥  for

t ∈ (, tn) and y′
n(t) ≤  for t ∈ (tn, ). Let t′ = sup{tn,n ≥ n}. Now we show that t′ < . To

the contrary, suppose that t′ = . Then there exists a subsequence {ni} of {n} such that
tni →  as ni → +∞. From equation (.), using yn in place of y, we have

∫ yni (tni )




g(y)

dy ≤
(
 +

h(r)
g(r)

)∫ 

tni

( – s)q(s)ds,

which implies that

yni (tni ) → , as ni → +∞.

This contradicts yni (t)≥ δr( – t) for all t ∈ [, ].
Let t ∈ (t′, ). From equation (.), we have

yn(t) ≥ k := min
t∈[,t]

δr( – t), t ∈ [, t].

http://www.boundaryvalueproblems.com/content/2014/1/38


Yan Boundary Value Problems 2014, 2014:38 Page 11 of 25
http://www.boundaryvalueproblems.com/content/2014/1/38

Similarly as the proof in equation (.), one has

y′
n(t) ≤ g(k)

(
 +

h(r)
g(r)

)∫ 


q(s)ds,

which means that

the functions belonging to
{
yn(t)

}
are equicontinuous on [, t]. (.)

For t, t ∈ [t, ), from equation (.), using yn in place of y, we have

∣∣∣∣
∫ yn(t)

yn(t)


g(y)

dy
∣∣∣∣ ≤

(
 +

h(r)
g(r)

)∫ 


q(s)ds|t – t|,

which yields

the functions belonging to
{
yn(t)

}
are equicontinuous on [t, ]. (.)

Combining equations (.) and (.), we find that equation (.) holds.
() There exists a k >  such that yn() = ‖yn‖ and yn(t) is nonincreasing on [, ] for

all n > k. From yn() = H(φ(yn)) = ‖yn‖ and yn() = , there exists tn ∈ (, ) such that
y′
n(tn) = –H(φ(yn)). Now y′′

n(t) ≤  implies that y′
n() ≥ y′

n(tn) = –H(φ(yn)). Hence, from
equation (.), using yn in place of y, we have

–y′
n(t) + y′

n() ≤ g
(
yn(t)

)(
 +

h(r)
g(r)

)∫ t


q(s)ds, t ∈ (, )

and so

–
y′
n(t)

g(yn(t))
≤

(
 +

h(r)
g(r)

)∫ t


q(s)ds –

y′
()

g(yn(t))

≤
(
 +

h(r)
g(r)

)∫ t


q(s)ds +

H(φ(yn))
g(yn(t))

≤
(
 +

h(r)
g(r)

)∫ t


q(s)ds +


g(r)

max
s∈[,cr]

H(r), t ∈ (, ).

Then
∣∣∣∣
∫ yn(t)

yn(t)


g(y)

dy
∣∣∣∣ =

∣∣∣∣
∫ t

t

y′
n(s)

g(yn(s))
ds

∣∣∣∣
≤

(
 +

h(r)
g(r)

)∣∣∣∣
∫ t

t

∫ s


q(τ )dτ ds

∣∣∣∣ + 
g(r)

max
s∈[,cr]

H(r)|t – t|,

∀t, t ∈ [, ],

which implies that (.) hold.
Now Arzela-Ascoli theorem guarantees that {yn(t)} has a convergent subsequence.

Without loss of generality, we assume that there is a y∗ ∈ C[, ] such that

lim
n→+∞ yn = y∗,

http://www.boundaryvalueproblems.com/content/2014/1/38
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which together with equation (.) and yn() =  implies that

y∗() = , y∗(t) ≥ δr( – t), ∀t ∈ [, ]. (.)

Since yn (n ∈N) satisfies yn = T 
n
yn, we have

y′′
n(t) = –q(t)f

(
t,max

{

n
, yn(t)

})
= ,  < t < .

We integrate the above equation from 
 to t to yield

y′
n(t) = y′

n

(



)
–

∫ t




q(s)f
(
s,max

{

n
, yn(s)

})
ds,

and so

yn(t) = yn
(



)
+ y′

n

(



)(
t –




)
–

∫ t




∫ s




q(τ )f
(

τ ,max

{

n
, yn(τ )

})
dτ ds

= yn
(



)
+ y′

n

(



)(
t –




)
+

∫ t




(s – t)q(s)f
(
s,max

{

n
, yn(s)

})
ds

for t ∈ (, ) and

yn() =H
(
φ(yn)

)
=H

(∫ 


yn(s)dα(s) +

∫ 


yn(s)dα(s)

)
,

and the Lebesgue Dominated Convergent theorem together with equation (.) implies
that

y∗(t) = lim
n→+∞ yn(t)

= lim
n→+∞

[
yn

(



)
+ y′

n

(



)(
t –




)
+

∫ t




(s – t)q(s)f
(
s,max

{

n
, yn(s)

})
ds

]

= y∗
(



)
+ y′

∗

(



)(
t –




)
+

∫ t




(s – t)q(s)f
(
s, y∗(s)

)
ds (.)

for t ∈ (, ) and

y∗() = lim
n→+∞ yn()

= lim
n→+∞H

(
φ(yn)

)

= lim
n→+∞H

(∫ 


yn(s)dα(s) +

∫ 


yn(s)dα(s)

)

=H
(
φ(y∗) + φ(y∗)

)
=H

(
φ(y∗)

)
. (.)
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We differentiate equation (.) to get

y′′
∗(t) + q(t)f

(
t, y∗(t)

)
= , t ∈ (, ),

which together with equations (.) and (.) means that the BVP (.)-(.) has at least
one positive solution. The proof is complete. �

Theorem . Suppose the conditions of Theorem . hold and there exists an a ∈ (,  )
such that

lim
y→+∞

f (t, y)
y

= +∞

uniformly on [a,  – a]. Then the BVP (.)-(.) has at least two positive solutions.

Proof Choose r >  as in (.), n > with 
n

<min{, r}, and R >max{r,R′} in Lemma ..
Set Nn = {n,n + , . . .}, and

� =
{
y ∈ C[, ] : ‖y‖ < r

}
,

� =
{
y ∈ C[, ] : ‖y‖ < R

}
.

By the proof of Theorem . and Lemma ., we have

i(T 
n
,� ∩ P,P) = 

and

i(T 
n
,� ∩ P,P) = ,

which implies that

i
(
T 

n
, (� –�)∩ P,P

)
= –.

Then, there exist x,n ∈ � ∩ P and x,n ∈ (� –�)∩ P such that

T 
n
x,n = x,n, T 

n
x,n = x,n.

By the proof of Theorem ., there exist a subsequence {x,ni} of {x,n} and x ∈ P such
that

lim
ni→+∞x,ni (t) = x(t), t ∈ [, ].

And moreover, x(t) is a positive solution to the BVP (.)-(.) with r > x(t) ≥ δr( – t),
∀t ∈ [, ].
A similar argument shows that there exist a subsequence {x,nj} of {x,n} and x ∈ P ∩

(� –�) such that

lim
ni→+∞x,nj (t) = x(t), t ∈ [, ].
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Andmoreover, x(t) is a positive solution to the BVP (.)-(.) and equation (.) guaran-
tees that ‖x‖ > r. Hence, x(t) and x(t) are two positive solutions for the BVP (.)-(.).
The proof is complete. �

Theorem . Suppose the conditions of Theorem . hold and

lim
s→+∞

H(s)
s

= +∞.

Then the BVP (.)-(.) has at least two positive solutions.

Proof Choose r >  as in (.), n > with 
n

<min{, r}, andR >max{r,R′} in Lemma ..
Set Nn = {n,n + , . . .}, and

� =
{
y ∈ C[, ] : ‖y‖ < r

}
,

� =
{
y ∈ C[, ] : ‖y‖ < R

}
.

By the proof of Theorem . and Lemma ., we have

i(T 
n
,� ∩ P,P) = 

and

i(T 
n
,� ∩ P,P) = ,

which implies that

i
(
T 

n
, (� –�)∩ P,P

)
= –.

Then, there exist x,n ∈ � ∩ P and x,n ∈ (� –�)∩ P such that

T 
n
x,n = x,n, T 

n
x,n = x,n.

A similar argument to that in Theorem . shows that the BVP (.)-(.) has at least
two positive solutions. The proof is complete. �

Example . Consider

y′′(t) +μ
√
 – t

(



+




sin t +



y–δ (t) +




yδ (t)
)
= ,  < t < , (.)

with

y() =H
(
φ(y)

)
, y() = , (.)

where

H(t) =


t +



t

 , φ(y) = φ(y) + φ(y) =

∫ 


y(s)dα(s) +

∫ 


y(s)dα(s),
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with

dα(s) =


cosπs ds, dα(s) =



des,

δ > , δ > ,


(δ + )
> .

(.)

Then equations (.)-(.) have at least two positive solutions.
To prove that the BVP (.)-(.) has at least two positive solutions, we use Theo-

rem .. Let q(t) = μ √
–t , f (t, y) =


 + 

 sin t
 + 

y
–δ + 

y
δ , g(y) = 

y
–δ , h(y) =


 + 

y
δ , c =

∫ 
 |dα(s)| +

∫ 
 |dα(s)| = 

π
+ e–

 , b = 
μ. For y ∈ P (defined in (.)),

we have

φ(y) =
∫ 


y(t)



es ds≥ ‖y‖

∫ 


s( – s)



es ds,

which means that (C) holds. Since

∫ 


( – t)dα(t) = ,

∫ 


( – t)dα(t) > ,

∫ 


k(t, s)dα(t) = ( – s)

∫ s


t dα(t) + s

∫ 

s
( – t)dα(t) =

 – cosπs
π ≥ ,

and
∫ 


k(t, s)dα(t) = ( – s)

∫ s


t dα(t) + s

∫ 

s
( – t)dα(t) ≥ ,

(C) is true. Since c < , we have maxy∈[,cr]H(y) = 
 cr +


 (cr)


 ≤ 

 r +

 r


 . Then


maxy∈[,c]H(y)

=



 c +


 (c)



> .

Equation (.) guarantees that


 + h()

g()

∫ 




g(y)

dy =


( + δ)
> .

Letting μ < , we have

sup
r∈(,+∞)

min

{


 + h(r)
g(r)

∫ r



dy
g(y)

,
r

maxy∈[,cr]H(y)

}
>max{,b},

for all μ ≤ μ, which means that equations (.)-(.) hold. Since

f (t,x)≥ 


+



sin t, ∀(t,x) ∈ [, ]× (, ],

we get (C). Moreover, since

lim
y→+∞

f (t, y)
y

= +∞
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uniformly on [, ], all conditions of Theorem . hold, which implies that equations
(.)-(.) have at least two positive solutions.

Example . Consider

y′′(t) +μy–δ (t) = ,  < t < , (.)

with

y() =H
(
φ(y)

)
, y() = , (.)

where

H(t) =


t +



t

 , φ(y) = φ(y) + φ(y) =

∫ 


y(s)dα(s) +

∫ 


y(s)dα(s),

with

dα(s) =


cosπs ds, dα(s) =



des, δ > .

Then equations (.)-(.) have at least two positive solutions.
To prove that the BVP (.)-(.) has at least two positive solutions, we use Theo-

rem .. Let q(t) = μ, f (t, y) = y–δ , g(y) = y–δ , h(y) = , c = 
π

+ e–
 , b = 

μ. Since c < ,
we have maxy∈[,cr]H(y) = 

 (cr)
 + 

 (cr)

 ≤ 

 r
 + 

 r

 . Then


maxy∈[,c]H(y)

=



 (c) +


 (c)



> .

Also we have

lim
r→+∞

∫ r



dy
g(y)

(
 +

h(r)
g(r)

)–

= +∞.

Then, letting μ ≤ , we get

sup
r∈(,+∞)

min

{


 + h(r)
g(r)

∫ r



dy
g(y)

,
r

maxy∈[,cr]H(y)

}
>max{,b},

for all μ ≤ μ, which means that equations (.)-(.) hold. Since

f (t,x)≥ , ∀(t,x) ∈ [, ]× (, ],

we get (C). Obviously, (C)-(C), and (C) hold. Moreover, since

lim
y→+∞

H(s)
s

= +∞

uniformly on [, ], all conditions of Theorem . hold, which implies that equations
(.)-(.) have at least two positive solutions.
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4 Positive solutions for singular boundary-value problems with sign-changing
nonlinearities

(H) Assume that there are three linear functionals φ,φ,φ : C([, ])→ R

φ(y) = φ(y) + φ(y), φ(y) :=
∫ 


y(t)dα(t), φ(y) :=

∫ 


y(t)dα(t),

where α,α : [, ]→ R satisfy α,α ∈ BV ([, ]);
(H) a(t) ∈ C([, ], (, +∞)), ( – t)q(t) ∈ L((, ]);
(H) LetH : R→ [, +∞) be a real-valued, continuous function. Moreover,H : (, +∞) →

(, +∞);
(H) f (t, y) ∈ C([, ] × (, +∞), (–∞, +∞)), there exists a decreasing function F(y) ∈

C((, +∞), (, +∞)), and a nonnegative functionG(y) ∈ C([, +∞), [, +∞)) such that
f (t, y) ≤ F(y) +G(y) and there exists a b ∈ C((, ), (, +∞)) such that

f (t, y) ≥ a(t), ∀ < y ≤ b(t), t ∈ (, );

(H) there exist R >  such that

∫ R



dy
F(y)

·
(
 +

Ḡ(R)
F(R)

)–

>
∫ 


( – s)q(s)ds

and

max
y∈[,rc]

H(y) < r, ∀R≥ r > ,where c =
∫ 



∣∣dα(s)
∣∣ + ∫ 



∣∣dα(s)
∣∣,

where Ḡ(R) =maxs∈[,R]G(s).

For n > , let bn = min{ 
n ,mint∈[ n ,– 

n ]
b(t)}. Obviously, bn > . For y ∈ Cn = C[ n ,  –


n ],

we define Tn as

(Tny)(t) =
(
 –


n
– t

)
H

(
φn(y)

)
+ bn +

∫ – 
n


n

kn(t, s)q(s)f
(
s,max

{
bn, y(s)

})
ds,

t ∈
[

n
,  –


n

]
,

where

kn(t, s) =

{
(s – 

n )( –

n – t), 

n ≤ s ≤ t ≤  – 
n ,

(t – 
n )( –


n – s), 

n ≤ t ≤ s≤  – 
n

and

φn(y) =
∫ – 

n


n

y(s)dα(s) +
∫ – 

n


n

y(s)dα(s).

From a standard argument (see [, , ]), we have the following result.
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Lemma. Suppose (H)-(H) hold.Then the operator Tn is continuous and compact from
Cn to Cn.

From (H) and (H), there exists ε >  such that

∫ R

ε

dy
F(y)

·
(
 +

Ḡ(R)
F(R)

)–

>
∫ 


( – s)q(s)ds,

max
y∈[,cR]

H(y) + ε < R.
(.)

Choose n >  with 
n

< ε and let Nn = {n,n + , . . .}. Now we have the following lem-
mas.

Lemma . Suppose (H)-(H) hold. Then, for n ∈ N, there exists a xn ∈ Cn with bn ≤
xn(t)≤ R such that

xn(t) =
(
 –


n
– t

)
H

(
φn(xn)

)
+ bn +

∫ – 
n


n

kn(t, s)q(s)f
(
s,xn(s)

)
ds, t ∈

[

n
,  –


n

]
.

Proof Let � = {y ∈ Cn : ‖y‖ < R}. For y ∈ ∂�, we now prove that

y(t) �= λ(Tny)(t) = λ

((
 –


n
– t

)
H

(
φn(y)

)
+ bn

)

+ λ

∫ – 
n


n

kn(t, s)q(s)f
(
s,max

{
bn, y(s)

})
ds, t ∈

[

n
,  –


n

]
(.)

for any λ ∈ (, ].
Suppose equation (.) is not true. Then there exists y ∈ C[ n ,  –


n ] with ‖y‖ = R and

 < λ <  such that

y(t) = λ(Ty)(t) = λ

((
 –


n
– t

)
H

(
φn(y)

)
+ bn

)

+ λ

∫ – 
n


n

kn(t, s)q(s)f
(
s,max

{
bn, y(s)

})
ds, t ∈

[

n
,  –


n

]
. (.)

We first claim that y(t) ≥ λbn for any t ∈ [ n ,  –

n ].

Suppose there exists a η ∈ (, ) with y(η) < λbn. Let γ = inf{t : y(s) < λbn, ∀s ∈ [t,η]}
and γ = sup{t : y(s) < λbn, ∀s ∈ [η, t]}. Since y( n ) ≥ λbn and y( – 

n ) = λbn, we have γ ≥

n , γ ≤  – 

n , y(γ) = y(γ) = λbn, and y(t) < λbn for all t ∈ (γ,γ), which implies that

y′′(t) = –λq(t)f (t,bn) < , t ∈ (γ,γ)

and so y(t) is concave down on [γ,γ]. This is a contradiction.
Now (H) guarantees that

y
(

n

)
= λ

((
 –


n

)
H

(
φn(y)

)
+ bn

)
≤ max

r∈[,cR]
h(r) + ε < R,
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which together with y( – 
n ) = λbn < R means that there is a t ∈ ( n ,  –


n ) with y′(t) = 

and y(t) = R. Let t∗ = sup{t : y(t) = R, y′(t) = } and t∗ = inf{t : y(t) = R, y′(t) = }. Obviously,

n < t∗ ≤ t∗ <  – 

n , y(t∗) = R, y′(t∗) = , y(t∗) = R, y′(t∗) = , y(t) < R for all t ∈ (t∗,  – 
n ] and

y(t) < R for all t ∈ ( n , t∗]. Let t = inf{t∗ < t ≤  – 
n : y(t) = λy( – 

n )} and t′ = sup{t < t∗ ≤
 – 

n : y(t) = λy( n )}. It is easy to see that t∗ < t ≤  – 
n , y(t) > y(t) for all t ∈ (t∗, t), t′ < t∗

and y(t) > y(t′) for all t ∈ (t′, t∗).
Now we consider the properties of y on (t∗, t). We get a countable set {ti} of (t∗, t] such

that
. t∗ > · · · ≥ tm > tm– > · · · > t ≥ t > t ≥ t > t = t, tm → t∗,
. y(ti) = y(ti+), y′(ti) = , i = , , , . . . ,
. y(t) is strictly decreasing in [ti, ti–], i = , , , . . . (if y(t) is strictly decreasing in

[t∗, t], put m = ; i.e, [t, t] = [t∗, t]).
Differentiating equation (.) and using the assumptions (H) and (H), we obtain

–y′′(t) = λq(t)f
(
t,max

{
bn, y(t)

})
≤ λq(t)

(
F
(
max

{
bn, y(t)

})
+G

(
max

{
bn, y(t)

}))
= λq(t)F

(
max

{
bn, y(t)

})(
 +

G(max{bn, y(t)})
F(max{bn, y(t)})

)

< q(t)F
(
max

{
bn, y(t)

})(
 +

Ḡ(R)
F(R)

)

≤ q(t)F
(
y(t)

)(
 +

Ḡ(R)
F(R)

)
, t ∈ [ti, ti–), i = , , , . . . . (.)

Integrating (.) from ti to t, we have, by the decreasing property of F(y),

–
∫ t

ti
y′′(s)ds≤

(
 +

Ḡ(R)
F(R)

)∫ t

ti
q(s)F

(
y(s)

)
ds≤ F

(
y(t)

)(
 +

Ḡ(R)
F(R)

)∫ t

ti
q(s)ds,

for t ∈ [ti, ti–), i = , , , . . . ; that is to say,

–y′(t)≤ F
(
y(t)

)(
 +

Ḡ(R)
F(R)

)∫ t

ti
q(s)ds, t ∈ [ti, ti–), i = , , , . . . . (.)

It follows from equation (.) that

–
y′(t)

F(y(t))
≤

(
 +

Ḡ(R)
F(R)

)∫ t

ti
q(s)ds≤

(
 +

Ḡ(R)
F(R)

)∫ t


q(s)ds, (.)

for t ∈ [ti, ti–), i = , , , . . . .
On the other hand, for any z ∈ ( n ,  –


n ) with y(z) > λbn, we can choose i and z′ ∈ (t∗, t)

such that z′ ∈ [ti , ti–), y(z′) = y(z) and z ≤ z′. Integrating equation (.) from ti to ti–,
i = , , , . . . , i –  and from ti to z′, we have

∫ y(ti)

y(ti–)

dy
F(y)

≤
(
 +

Ḡ(R)
F(R)

)∫ ti–

ti

∫ t


q(s)dsdt, i = , , , . . . , i – , (.)
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and

∫ y(z′)

y(ti )

dy
F(y)

≤
(
 +

Ḡ(R)
F(R)

)∫ ti

z′

∫ t


q(s)dsdt. (.)

Summing equation (.) from  to i – , we have by equation (.) and y(ti) = y(ti+)

∫ y(z′)

y(t)

dy
F(y)

≤
(
 +

Ḡ(R)
F(R)

)∫ t

z′

∫ t


q(s)dsdt ≤

(
 +

Ḡ(R)
F(R)

)∫ t

z

∫ t


q(s)dsdt.

Since y(z) = y(z′),

∫ y(z)

y(t)

dy
F(y)

≤
(
 +

Ḡ(R)
F(R)

)∫ t

z

∫ t


q(s)dsdt. (.)

For the properties of y on (t′, t∗), a similar argument shows that for any z > t′

∫ y(z)

y(t′)

dy
F(y)

≤
(
 +

Ḡ(R)
F(R)

)∫ z

t′

∫ t


q(s)dsdt. (.)

Letting z → t∗ in (.), we have

∫ R

ε

dy
F(y)

≤
∫ R

y(t)

dy
F(y)

≤
(
 +

Ḡ(R)
F(R)

)∫ t

t∗

∫ t


q(s)dsdt

≤
(
 +

Ḡ(R)
F(R)

)∫ 



∫ t


q(s)dsdt

=
(
 +

Ḡ(R)
F(R)

)∫ 


( – s)q(s)ds,

which contradicts equation (.). Hence equation (.) holds.
It follows from Lemma . that Tn has a fixed point xn in Cn. Using xn and  in place of

y and λ in (.), we obtain easily bn ≤ xn(t)≤ R, t ∈ [ n ,  –

n ]. And xn satisfies

xn(t) =
(
 –


n
– t

)
H

(
φn(xn)

)
+ bn +

∫ 


kn(t, s)q(s)f

(
s,xn(s)

)
ds,

t ∈
[

n
,  –


n

]
. (.)

The proof is complete. �

Lemma . Suppose that all conditions of Lemma . hold and xn satisfies (.). For a
fixed h ∈ (,min{ 

 ,η}), let mn,h =min{xn(t), t ∈ [h,  – h]}. Then mh = inf{mn,h} > .

Proof Since xn(t) ≥ bn > , we getmh ≥ . For any fixed natural number n (n > n defined
in Lemma .), let tn ∈ [h,  – h] such that xn(tn) =min{xn(t), t ∈ [h,  – h]}. Ifmh = , there
exists a countable set {ni} such that

lim
ni→+∞xni (tni ) = .
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So there exists N such that xni (tni ) ≤ min{b(t), t ∈ [ h ,  – h]}, ni > N. Let N = {n > N :
n ∈N with limni→+∞ xni (tni ) = }. Then we have two cases.
Case . There exist nk ∈ N and t∗nk ∈ [ h ,h] such that xnk (t

∗
nk ) ≥ xnk (tnk ). By the same

argument in Lemma ., we can get t′nk , t
′′
nk ∈ [ h , ], t

′
nk < t′′nk such that

xnk (t)≤min

{
b(t), t ∈

[
h

, 

]}
, t ∈ [

t′nk , t
′′
nk

]
,

xnk (t)≤ xnk
(
t′nk

)
, xnk (t) ≤ xnk

(
t′′nk

)
, t ∈ (

t′nk , t
′′
nk

)
, (.)

and

x′′
nk (t) = –q(t)f

(
t,xnk (t)

)
< , t ∈ (

t′nk , t
′′
nk

)
. (.)

The inequality (.) shows that xnk (t) is concave down in [t′nk , t
′′
nk ], which contradicts

equation (.).
Case . xni (t) < xni (tni ), t ∈ [ h ,h] for any ni ∈ N. And so we have

lim
ni→+∞xni (t) = , t ∈

[
h

,h

]
. (.)

On the other hand, for any t ∈ [ h ,h],

xni (t) =

h

∫ t

h


(
s –

h


)
(h – t)q(s)f

(
s,xni (s)

)
ds

+

h

∫ h

t

(
t –

h


)
(h – s)q(s)f

(
s,xni (s)

)
ds + xni

(
h


)
+ xni (h)

≥ 
h

[∫ t

h


(
s –

h


)
(h – t)a(s)ds +

∫ h

t

(
t –

h


)
(h – s)a(s)ds

]
> ,

which contradicts equation (.). Hence,mh > . The proof is complete. �

Theorem . If (H)-(H) hold, then BVP (.)-(.) has at least one positive solution.

Proof For any natural number n ∈ N (defined in Lemma .), it follows from Lemma .
that there exist xn ∈ Cn, bn ≤ xn(t)≤ R for all t ∈ [ n ,  –


n ] satisfying (.). Now we divide

the proof into three steps.
Step . There exists a convergent subsequence of {xn} in (, ). For a natural number

k ≥ n in Lemma ., it follows from Lemma . that  < m 
k

≤ xn(t) ≤ R, t ∈ [ k ,  –

k ]

for any natural numbers n ∈ N ; i.e., {xn} is uniformly bounded in [ k ,  –

k ]. Since xn also

satisfies

xn(t) =


 – 
k

∫ t


k

(
s –


k

)(
 –


k
– t

)
q(s)f

(
s,xn(s)

)
ds

+


 – 
k

∫ – 
k

t

(
t –


k

)(
 –


k
– s

)
q(s)f

(
s,xn(s)

)
ds + xn

(

k

)
+ xn

(
 –


k

)
,
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we have

x′
n(t) = –


 – 

k

∫ t


k

(
s –


k

)
q(s)f

(
s,xn(s)

)
ds

+


 – 
k

∫ – 
k

t

(
 –


k
– s

)
q(s)f

(
s,xn(s)

)
ds.

Obviously

∣∣x′
n(t)

∣∣ ≤ 
(
 –


k

)
max

{
q(t)

∣∣f (t,xn(t))∣∣ : (t,x) ∈
[

k
,  –


k

]
× [m 

k
,R]

}
, (.)

for t ∈ [ k ,  –

k ]. It follows from inequality (.) that {xn} is equicontinuous in [ k ,  –


k ].

The Ascoli-Arzela theorem guarantees that there exists a subsequence of {xn(t)} which
converges uniformly on [ k ,  –


k ]. Then, for k = n, we choose a convergent subsequence

of {xn} on [ 
n
,  – 

n
],

xn(n)(t),xn(n)(t),xn(n)(t), . . . ,xnk (n)(t), . . . ;

for k = n + , we choose a convergent subsequence of {xnk (n)} on [ 
n+

,  – 
n+

],

xn(n+)(t),xn(n+)(t),xn(n+)(t), . . . ,xnk (n+)(t), . . . ;

for k = n + , we choose a convergent subsequence of {xnk (n+)} on [ 
n+

,  – 
n+

],

xn(n+)(t),xn(n+)(t),xn(n+)(t), . . . ,xnk (n+)(t), . . . ;

. . . , . . . , . . . , . . . ;

for k = n + j, we choose a convergent subsequence of {xnk (n+j–)} on [ 
n+j

,  – 
n+j

],

xn(n+j)(t),xn(n+j)(t),xn(n+j)(t), . . . ,xnk (n+j)(t), . . . ;

. . . , . . . , . . . , . . . .

Wemay choose the diagonal sequence {xnk+(n+k)(t)}which converges everywhere in (, )
and it is easy to verify that {xnk+(n+k)(t)} converges uniformly on any interval [c,d] ⊆
(, ). Without loss of generality, let {xnk+(n+k)(t)} be {xn(t)} in the rest. Putting x(t) =
limn→+∞ xn(t), t ∈ (, ), we have x(t) continuous in (, ) and x(t) ≥ mh > , t ∈ [h,  – h]
for any h ∈ (,  ) by Lemma ..
Step . x(t) satisfies equation (.). Fixed t ∈ (, ), we may choose h ∈ (,  ) such that

t ∈ (h,  – h) and

xn(t) =


 – h

∫ t

h
(s – h)( – h – t)q(s)f

(
s,xn(s)

)
ds

+


 – h

∫ –h

t
(t – h)( – h – s)q(s)f

(
s,xn(s)

)
ds + xn(h) + xn( – h).
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Letting n → +∞ in above equation, we have

x(t) =


 – h

∫ t

h
(s – h)( – h – t)q(s)f

(
s,x(s)

)
ds

+


 – h

∫ –h

t
(t – h)( – h – s)q(s)f

(
s,x(s)

)
ds + x(h) + x( – h). (.)

Differentiating equation (.), we get the desired result.
Step . x(t) satisfies equation (.). Let

tn = sup

{
t : xn(t) = ‖xn‖,x′

n(t) = , t ∈
[

n
,  –


n

]}

and

t′n = inf

{
t : xn(t) = ‖xn‖,x′

n(t) = , t ∈
[

n
,  –


n

]}
,

where ‖xn‖ =max 
n≤t≤– 

n
xn(t) ≤ R. Then

tn, t′n ∈
[

n
,  –


n

]
, xn(tn) = xn

(
t′n

)
= ‖xn‖, x′

n(tn) = x′
n
(
t′n

)
= .

Using xn(t), , tn in place of y(t), λ and t∗ in Lemma ., from equation (.); we have

∫ ‖xn‖

bn

dx
F(x)

≤
(
 +

Ḡ(R)
F(R)

)∫ – 
n

tn

∫ t


q(s)dsdt

and using xn(t), , t′n in place of y(t), λ and t∗ in Lemma ., from equation (.), we obtain
easily

∫ ‖xn‖

xn( n )+bn

dx
F(x)

≤
(
 +

Ḡ(R)
F(R)

)∫ t′n


n

∫ t


q(s)dsdt.

It follows from the above inequalities that a = inf{t′n} >  and b = sup{tn} < .
() Fixing z ∈ (b, ), we get bn < xn(z) < ‖xn‖ ≤ R. From equation (.) of the proof in

Lemma ., one easily has

∫ xn(z)

bn

dx
F(x)

≤
(
 +

Ḡ(R)
F(R)

)∫ – 
n

z

∫ t


q(s)dsdt, z ∈ (b, ).

Letting n → +∞ in the above inequality and noticing bn → , we have

∫ x(z)



dx
F(x)

≤
(
 +

Ḡ(R)
F(R)

)∫ 

z

∫ t


q(s)dsdt, z ∈ (b, ). (.)

It follows from equation (.) that x() = limz→– x(z) = .
() Fixing z ∈ (,a), we get xn( n ) + bn < xn(z) < ‖xn‖ ≤ R. From equation (.) in the

proof of Lemma ., we easily get

∫ xn(z)

xn( n )+bn

dx
F(x)

≤
(
 +

Ḡ(R)
F(R)

)∫ z


n

∫ t


q(s)dsdt, z ∈ (,a). (.)
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Since limn→+∞ xn(t) = x(t) and ‖xn‖ ≤ R, the Lebesgue Dominated Convergent theorem
guarantees that

lim
n→+∞

∫ – 
n


n

xn(t)dα(t) =
∫ 


x(t)dα(t), lim

n→+∞

∫ – 
n


n

xn(t)dα(t) =
∫ 


x(t)dα(t).

Since H is continuous, we have

lim
n→+∞xn

(

n

)
= lim

n→+∞

(
 –


n

)
H

(
φn(xn)

)
=H

(
φ(x)

)
. (.)

Letting n → +∞ in equation (.) and noticing bn →  and equation (.), we have

∫ x(z)

H(φ(x))

dx
F(x)

≤
(
 +

Ḡ(R)
F(R)

)∫ z



∫ t


q(s)dsdt, z ∈ (,a). (.)

It follows from equation (.) that x() = limz→+ x(z) = H(φ(x)). This complete the
proof. �

Example . Consider

y′′(t) +



(



y(t) +




(


y(t)
–
y(t)
t

–

t

))
= ,  < t < , (.)

with boundary conditions

y() =




∣∣∣∣
∫ 


y(s)dα(s) +

∫ 


y(s)dα(s)

∣∣∣∣


, y() = , (.)

where

dα(s) = –



cosπs ds, dα(s) =


(
es – 

)
ds.

Then the BVP (.)-(.) has at least one positive solution.
Let q(t) = 

 , f (t, y) =

y

 + 
 (


y –

y
t –


t ), G(y) =


y

, F(y) = 
y , b(t) =


 t

, a(t) =

t . Let R =  and H(y) = 

 |y|. We have

∫ 




F(y)

dy
(
 +

G()
F()

)–

>



>



=
∫ 


( – s)q(s)ds,

max
y∈[,cr]

H(r) =



(cr) < r, ∀r ∈ (, ],

where c =
∫ 
 |dα(s)| +

∫ 
 |dα(s)| <  and

f (t, y) ≥ a(t), ∀ < y ≤ b(t), t ∈ (, ).

Then (H)-(H) hold. Now Theorem . guarantees that the BVP (.)-(.) has at least
one positive solution.
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