Positive solutions for the singular nonlocal boundary value problems involving nonlinear integral conditions

Baoqiang Yan*

Correspondence:
yanbqcn@aliyun.com Department of Mathematics, Shandong Normal University, Jinan, 250014, P.R. China

Abstract

In this paper, using the theory of fixed point index on a cone and the Leray-Schauder fixed point theorem, we present the multiplicity of positive solutions for the singular nonlocal boundary-value problems involving nonlinear integral conditions and the existence of at least one positive solution for the singular nonlocal boundary-value problems with sign-changed nonlinearities.

MSC: 34B10; 34B15;34B18
Keywords: nonlocal boundary conditions; positive solution; fixed point index

1 Introduction

Nonlocal boundary-value problems with linear and nonlinear integral conditions have seen a great deal of study lately (see [1-16], and references therein) because of their interesting theory and their applications to various problems, such as heat flow in a bar of finite length [4, 11]. In this paper, we consider the existence of positive solutions of the nonlinear boundary-value problem (BVP) of the form

$$
\begin{equation*}
-y^{\prime \prime}=q(t) f(t, y(t)), \quad t \in(0,1) \tag{1.1}
\end{equation*}
$$

with integral boundary conditions

$$
\begin{equation*}
y(0)=H(\phi(y)), \quad y(1)=0, \tag{1.2}
\end{equation*}
$$

where $\phi(y)$ is a linear functional on $C[0,1]$ given by

$$
\phi(y)=\int_{0}^{1} y(s) d \alpha(s)
$$

involving a Stieltjes integral with a signed measure.
In [2], Goodrich considered the following problem:

$$
\begin{equation*}
-y^{\prime \prime}=\lambda g(t, y(t)), \quad t \in(0,1) \tag{1.3}
\end{equation*}
$$

with integral boundary conditions

$$
\begin{equation*}
y(0)=H(\phi(y)), \quad y(1)=0 \tag{1.4}
\end{equation*}
$$

and deduced the existence of at least one positive solution to the BVP (1.3)-(1.4) in which $H(\phi(y))$ has either asymptotically sublinear or asymptotically superlinear growth, and in [3] Goodrich demonstrated that if the nonlinear functional $H(\phi(y))$ satisfies a certain asymptotic behavior, then the BVP (1.3)-(1.4) possesses at least one positive solution. For the case that H is linear and $\phi(y)=\int_{0}^{1} y(s) d \alpha(s)$ involves a signed measure, Webb and Infante discussed the multiplicity of positive solutions for nonlocal boundary-value problems [12-14]. For the case that H is linear and the Borel measure associated with the Lebesgue-Stieltjes integral is positive, we can find some results on the existence of positive solutions $[7,8,16,17]$. The results in the above literature are obtained under the condition that $f(t, x)$ is continuous on $(0,1) \times[0,+\infty)$, i.e., f has no singularity at $x=0$. And it is well known that study of singular two-point boundary-value problems for the second-order differential equation (1.1) (singular in the dependent variable) is very important and there are many results on the existence of positive solutions [15, 18-24]. But there are fewer results on the existence of positive solutions for the singular BVP (1.1)-(1.2) [5, 6]. One goal in this paper is to consider the existence of positive solutions under the condition that $f(t, x)$ is singular at $x=0$. Our paper has the following features.

Firstly, in order to overcome the difficulties of the singularity of f we establish a new cone and get the new condition (3.13) which is different from that in $[5,6]$. Moreover, we get a multiplicity of positive solutions for BVP (1.1)-(1.2) different from that in [2, 3, 12-14] under the condition that $H(y)$ or $f(t, y)$ is superlinear at $y=+\infty$.
Secondly, when f is singular and sign-changed, we get the existence of at least one positive solution to the BVP (1.1)-(1.2) which is different from that in [2, 3, 5, 6, 12-14] where f is nonnegative and continuous at $x=0$. Moreover, the results are different from that in [7, $8,16,17$] where integral boundary conditions are linear and the Borel measure is positive.

Our paper is organized as follows. In Section 2, we present some lemmas and preliminaries. Section 3 discusses the existence of multiple positive solutions for the BVP (1.1)-(1.2) when f is positive. In Section 4, we discuss the existence of at least one positive solution of BVP (1.1)-(1.2) when f is singular and sign-changed.

2 Preliminaries

In this paper, the following lemmas are needed.

Lemma 2.1 (see [25]) Let Ω be a bounded open set in real Banach space E, P a cone of $E, \theta \in \Omega$ and $A: \bar{\Omega} \cap P \rightarrow P$ continuous and compact. Suppose $\lambda A x \neq x, \forall x \in \partial \Omega \cap P$, $\lambda \in(0,1]$. Then

$$
i(A, \Omega \cap P, P)=1
$$

Lemma 2.2 (see [25]) Let Ω be a bounded open set in real Banach space E, P a cone of $E, \theta \in \Omega$ and $A: \bar{\Omega} \cap P \rightarrow P$ continuous and compact. Suppose $A x \not \leq x, \forall x \in \partial \Omega \cap P$. Then

$$
i(A, \Omega \cap P, P)=0
$$

Lemma 2.3 (see [25, 26]) Let E be a Banach space, $R>0, B_{R}=\{x \in E:\|x\| \leq R\}$, and $F: B_{R} \rightarrow E$ a continuous compact operator. If $x \neq \lambda F(x)$ for any $x \in E$ with $\|x\|=R$ and $0<\lambda<1$, then F has a fixed point in B_{R}.

Let us begin by stating the hypotheses which we shall impose on the BVP (1.1)-(1.2).
$\left(\mathrm{C}_{1}\right)$ Assume that there are three linear functionals $\phi, \phi_{1}, \phi_{2}: C([0,1]) \rightarrow R$ such that

$$
\phi(y)=\phi_{1}(y)+\phi_{2}(y) .
$$

Moreover, assume that there exists a constant $\varepsilon_{0}>0$ such that

$$
\phi_{2}(y) \geq \varepsilon_{0}\|y\|
$$

holds for each $y \in P$, where P is the cone introduced in (2.1) below [2].
$\left(\mathrm{C}_{2}\right)$ The functionals $\phi_{1}(y)$ and $\phi_{2}(y)$ are linear and, in particular, have the form

$$
\phi_{1}(y):=\int_{0}^{1} y(t) d \alpha_{1}(t), \quad \phi_{2}(y):=\int_{0}^{1} y(t) d \alpha_{2}(t)
$$

where $\alpha_{1}, \alpha_{2}:[0,1] \rightarrow R$ satisfy $\alpha_{1}, \alpha_{2} \in B V([0,1])$ with

$$
\int_{0}^{1}(1-t) d \alpha_{1}(t) \geq 0, \quad \int_{0}^{1}(1-t) d \alpha_{2}(t) \geq 0
$$

and

$$
\int_{0}^{1} k(t, s) d \alpha_{1}(t) \geq 0, \quad \int_{0}^{1} k(t, s) d \alpha_{2}(t) \geq 0
$$

hold, where the latter holds for each $s \in[0,1]$ and $k(t, s)$ is defined in (3.2) below [2].
$\left(\mathrm{C}_{3}\right)$ Let $H: R \rightarrow R$ be a real-valued, continuous function. Moreover, $H:(0,+\infty) \rightarrow$ $(0,+\infty)$.
(C_{4})

$$
\left\{\begin{array}{l}
f:[0,1] \times(0, \infty) \rightarrow(0, \infty) \text { is continuous } \\
\text { and there exists a function } \psi_{1} \\
\text { continuous on }[0,1] \text { and positive on }(0,1) \text { such that } \\
f(t, y) \geq \psi_{1}(t) \text { on }(0,1) \times(0,1]
\end{array}\right.
$$

(C_{5})

$$
q \in C(0,1), \quad q>0 \quad \text { on }(0,1) \quad \text { and } \quad \int_{0}^{1}(1-t) q(t) d t<\infty
$$

Let $C[0,1]=\{y:[0,1] \rightarrow R: y(t)$ is continuous on $[0,1]\}$ with norm $\|y\|=\max _{t \in[0,1]}|y(t)|$. It is easy to see that $C[0,1]$ is a Banach space.

Assume that $\left(\mathrm{C}_{2}\right)$ hold. Define

$$
\begin{align*}
P= & \{y \in C[0,1]: y \text { is concave on }[0,1] \text { with } y(t) \geq 0 \text { for all } t \in[0,1], \\
& \left.\phi_{1}(y) \geq 0, \phi_{2}(y) \geq 0\right\} . \tag{2.1}
\end{align*}
$$

It is easy to prove P is a cone of $C[0,1]$ and we have the following lemma.

Lemma 2.4 (see [20]) Let $y \in P$ (defined in (2.1)). Then

$$
y(t) \geq t(1-t)\|y\| \quad \text { for } t \in[0,1] \text {. }
$$

3 Multiplicity of positive solutions for the singular boundary-value problems with positive nonlinearities

In this section, we consider the existence of multiple positive solutions for the BVP (1.1)(1.2). To show that the BVP (1.1)-(1.2) has a solution, for $y \in P$, we define

$$
\begin{align*}
& \left(T_{\epsilon} y\right)(t)=(1-t) H(\phi(y))+\int_{0}^{1} k(t, s) q(s) f(s, \max \{\epsilon, y(s)\}) d s \\
& \quad t \in[0,1], 1 \geq \epsilon>0 \tag{3.1}
\end{align*}
$$

where

$$
k(t, s)= \begin{cases}(1-t) s, & 0 \leq s \leq t \leq 1 \tag{3.2}\\ (1-s) t, & 0 \leq t \leq s \leq 1\end{cases}
$$

Lemma 3.1 Suppose $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{5}\right)$ hold. Then $T_{\epsilon}: P \rightarrow P$ is continuous and compact for all $1 \geq \epsilon>0$.

Proof It is easy to prove that T_{ϵ} is well defined and $\left(T_{\epsilon} y\right)(t) \geq 0$ for all $t \in P$. For $y \in P$, we have

$$
\left\{\begin{array}{l}
\left(T_{\epsilon} y\right)^{\prime \prime}(t) \leq 0 \quad \text { on }(0,1) \\
\left(T_{\epsilon} y\right)(0)=H(\phi(y)), \quad\left(T_{\epsilon} y\right)(1)=0
\end{array}\right.
$$

and so

$$
\begin{equation*}
\left(T_{\epsilon} y\right)(t) \text { is concave on }[0,1] . \tag{3.3}
\end{equation*}
$$

Moreover, from $\left(\mathrm{C}_{2}\right)$, we may estimate

$$
\begin{align*}
\phi_{1}\left(T_{\epsilon} y\right) & =\int_{0}^{1}(1-t) d \alpha_{1}(t) H(\phi(y))+\int_{0}^{1} \int_{0}^{1} k(t, s) q(s) f(s, \max \{\epsilon, y(s)\}) d s d \alpha_{1}(t) \\
& =\int_{0}^{1}(1-t) d \alpha_{1}(t) H(\phi(y))+\int_{0}^{1} q(s) f(s, \max \{\epsilon, y(s)\}) \int_{0}^{1} k(t, s) d \alpha_{1}(t) d s \\
& \geq 0 \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
\phi_{2}\left(T_{\epsilon} y\right) & =\int_{0}^{1}(1-t) d \alpha_{2}(t) H(\phi(y))+\int_{0}^{1} \int_{0}^{1} k(t, s) q(s) f(s, \max \{\epsilon, y(s)\}) d s d \alpha_{2}(t) \\
& =\int_{0}^{1}(1-t) d \alpha_{2}(t) H(\phi(y))+\int_{0}^{1} q(s) f(s, \max \{\epsilon, y(s)\}) \int_{0}^{1} k(t, s) d \alpha_{2}(t) d s \\
& \geq 0 . \tag{3.5}
\end{align*}
$$

Combining (3.3), (3.4), and (3.5), $T_{\epsilon}: P \rightarrow P$. A standard argument shows that $T_{\epsilon}: P \rightarrow P$ is continuous and compact $[9,18,26]$.

Define

$$
\begin{aligned}
\Phi_{r}:= & \left\{x \in P \cap C^{2}((0,1), R):\|x\| \leq r \text { and } x\right. \text { satisfies } \\
& \left.x^{\prime \prime}(t)+q(t) f(t, \max \{\epsilon, x(t)\})=0,0<t<1, x(0)=H(\phi(x)), x(1)=0, \forall 1 \geq \epsilon>0\right\} .
\end{aligned}
$$

Lemma 3.2 If $\Phi_{r} \neq \emptyset$ and $\left(\mathrm{C}_{2}\right)$ hold, there exists a $\delta_{r}>0$ such that

$$
x(0) \geq \delta_{r} t(1-t), \quad \forall t \in[0,1], x \in \Phi_{r} .
$$

Proof Suppose $x \in \Phi_{r}$. There are two cases to consider.
(1) $\|x\|>1$. Lemma 2.4 implies that

$$
\begin{equation*}
x(t) \geq t(1-t)\|x\| \geq t(1-t), \quad t \in[0,1] . \tag{3.6}
\end{equation*}
$$

(2) $0<\|x\| \leq 1$. Condition $\left(\mathrm{C}_{4}\right)$ guarantees that

$$
\begin{aligned}
x(t) & =(1-t) H(\phi(x))+\int_{0}^{1} k(t, s) q(s) f(s, \max \{\epsilon, x(s)\}) d s \\
& \geq \int_{0}^{1} k(t, s) q(s) \psi_{1}(s) d s:=\gamma_{0}(t), \quad t \in[0,1] .
\end{aligned}
$$

Since $\gamma_{0}^{\prime \prime}(t) \geq 0, \gamma_{0}(0)=0$, and $\gamma_{0}(1)=0$, we know that γ_{0} is concave on $[0,1]$ and $\gamma_{0}(t) \geq 0$ for all $t \in[0,1]$. And from $\left(\mathrm{C}_{2}\right)$, a similar argument as (3.4) and (3.5) shows that $\phi_{1}\left(\gamma_{0}\right) \geq 0$ and $\phi_{2}\left(\gamma_{0}\right) \geq 0$. Then $\gamma_{0} \in P$ and Lemma 2.4 implies that

$$
\begin{equation*}
\gamma_{0}(t) \geq t(1-t)\left\|\gamma_{0}\right\|, \quad \forall t \in[0,1] . \tag{3.7}
\end{equation*}
$$

Let $\delta_{1}=\min \left\{1,\left\|\gamma_{0}\right\|\right\}$. From (3.6) and (3.7), one has

$$
x(t) \geq \delta_{1} t(1-t), \quad \forall t \in[0,1],
$$

which means that

$$
r \geq\|x\| \geq \delta_{1} .
$$

Thus

$$
\phi(x)=\int_{0}^{1} x(s) d \alpha_{1}(s)+\int_{0}^{1} x(s) d \alpha_{2}(s) \leq c_{0}\|x\| \leq c_{0} r
$$

where

$$
c_{0} \stackrel{\text { def. }}{=} \int_{0}^{1}\left|d \alpha_{1}(s)\right|+\int_{0}^{1}\left|d \alpha_{2}(s)\right|
$$

and $\left(\mathrm{C}_{1}\right)$ guarantees that

$$
\phi(x) \geq \phi_{2}(x) \geq \varepsilon_{0}\|x\| .
$$

And so

$$
x(0)=H(\phi(x)) \geq \min _{s \in\left[\varepsilon_{0} \delta_{1}, c_{0} r\right]} H(s):=\delta_{r}>0 .
$$

The concavity $x(t)$ yields

$$
x(t) \geq \delta_{r}(1-t)>0, \quad \forall t \in[0,1], x \in \Phi_{r} .
$$

The proof is complete.

For $R>0$, let

$$
\Omega_{R}=\{x \in C[0,1]:\|x\|<R\} .
$$

We have the following lemmas.

Lemma 3.3 Suppose that $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{5}\right)$ hold and there exists an $a \in\left(0, \frac{1}{2}\right)$ such that

$$
\begin{equation*}
\lim _{y \rightarrow+\infty} \frac{f(t, y)}{y}=+\infty \tag{3.8}
\end{equation*}
$$

uniformly on $[a, 1-a]$. Then, there exists an $R^{\prime}>1$ such that for all $R \geq R^{\prime}$

$$
i\left(T_{\epsilon}, \Omega_{R} \cap P, P\right)=0, \quad \forall 0<\epsilon \leq 1 .
$$

Proof From (3.8), there exists an $R_{1}>1$ such that

$$
\begin{equation*}
f(t, y) \geq N^{*} y, \quad \forall y \geq R_{1} \tag{3.9}
\end{equation*}
$$

where

$$
N^{*}>\frac{2}{a^{2} \int_{a}^{1-a} k(a, s) q(s) d s} .
$$

Let $R^{\prime}=\frac{R_{1}}{a^{2}}$ and

$$
\Omega_{R}:=\{x \in C[0,1]:\|x\|<R\}, \quad \forall R \geq R^{\prime}
$$

Now we show

$$
\begin{equation*}
T_{\epsilon} y \not \leq y \quad \text { for } y \in P \cap \partial \Omega_{R}, \forall 0<\epsilon \leq 1 . \tag{3.10}
\end{equation*}
$$

Suppose that there exists a $y_{0} \in P \cap \partial \Omega_{R}$ with $T_{\epsilon} y_{0} \leq y_{0}$. Then, $\left\|y_{0}\right\|=R$. Since $y_{0}(t)$ is concave on $[0,1]$ (since $y_{0} \in P$) we find from Lemma 2.4 that $y_{0}(t) \geq t(1-t)\left\|y_{0}\right\| \geq t(1-t) R$ for $t \in[0,1]$. For $t \in[a, 1-a]$, one has

$$
y_{0}(t) \geq a^{2} R \geq a^{2} R^{\prime}=R_{1}, \quad \forall t \in[a, 1-a],
$$

which together with (3.9) yields

$$
\begin{equation*}
f\left(t, \max \left\{\epsilon, y_{0}(t)\right\}\right)=f\left(t, y_{0}(t)\right) \geq N^{*} y_{0}(t) \geq N^{*} a^{2} R, \quad \forall t \in[a, 1-a] . \tag{3.11}
\end{equation*}
$$

Then we have, using (3.11),

$$
\begin{aligned}
y_{0}(a) & \geq T_{\epsilon} y_{0}(a)=(1-a) H\left(\phi\left(y_{0}\right)\right)+\int_{0}^{1} k(a, s) q(s) f\left(s, \max \left\{\epsilon, y_{0}(s)\right\}\right) d s \\
& \geq \int_{a}^{1-a} k(a, s) q(s) f\left(s, \max \left\{\epsilon, y_{0}(s)\right\}\right) d s \\
& =\int_{a}^{1-a} k(a, s) q(s) f\left(s, y_{0}(s)\right) d s \\
& \geq N^{*} R a^{2} \int_{a}^{1-a} k(a, s) q(s) d s \\
& >R=\left\|y_{0}\right\|,
\end{aligned}
$$

which is a contradiction. Hence equation (3.10) is true. Lemma 2.2 guarantees that

$$
i\left(T_{\epsilon}, \Omega_{R} \cap P, P\right)=0, \quad \forall 0<\epsilon \leq 1
$$

The proof is complete.

Lemma 3.4 Suppose that $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{5}\right)$ hold and

$$
\begin{equation*}
\lim _{s \rightarrow+\infty} \frac{H(s)}{s}=+\infty \tag{3.12}
\end{equation*}
$$

Then, there exists an $R^{\prime}>1$ such that for all $R \geq R^{\prime}$

$$
i\left(T_{\epsilon}, \Omega_{R} \cap P, P\right)=0, \quad \forall 0<\epsilon \leq 1 .
$$

Proof From equation (3.12), there exists an $R_{1}>1$ such that

$$
\begin{equation*}
H(s) \geq N^{*} s, \quad \forall s \geq R_{1}, \tag{3.13}
\end{equation*}
$$

where

$$
N^{*}>\frac{2}{\varepsilon_{0}} \quad\left(\varepsilon_{0} \text { defined in }\left(\mathrm{C}_{1}\right)\right) .
$$

Let $R^{\prime}=\frac{R_{1}}{\varepsilon_{0}}$ and

$$
\Omega_{R}=\{x \in C[0,1]:\|x\|<R\}, \quad \forall R \geq R^{\prime} .
$$

Now we show

$$
\begin{equation*}
T_{\epsilon} y \not \leq y \quad \text { for } y \in P \cap \partial \Omega_{R}, \forall 0<\epsilon \leq 1 . \tag{3.14}
\end{equation*}
$$

Suppose that there exists a $y_{0} \in P \cap \partial \Omega_{R}$ with $T_{\epsilon} y_{0} \leq y_{0}$. Then, $\left\|y_{0}\right\|=R$. Now $\left(\mathrm{C}_{1}\right)$ guarantees that

$$
\phi\left(y_{0}\right)=\phi_{1}\left(y_{0}\right)+\phi_{2}\left(y_{0}\right) \geq \varepsilon_{0}\left\|y_{0}\right\|=\varepsilon_{0} R \geq R_{1},
$$

which together with equation (3.13) implies that

$$
y_{0}(0) \geq T_{\epsilon} y_{0}(0)=H\left(\phi\left(y_{0}\right)\right) \geq N^{*} \phi\left(y_{0}\right)>\frac{2}{\varepsilon_{0}} \varepsilon_{0}\left\|y_{0}\right\|>\left\|y_{0}\right\| .
$$

This is a contradiction. Hence (3.14) is true. Lemma 2.2 guarantees that

$$
i\left(T_{\epsilon}, \Omega_{R} \cap P, P\right)=0, \quad \forall 0<\epsilon \leq 1
$$

The proof is complete.

Theorem 3.1 Suppose $\left(C_{1}\right)-\left(C_{5}\right)$ hold and the following conditions are satisfied:

$$
\left\{\begin{array}{l}
0 \leq f(t, y) \leq g(y)+h(y) \text { on }[0,1] \times(0, \infty) \text { with } \tag{3.15}\\
g>0 \text { continuous and nonincreasing on }(0, \infty), \\
h \geq 0 \text { continuous on }[0, \infty), \text { and } \\
\frac{h}{g} \text { nondecreasing on }(0, \infty)
\end{array}\right.
$$

and

$$
\begin{equation*}
\sup _{r \in(0,+\infty)} \min \left\{\frac{1}{1+\frac{h(r)}{g(r)}} \int_{0}^{r} \frac{d y}{g(y)}, \frac{r}{\max _{y \in\left[0, c_{0} r\right]} H(y)}\right\}>\max \left\{1, b_{0}\right\} \tag{3.16}
\end{equation*}
$$

hold; here

$$
b_{0}=\int_{0}^{1}(1-s) q(s) d s, \quad c_{0}=\int_{0}^{1}\left|d \alpha_{1}(s)\right|+\int_{0}^{1}\left|d \alpha_{2}(s)\right| .
$$

Then the BVP (1.1)-(1.2) has at least one positive solution.

Proof From equation (3.16), choose $\epsilon>0$ and $r>0$ with $\epsilon<\min \{1, r\}$ such that

$$
\begin{equation*}
\min \left\{\frac{1}{1+\frac{h(r)}{g(r)}} \int_{0}^{r} \frac{d y}{g(y)}, \frac{r}{\max _{y \in\left[0, c_{0} r\right]} H(y)}\right\}>\max \left\{1, b_{0}\right\} \tag{3.17}
\end{equation*}
$$

Let

$$
\Omega_{1}=\{y \in C[0,1]:\|y\|<r\},
$$

and $n_{0}>\frac{1}{\epsilon}$. For $n \in\left\{n_{0}, n_{0}+1, \ldots\right\}$, we define $T_{\frac{1}{n}}$ as in equation (3.1). Lemma 3.1 guarantees that $T_{\frac{1}{n}}: P \rightarrow P$ is continuous and compact.
Now we show that

$$
\begin{equation*}
y \neq \lambda T_{\frac{1}{n}} y, \quad \forall y \in \partial \Omega_{1} \cap P, \lambda \in(0,1] . \tag{3.18}
\end{equation*}
$$

Suppose that there is a $y_{0} \in \partial \Omega_{1} \cap P$ and $\lambda_{0} \in[0,1]$ with $y_{0}=\lambda_{0} T_{\frac{1}{n}} y_{0}$, i.e., y_{0} satisfies

$$
\left\{\begin{array}{l}
y_{0}^{\prime \prime}(t)+\lambda_{0} q(t) f\left(t, \max \left\{\frac{1}{n}, y_{0}(t)\right\}\right)=0, \quad 0<t<1, \tag{3.19}\\
y_{0}(0)=\lambda_{0} H(\phi(y)), \quad y_{0}(1)=0 .
\end{array}\right.
$$

Then $y_{0}^{\prime \prime}(t) \leq 0$ on (0,1). From equation (3.17), we have $y_{0}(0)=\lambda_{0} H\left(\phi\left(y_{0}\right)\right) \leq$ $\max _{y \in\left[0, c_{0} r\right]} H(y)<r$, which together with $y_{0}(1)=0<r$ implies that there exists a $t_{0} \in(0,1)$ with $y_{0}\left(t_{0}\right)=\left\|y_{0}\right\|=r, y_{0}^{\prime}\left(t_{0}\right)=0$ and $y_{0}^{\prime}(t) \leq 0$ for all $t \in\left(t_{0}, 1\right)$. For $t \in(0,1)$, from equations (3.15) and (3.19), we have

$$
\begin{align*}
-y_{0}^{\prime \prime}(t) & \leq g\left(\max \left\{\frac{1}{n}, y_{0}(t)\right\}\right)\left\{1+\frac{h\left(\max \left\{\frac{1}{n}, y_{0}(t)\right\}\right)}{g\left(\max \left\{\frac{1}{n}, y_{0}(t)\right\}\right)}\right\} q(t) \\
& \leq g\left(\max \left\{\frac{1}{n}, y_{0}(t)\right\}\right)\left\{1+\frac{h(r)}{g(r)}\right\} q(t) . \tag{3.20}
\end{align*}
$$

We integrate equation (3.20) from $t_{0}\left(t_{0}<t\right)$ to t to obtain

$$
\begin{align*}
-y_{0}^{\prime}(t) & \leq g\left(\max \left\{\frac{1}{n}, y_{0}(t)\right\}\right)\left\{1+\frac{h(r)}{g(r)}\right\} \int_{t_{0}}^{t} q(s) d s \\
& \leq g\left(y_{0}(t)\right)\left\{1+\frac{h(r)}{g(r)}\right\} \int_{t_{0}}^{t} q(s) d s \tag{3.21}
\end{align*}
$$

and then integrate equation (3.21) from t_{0} to 1 to obtain

$$
\begin{aligned}
\int_{y_{0}(1)}^{y_{0}\left(t_{0}\right)} \frac{d y}{g(y)} & \leq\left\{1+\frac{h(r)}{g(r)}\right\} \int_{t_{0}}^{1} \int_{t_{0}}^{s} q(\tau) d \tau d s \\
& =\left\{1+\frac{h(r)}{g(r)}\right\} \int_{t_{0}}^{1}(1-s) q(s) d s \\
& \leq\left\{1+\frac{h(r)}{g(r)}\right\} \int_{0}^{1}(1-s) q(s) d s,
\end{aligned}
$$

i.e.,

$$
\int_{0}^{r} \frac{d y}{g(y)} \leq\left\{1+\frac{h(r)}{g(r)}\right\} \int_{0}^{1}(1-s) q(s) d s,
$$

which contradicts equation (3.17). Therefore, equation (3.18) is true. Lemma 2.1 implies that

$$
i\left(T_{\frac{1}{n}}, \Omega_{1} \cap P, P\right)=1,
$$

which yields the result that there exists a $y_{n} \in \Omega_{1} \cap P$ such that

$$
T_{\frac{1}{n}} y_{n}=y_{n},
$$

i.e., $\Phi_{r} \neq \emptyset$ in Lemma 3.2. Now Lemma 3.2 guarantees that there exists a $\delta_{r}>0$ such that

$$
\begin{equation*}
y_{n}(0) \geq \delta_{r}, \quad y_{n}(t) \geq \delta_{r}(1-t), \quad \forall t \in[0,1], x \in\left\{n_{0}, n_{0}+1, \ldots\right\} . \tag{3.22}
\end{equation*}
$$

Now we consider the set $\left\{y_{n}\right\}_{n=n_{0}}^{\infty}$. Obviously, $\left\|y_{n}\right\| \leq r$ means that the functions belonging to $\left\{y_{n}(t)\right\}$ are uniformly bounded on $[0,1]$.

Now we show that
the functions belonging to $\left\{y_{n}(t)\right\}$ are equicontinuous on $[0,1]$.

There are two cases to consider.
(1) There exists a subsequence $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ with $y_{n_{i}}(0)=H\left(\phi\left(y_{n_{i}}\right)\right)<\left\|y_{n_{i}}\right\|$. Without loss of generality, we assume that $y_{n}(0)=H\left(\phi\left(y_{n}\right)\right)<\left\|y_{n}\right\|, n \in\left\{n_{0}, n_{0}+1, \ldots\right\}$, which together with $y_{n}(1)=0$ implies that there exists a t_{n} satisfying that $y_{n}^{\prime}\left(t_{n}\right)=0$ with $y_{n}^{\prime}(t) \geq 0$ for $t \in\left(0, t_{n}\right)$ and $y_{n}^{\prime}(t) \leq 0$ for $t \in\left(t_{n}, 1\right)$. Let $t^{\prime}=\sup \left\{t_{n}, n \geq n_{0}\right\}$. Now we show that $t^{\prime}<1$. To the contrary, suppose that $t^{\prime}=1$. Then there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that $t_{n_{i}} \rightarrow 1$ as $n_{i} \rightarrow+\infty$. From equation (3.21), using y_{n} in place of y_{0}, we have

$$
\int_{0}^{y_{n_{i}}\left(t_{n_{i}}\right)} \frac{1}{g(y)} d y \leq\left(1+\frac{h(r)}{g(r)}\right) \int_{t_{n_{i}}}^{1}(1-s) q(s) d s,
$$

which implies that

$$
y_{n_{i}}\left(t_{n_{i}}\right) \rightarrow 0, \quad \text { as } n_{i} \rightarrow+\infty .
$$

This contradicts $y_{n_{i}}(t) \geq \delta_{r}(1-t)$ for all $t \in[0,1]$.
Let $t_{0} \in\left(t^{\prime}, 1\right)$. From equation (3.22), we have

$$
y_{n}(t) \geq k_{0}:=\min _{t \in\left[0, t_{0}\right]} \delta_{r}(1-t), \quad t \in\left[0, t_{0}\right] .
$$

Similarly as the proof in equation (3.21), one has

$$
y_{n}^{\prime}(t) \leq g\left(k_{0}\right)\left(1+\frac{h(r)}{g(r)}\right) \int_{0}^{1} q(s) d s
$$

which means that

$$
\begin{equation*}
\text { the functions belonging to }\left\{y_{n}(t)\right\} \text { are equicontinuous on }\left[0, t_{0}\right] \text {. } \tag{3.25}
\end{equation*}
$$

For $t_{1}, t_{2} \in\left[t_{0}, 1\right)$, from equation (3.21), using y_{n} in place of y_{0}, we have

$$
\left|\int_{y_{n}\left(t_{1}\right)}^{y_{n}\left(t_{2}\right)} \frac{1}{g(y)} d y\right| \leq\left(1+\frac{h(r)}{g(r)}\right) \int_{0}^{1} q(s) d s\left|t_{1}-t_{2}\right|
$$

which yields
the functions belonging to $\left\{y_{n}(t)\right\}$ are equicontinuous on $\left[t_{0}, 1\right]$.

Combining equations (3.25) and (3.26), we find that equation (3.24) holds.
(2) There exists a $k_{1}>0$ such that $y_{n}(0)=\left\|y_{n}\right\|$ and $y_{n}(t)$ is nonincreasing on [0,1] for all $n>k_{1}$. From $y_{n}(0)=H\left(\phi\left(y_{n}\right)\right)=\left\|y_{n}\right\|$ and $y_{n}(1)=0$, there exists $t_{n} \in(0,1)$ such that $y_{n}^{\prime}\left(t_{n}\right)=-H\left(\phi\left(y_{n}\right)\right)$. Now $y_{n}^{\prime \prime}(t) \leq 0$ implies that $y_{n}^{\prime}(0) \geq y_{n}^{\prime}\left(t_{n}\right)=-H\left(\phi\left(y_{n}\right)\right)$. Hence, from equation (3.20), using y_{n} in place of y_{0}, we have

$$
-y_{n}^{\prime}(t)+y_{n}^{\prime}(0) \leq g\left(y_{n}(t)\right)\left(1+\frac{h(r)}{g(r)}\right) \int_{0}^{t} q(s) d s, \quad t \in(0,1)
$$

and so

$$
\begin{aligned}
-\frac{y_{n}^{\prime}(t)}{g\left(y_{n}(t)\right)} & \leq\left(1+\frac{h(r)}{g(r)}\right) \int_{0}^{t} q(s) d s-\frac{y_{0}^{\prime}(0)}{g\left(y_{n}(t)\right)} \\
& \leq\left(1+\frac{h(r)}{g(r)}\right) \int_{0}^{t} q(s) d s+\frac{H\left(\phi\left(y_{n}\right)\right)}{g\left(y_{n}(t)\right)} \\
& \leq\left(1+\frac{h(r)}{g(r)}\right) \int_{0}^{t} q(s) d s+\frac{1}{g(r)} \max _{s \in\left[0, c_{0} r\right]} H(r), \quad t \in(0,1) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|\int_{y_{n}\left(t_{1}\right)}^{y_{n}\left(t_{2}\right)} \frac{1}{g(y)} d y\right|= & \left|\int_{t_{1}}^{t_{2}} \frac{y_{n}^{\prime}(s)}{g\left(y_{n}(s)\right)} d s\right| \\
\leq & \left(1+\frac{h(r)}{g(r)}\right)\left|\int_{t_{1}}^{t_{2}} \int_{0}^{s} q(\tau) d \tau d s\right|+\frac{1}{g(r)} \max _{s \in\left[0, c_{0} r\right]} H(r)\left|t_{1}-t_{2}\right|, \\
& \forall t_{1}, t_{2} \in[0,1],
\end{aligned}
$$

which implies that (3.24) hold.
Now Arzela-Ascoli theorem guarantees that $\left\{y_{n}(t)\right\}$ has a convergent subsequence. Without loss of generality, we assume that there is a $y_{*} \in C[0,1]$ such that

$$
\lim _{n \rightarrow+\infty} y_{n}=y_{*},
$$

which together with equation (3.22) and $y_{n}(1)=0$ implies that

$$
\begin{equation*}
y_{*}(1)=0, \quad y_{*}(t) \geq \delta_{r}(1-t), \quad \forall t \in[0,1] . \tag{3.27}
\end{equation*}
$$

Since $y_{n}(n \in \mathbb{N})$ satisfies $y_{n}=T_{\frac{1}{n}} y_{n}$, we have

$$
y_{n}^{\prime \prime}(t)=-q(t) f\left(t, \max \left\{\frac{1}{n}, y_{n}(t)\right\}\right)=0, \quad 0<t<1
$$

We integrate the above equation from $\frac{1}{2}$ to t to yield

$$
y_{n}^{\prime}(t)=y_{n}^{\prime}\left(\frac{1}{2}\right)-\int_{\frac{1}{2}}^{t} q(s) f\left(s, \max \left\{\frac{1}{n}, y_{n}(s)\right\}\right) d s
$$

and so

$$
\begin{aligned}
y_{n}(t) & =y_{n}\left(\frac{1}{2}\right)+y_{n}^{\prime}\left(\frac{1}{2}\right)\left(t-\frac{1}{2}\right)-\int_{\frac{1}{2}}^{t} \int_{\frac{1}{2}}^{s} q(\tau) f\left(\tau, \max \left\{\frac{1}{n}, y_{n}(\tau)\right\}\right) d \tau d s \\
& =y_{n}\left(\frac{1}{2}\right)+y_{n}^{\prime}\left(\frac{1}{2}\right)\left(t-\frac{1}{2}\right)+\int_{\frac{1}{2}}^{t}(s-t) q(s) f\left(s, \max \left\{\frac{1}{n}, y_{n}(s)\right\}\right) d s
\end{aligned}
$$

for $t \in(0,1)$ and

$$
y_{n}(0)=H\left(\phi\left(y_{n}\right)\right)=H\left(\int_{0}^{1} y_{n}(s) d \alpha_{1}(s)+\int_{0}^{1} y_{n}(s) d \alpha_{2}(s)\right),
$$

and the Lebesgue Dominated Convergent theorem together with equation (3.27) implies that

$$
\begin{align*}
y_{*}(t) & =\lim _{n \rightarrow+\infty} y_{n}(t) \\
& =\lim _{n \rightarrow+\infty}\left[y_{n}\left(\frac{1}{2}\right)+y_{n}^{\prime}\left(\frac{1}{2}\right)\left(t-\frac{1}{2}\right)+\int_{\frac{1}{2}}^{t}(s-t) q(s) f\left(s, \max \left\{\frac{1}{n}, y_{n}(s)\right\}\right) d s\right] \\
& =y_{*}\left(\frac{1}{2}\right)+y_{*}^{\prime}\left(\frac{1}{2}\right)\left(t-\frac{1}{2}\right)+\int_{\frac{1}{2}}^{t}(s-t) q(s) f\left(s, y_{*}(s)\right) d s \tag{3.28}
\end{align*}
$$

for $t \in(0,1)$ and

$$
\begin{align*}
y_{*}(0) & =\lim _{n \rightarrow+\infty} y_{n}(0) \\
& =\lim _{n \rightarrow+\infty} H\left(\phi\left(y_{n}\right)\right) \\
& =\lim _{n \rightarrow+\infty} H\left(\int_{0}^{1} y_{n}(s) d \alpha_{1}(s)+\int_{0}^{1} y_{n}(s) d \alpha_{2}(s)\right) \\
& =H\left(\phi_{1}\left(y_{*}\right)+\phi_{2}\left(y_{*}\right)\right) \\
& =H\left(\phi\left(y_{*}\right)\right) . \tag{3.29}
\end{align*}
$$

We differentiate equation (3.28) to get

$$
y_{*}^{\prime \prime}(t)+q(t) f\left(t, y_{*}(t)\right)=0, \quad t \in(0,1)
$$

which together with equations (3.27) and (3.29) means that the BVP (1.1)-(1.2) has at least one positive solution. The proof is complete.

Theorem 3.2 Suppose the conditions of Theorem 3.1 hold and there exists an $a \in\left(0, \frac{1}{2}\right)$ such that

$$
\lim _{y \rightarrow+\infty} \frac{f(t, y)}{y}=+\infty
$$

uniformly on $[a, 1-a]$. Then the BVP (1.1)-(1.2) has at least two positive solutions.

Proof Choose $r>0$ as in (3.17), $n_{0}>0$ with $\frac{1}{n_{0}}<\min \{1, r\}$, and $R>\max \left\{r, R^{\prime}\right\}$ in Lemma 3.3. Set $\mathbb{N}_{n_{0}}=\left\{n_{0}, n_{0}+1, \ldots\right\}$, and

$$
\begin{aligned}
& \Omega_{1}=\{y \in C[0,1]:\|y\|<r\}, \\
& \Omega_{2}=\{y \in C[0,1]:\|y\|<R\} .
\end{aligned}
$$

By the proof of Theorem 3.1 and Lemma 3.3, we have

$$
i\left(T_{\frac{1}{n}}, \Omega_{1} \cap P, P\right)=1
$$

and

$$
i\left(T_{\frac{1}{n}}, \Omega_{2} \cap P, P\right)=0,
$$

which implies that

$$
i\left(T_{\frac{1}{n}},\left(\Omega_{2}-\bar{\Omega}_{1}\right) \cap P, P\right)=-1
$$

Then, there exist $x_{1, n} \in \Omega_{1} \cap P$ and $x_{2, n} \in\left(\Omega_{2}-\bar{\Omega}_{1}\right) \cap P$ such that

$$
T_{\frac{1}{n}} x_{1, n}=x_{1, n}, \quad T_{\frac{1}{n}} x_{2, n}=x_{2, n} .
$$

By the proof of Theorem 3.1, there exist a subsequence $\left\{x_{1, n_{i}}\right\}$ of $\left\{x_{1, n}\right\}$ and $x_{1} \in P$ such that

$$
\lim _{n_{i} \rightarrow+\infty} x_{1, n_{i}}(t)=x_{1}(t), \quad t \in[0,1] .
$$

And moreover, $x_{1}(t)$ is a positive solution to the BVP (1.1)-(1.2) with $r>x_{1}(t) \geq \delta_{r}(1-t)$, $\forall t \in[0,1]$.

A similar argument shows that there exist a subsequence $\left\{x_{2, n_{j}}\right\}$ of $\left\{x_{2, n}\right\}$ and $x_{2} \in P \cap$ $\left(\Omega_{2}-\bar{\Omega}_{1}\right)$ such that

$$
\lim _{n_{i} \rightarrow+\infty} x_{2, n_{j}}(t)=x_{2}(t), \quad t \in[0,1] .
$$

And moreover, $x_{2}(t)$ is a positive solution to the BVP (1.1)-(1.2) and equation (3.18) guarantees that $\left\|x_{2}\right\|>r$. Hence, $x_{1}(t)$ and $x_{2}(t)$ are two positive solutions for the BVP (1.1)-(1.2). The proof is complete.

Theorem 3.3 Suppose the conditions of Theorem 3.1 hold and

$$
\lim _{s \rightarrow+\infty} \frac{H(s)}{s}=+\infty
$$

Then the BVP (1.1)-(1.2) has at least two positive solutions.

Proof Choose $r>0$ as in (3.17), $n_{0}>0$ with $\frac{1}{n_{0}}<\min \{1, r\}$, and $R>\max \left\{r, R^{\prime}\right\}$ in Lemma 3.4. Set $\mathbb{N}_{n_{0}}=\left\{n_{0}, n_{0}+1, \ldots\right\}$, and

$$
\begin{aligned}
& \Omega_{1}=\{y \in C[0,1]:\|y\|<r\}, \\
& \Omega_{2}=\{y \in C[0,1]:\|y\|<R\} .
\end{aligned}
$$

By the proof of Theorem 3.1 and Lemma 3.4, we have

$$
i\left(T_{\frac{1}{n}}, \Omega_{1} \cap P, P\right)=1
$$

and

$$
i\left(T_{\frac{1}{n}}, \Omega_{2} \cap P, P\right)=0,
$$

which implies that

$$
i\left(T_{\frac{1}{n}},\left(\Omega_{2}-\bar{\Omega}_{1}\right) \cap P, P\right)=-1
$$

Then, there exist $x_{1, n} \in \Omega_{1} \cap P$ and $x_{2, n} \in\left(\Omega_{2}-\bar{\Omega}_{1}\right) \cap P$ such that

$$
T_{\frac{1}{n}} x_{1, n}=x_{1, n}, \quad T_{\frac{1}{n}} x_{2, n}=x_{2, n} .
$$

A similar argument to that in Theorem 3.2 shows that the BVP (1.1)-(1.2) has at least two positive solutions. The proof is complete.

Example 3.1 Consider

$$
\begin{equation*}
y^{\prime \prime}(t)+\mu \frac{1}{\sqrt{1-t}}\left(\frac{1}{200}+\frac{1}{300} \sin t^{2}+\frac{1}{100} y^{-\delta_{1}}(t)+\frac{1}{100} y^{\delta_{2}}(t)\right)=0, \quad 0<t<1, \tag{3.30}
\end{equation*}
$$

with

$$
\begin{equation*}
y(0)=H(\phi(y)), \quad y(1)=0 \tag{3.31}
\end{equation*}
$$

where

$$
H(t)=\frac{1}{2} t+\frac{1}{3} t^{\frac{1}{3}}, \quad \phi(y)=\phi_{1}(y)+\phi_{2}(y)=\int_{0}^{1} y(s) d \alpha_{1}(s)+\int_{0}^{1} y(s) d \alpha_{2}(s),
$$

with

$$
\begin{align*}
& d \alpha_{1}(s)=\frac{1}{8} \cos 2 \pi s d s, \quad d \alpha_{2}(s)=\frac{1}{8} d e^{s}, \\
& \delta_{1}>0, \quad \delta_{2}>1, \quad \frac{100}{\left(\delta_{1}+1\right) 3}>1 . \tag{3.32}
\end{align*}
$$

Then equations (3.30)-(3.31) have at least two positive solutions.
To prove that the BVP (3.30)-(3.31) has at least two positive solutions, we use Theorem 3.2. Let $q(t)=\mu \frac{1}{\sqrt{1-t}}, f(t, y)=\frac{1}{200}+\frac{1}{300} \sin t^{2}+\frac{1}{100} y^{-\delta_{1}}+\frac{1}{100} y^{\delta_{2}}, g(y)=\frac{1}{100} y^{-\delta_{1}}, h(y)=$ $\frac{1}{100}+\frac{1}{100} y^{\delta_{2}}, c_{0}=\int_{0}^{1}\left|d \alpha_{1}(s)\right|+\int_{0}^{1}\left|d \alpha_{2}(s)\right|=\frac{1}{4 \pi}+\frac{e-1}{8}, b_{0}=\frac{2}{3} \mu$. For $y \in P($ defined in (2.1)), we have

$$
\phi_{2}(y)=\int_{0}^{1} y(t) \frac{1}{8} e^{s} d s \geq\|y\| \int_{0}^{1} s(1-s) \frac{1}{8} e^{s} d s
$$

which means that $\left(\mathrm{C}_{1}\right)$ holds. Since

$$
\begin{aligned}
& \int_{0}^{1}(1-t) d \alpha_{1}(t)=0, \quad \int_{0}^{1}(1-t) d \alpha_{2}(t)>0, \\
& \int_{0}^{1} k(t, s) d \alpha_{1}(t)=(1-s) \int_{0}^{s} t d \alpha_{1}(t)+s \int_{s}^{1}(1-t) d \alpha_{1}(t)=\frac{1-\cos 2 \pi s}{32 \pi^{2}} \geq 0,
\end{aligned}
$$

and

$$
\int_{0}^{1} k(t, s) d \alpha_{2}(t)=(1-s) \int_{0}^{s} t d \alpha_{2}(t)+s \int_{s}^{1}(1-t) d \alpha_{2}(t) \geq 0
$$

$\left(\mathrm{C}_{2}\right)$ is true. Since $c_{0}<1$, we have $\max _{y \in\left[0, c_{0} r\right]} H(y)=\frac{1}{2} c_{0} r+\frac{1}{3}\left(c_{0} r\right)^{\frac{1}{3}} \leq \frac{1}{2} r+\frac{1}{3} r^{\frac{1}{3}}$. Then

$$
\frac{1}{\max _{y \in\left[0, c_{0} 1\right]} H(y)}=\frac{1}{\frac{1}{2} c_{0} 1+\frac{1}{3}\left(c_{0} 1\right)^{\frac{1}{3}}}>1 .
$$

Equation (3.32) guarantees that

$$
\frac{1}{1+\frac{h(1)}{g(1)}} \int_{0}^{1} \frac{1}{g(y)} d y=\frac{100}{3\left(1+\delta_{1}\right)}>1 .
$$

Letting $\mu_{0}<3$, we have

$$
\sup _{r \in(0,+\infty)} \min \left\{\frac{1}{1+\frac{h(r)}{g(r)}} \int_{0}^{r} \frac{d y}{g(y)}, \frac{r}{\max _{y \in\left[0, c_{0} r\right]} H(y)}\right\}>\max \left\{1, b_{0}\right\}
$$

for all $\mu \leq \mu_{0}$, which means that equations (3.15)-(3.16) hold. Since

$$
f(t, x) \geq \frac{1}{200}+\frac{1}{300} \sin t^{2}, \quad \forall(t, x) \in[0,1] \times(0,1]
$$

we get $\left(\mathrm{C}_{4}\right)$. Moreover, since

$$
\lim _{y \rightarrow+\infty} \frac{f(t, y)}{y}=+\infty
$$

uniformly on $[0,1]$, all conditions of Theorem 3.2 hold, which implies that equations (3.30)-(3.31) have at least two positive solutions.

Example 3.2 Consider

$$
\begin{equation*}
y^{\prime \prime}(t)+\mu y^{-\delta_{1}}(t)=0, \quad 0<t<1, \tag{3.33}
\end{equation*}
$$

with

$$
\begin{equation*}
y(0)=H(\phi(y)), \quad y(1)=0, \tag{3.34}
\end{equation*}
$$

where

$$
H(t)=\frac{1}{2} t^{3}+\frac{1}{3} t^{\frac{1}{3}}, \quad \phi(y)=\phi_{1}(y)+\phi_{2}(y)=\int_{0}^{1} y(s) d \alpha_{1}(s)+\int_{0}^{1} y(s) d \alpha_{2}(s)
$$

with

$$
d \alpha_{1}(s)=\frac{1}{8} \cos 2 \pi s d s, \quad d \alpha_{2}(s)=\frac{1}{8} d e^{s}, \quad \delta_{1}>0 .
$$

Then equations (3.33)-(3.34) have at least two positive solutions.
To prove that the BVP (3.33)-(3.34) has at least two positive solutions, we use Theorem 3.3. Let $q(t)=\mu, f(t, y)=y^{-\delta_{1}}, g(y)=y^{-\delta_{1}}, h(y)=0, c_{0}=\frac{1}{4 \pi}+\frac{e-1}{8}, b_{0}=\frac{1}{2} \mu$. Since $c_{0}<1$, we have $\max _{y \in\left[0, c_{0} r\right]} H(y)=\frac{1}{2}\left(c_{0} r\right)^{3}+\frac{1}{3}\left(c_{0} r\right)^{\frac{1}{3}} \leq \frac{1}{2} r^{3}+\frac{1}{3} r^{\frac{1}{3}}$. Then

$$
\frac{1}{\max _{y \in\left[0, c_{0} 1\right]} H(y)}=\frac{1}{\frac{1}{2}\left(c_{0} 1\right)^{3}+\frac{1}{3}\left(c_{0} 1\right)^{\frac{1}{3}}}>1
$$

Also we have

$$
\lim _{r \rightarrow+\infty} \int_{0}^{r} \frac{d y}{g(y)}\left(1+\frac{h(r)}{g(r)}\right)^{-1}=+\infty
$$

Then, letting $\mu_{0} \leq 2$, we get

$$
\sup _{r \in(0,+\infty)} \min \left\{\frac{1}{1+\frac{h(r)}{g(r)}} \int_{0}^{r} \frac{d y}{g(y)}, \frac{r}{\max _{y \in\left[0, c_{0} r\right]} H(y)}\right\}>\max \left\{1, b_{0}\right\}
$$

for all $\mu \leq \mu_{0}$, which means that equations (3.15)-(3.16) hold. Since

$$
f(t, x) \geq 1, \quad \forall(t, x) \in[0,1] \times(0,1]
$$

we get $\left(C_{4}\right)$. Obviously, $\left(C_{1}\right)-\left(C_{3}\right)$, and $\left(C_{5}\right)$ hold. Moreover, since

$$
\lim _{y \rightarrow+\infty} \frac{H(s)}{s}=+\infty
$$

uniformly on $[0,1]$, all conditions of Theorem 3.3 hold, which implies that equations (3.30)-(3.31) have at least two positive solutions.

4 Positive solutions for singular boundary-value problems with sign-changing nonlinearities

$\left(\mathrm{H}_{1}\right)$ Assume that there are three linear functionals $\phi, \phi_{1}, \phi_{2}: C([0,1]) \rightarrow R$

$$
\phi(y)=\phi_{1}(y)+\phi_{2}(y), \quad \phi_{1}(y):=\int_{0}^{1} y(t) d \alpha_{1}(t), \quad \phi_{2}(y):=\int_{0}^{1} y(t) d \alpha_{2}(t),
$$

where $\alpha_{1}, \alpha_{2}:[0,1] \rightarrow R$ satisfy $\alpha_{1}, \alpha_{2} \in B V([0,1])$;
$\left(\mathrm{H}_{2}\right) a(t) \in C([0,1],(0,+\infty)),(1-t) q(t) \in L^{1}((0,1])$;
$\left(\mathrm{H}_{3}\right)$ Let $H: R \rightarrow[0,+\infty)$ be a real-valued, continuous function. Moreover, $H:(0,+\infty) \rightarrow$ $(0,+\infty)$;
$\left(\mathrm{H}_{4}\right) f(t, y) \in C([0,1] \times(0,+\infty),(-\infty,+\infty))$, there exists a decreasing function $F(y) \in$ $C((0,+\infty),(0,+\infty))$, and a nonnegative function $G(y) \in C([0,+\infty),[0,+\infty))$ such that $f(t, y) \leq F(y)+G(y)$ and there exists a $b \in C((0,1),(0,+\infty))$ such that

$$
f(t, y) \geq a(t), \quad \forall 0<y \leq b(t), t \in(0,1) ;
$$

$\left(\mathrm{H}_{5}\right)$ there exist $R>1$ such that

$$
\int_{0}^{R} \frac{d y}{F(y)} \cdot\left(1+\frac{\bar{G}(R)}{F(R)}\right)^{-1}>\int_{0}^{1}(1-s) q(s) d s
$$

and

$$
\max _{y \in\left[0, r c_{0}\right]} H(y)<r, \quad \forall R \geq r>0 \text {, where } c_{0}=\int_{0}^{1}\left|d \alpha_{1}(s)\right|+\int_{0}^{1}\left|d \alpha_{2}(s)\right|,
$$

where $\bar{G}(R)=\max _{s \in[0, R]} G(s)$.
For $n>3$, let $b_{n}=\min \left\{\frac{1}{n}, \min _{t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]} b(t)\right\}$. Obviously, $b_{n}>0$. For $y \in C_{n}=C\left[\frac{1}{n}, 1-\frac{1}{n}\right]$, we define T_{n} as

$$
\begin{aligned}
& \left(T_{n} y\right)(t)=\left(1-\frac{1}{n}-t\right) H\left(\phi_{n}(y)\right)+b_{n}+\int_{\frac{1}{n}}^{1-\frac{1}{n}} k_{n}(t, s) q(s) f\left(s, \max \left\{b_{n}, y(s)\right\}\right) d s, \\
& t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right],
\end{aligned}
$$

where

$$
k_{n}(t, s)= \begin{cases}\left(s-\frac{1}{n}\right)\left(1-\frac{1}{n}-t\right), & \frac{1}{n} \leq s \leq t \leq 1-\frac{1}{n}, \\ \left(t-\frac{1}{n}\right)\left(1-\frac{1}{n}-s\right), & \frac{1}{n} \leq t \leq s \leq 1-\frac{1}{n}\end{cases}
$$

and

$$
\phi_{n}(y)=\int_{\frac{1}{n}}^{1-\frac{1}{n}} y(s) d \alpha_{1}(s)+\int_{\frac{1}{n}}^{1-\frac{1}{n}} y(s) d \alpha_{2}(s) .
$$

From a standard argument (see [18, 25, 26]), we have the following result.

Lemma 4.1 Suppose $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ hold. Then the operator T_{n} is continuous and compact from C_{n} to C_{n}.

From $\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{5}\right)$, there exists $\epsilon_{0}>0$ such that

$$
\begin{align*}
& \int_{\epsilon_{0}}^{R} \frac{d y}{F(y)} \cdot\left(1+\frac{\bar{G}(R)}{F(R)}\right)^{-1}>\int_{0}^{1}(1-s) q(s) d s, \tag{4.1}\\
& \max _{y \in\left[0, c_{0} R\right]} H(y)+\epsilon_{0}<R .
\end{align*}
$$

Choose $n_{0}>3$ with $\frac{1}{n_{0}}<\epsilon_{0}$ and let $\mathbb{N}_{n_{0}}=\left\{n_{0}, n_{0}+1, \ldots\right\}$. Now we have the following lemmas.

Lemma 4.2 Suppose $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)$ hold. Then, for $n \in \mathbb{N}_{0}$, there exists a $x_{n} \in C_{n}$ with $b_{n} \leq$ $x_{n}(t) \leq R$ such that

$$
x_{n}(t)=\left(1-\frac{1}{n}-t\right) H\left(\phi_{n}\left(x_{n}\right)\right)+b_{n}+\int_{\frac{1}{n}}^{1-\frac{1}{n}} k_{n}(t, s) q(s) f\left(s, x_{n}(s)\right) d s, \quad t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right] .
$$

Proof Let $\Omega=\left\{y \in C_{n}:\|y\|<R\right\}$. For $y \in \partial \Omega$, we now prove that

$$
\begin{align*}
y(t) \neq & \lambda\left(T_{n} y\right)(t)=\lambda\left(\left(1-\frac{1}{n}-t\right) H\left(\phi_{n}(y)\right)+b_{n}\right) \\
& +\lambda \int_{\frac{1}{n}}^{1-\frac{1}{n}} k_{n}(t, s) q(s) f\left(s, \max \left\{b_{n}, y(s)\right\}\right) d s, \quad t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right] \tag{4.2}
\end{align*}
$$

for any $\lambda \in(0,1]$.
Suppose equation (4.2) is not true. Then there exists $y \in C\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ with $\|y\|=R$ and $0<\lambda<1$ such that

$$
\begin{align*}
y(t)= & \lambda(T y)(t)=\lambda\left(\left(1-\frac{1}{n}-t\right) H\left(\phi_{n}(y)\right)+b_{n}\right) \\
& +\lambda \int_{\frac{1}{n}}^{1-\frac{1}{n}} k_{n}(t, s) q(s) f\left(s, \max \left\{b_{n}, y(s)\right\}\right) d s, \quad t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right] . \tag{4.3}
\end{align*}
$$

We first claim that $y(t) \geq \lambda b_{n}$ for any $t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]$.
Suppose there exists a $\eta \in(0,1)$ with $y(\eta)<\lambda b_{n}$. Let $\gamma_{0}=\inf \left\{t_{1}: y(s)<\lambda b_{n}, \forall s \in\left[t_{1}, \eta\right]\right\}$ and $\gamma_{1}=\sup \left\{t_{1}: y(s)<\lambda b_{n}, \forall s \in\left[\eta, t_{1}\right]\right\}$. Since $y\left(\frac{1}{n}\right) \geq \lambda b_{n}$ and $y\left(1-\frac{1}{n}\right)=\lambda b_{n}$, we have $\gamma_{0} \geq$ $\frac{1}{n}, \gamma_{1} \leq 1-\frac{1}{n}, y\left(\gamma_{0}\right)=y\left(\gamma_{1}\right)=\lambda b_{n}$, and $y(t)<\lambda b_{n}$ for all $t \in\left(\gamma_{0}, \gamma_{1}\right)$, which implies that

$$
y^{\prime \prime}(t)=-\lambda q(t) f\left(t, b_{n}\right)<0, \quad t \in\left(\gamma_{0}, \gamma_{1}\right)
$$

and so $y(t)$ is concave down on $\left[\gamma_{0}, \gamma_{1}\right]$. This is a contradiction.
Now $\left(\mathrm{H}_{5}\right)$ guarantees that

$$
y\left(\frac{1}{n}\right)=\lambda\left(\left(1-\frac{2}{n}\right) H\left(\phi_{n}(y)\right)+b_{n}\right) \leq \max _{r \in\left[0, c_{0} R\right]} h(r)+\epsilon_{0}<R,
$$

which together with $y\left(1-\frac{1}{n}\right)=\lambda b_{n}<R$ means that there is a $t \in\left(\frac{1}{n}, 1-\frac{1}{n}\right)$ with $y^{\prime}(t)=0$ and $y(t)=R$. Let $t^{*}=\sup \left\{t: y(t)=R, y^{\prime}(t)=0\right\}$ and $t_{*}=\inf \left\{t: y(t)=R, y^{\prime}(t)=0\right\}$. Obviously, $\frac{1}{n}<t_{*} \leq t^{*}<1-\frac{1}{n}, y\left(t_{*}\right)=R, y^{\prime}\left(t_{*}\right)=0, y\left(t^{*}\right)=R, y^{\prime}\left(t^{*}\right)=0, y(t)<R$ for all $t \in\left(t^{*}, 1-\frac{1}{n}\right]$ and $y(t)<R$ for all $t \in\left(\frac{1}{n}, t_{*}\right]$. Let $t_{1}=\inf \left\{t^{*}<t \leq 1-\frac{1}{n}: y(t)=\lambda y\left(1-\frac{1}{n}\right)\right\}$ and $t_{1}^{\prime}=\sup \left\{t<t_{*} \leq\right.$ $\left.1-\frac{1}{n}: y(t)=\lambda y\left(\frac{1}{n}\right)\right\}$. It is easy to see that $t^{*}<t_{1} \leq 1-\frac{1}{n}, y(t)>y\left(t_{1}\right)$ for all $t \in\left(t^{*}, t_{1}\right), t_{1}^{\prime}<t_{*}$ and $y(t)>y\left(t_{1}^{\prime}\right)$ for all $t \in\left(t_{1}^{\prime}, t_{*}\right)$.

Now we consider the properties of y on $\left(t^{*}, t_{1}\right)$. We get a countable set $\left\{t_{i}\right\}$ of $\left(t^{*}, t_{1}\right]$ such that

1. $t^{*}>\cdots \geq t_{2 m}>t_{2 m-1}>\cdots>t_{5} \geq t_{4}>t_{3} \geq t_{2}>t_{1}=t_{1}, t_{2 m} \rightarrow t^{*}$,
2. $\quad y\left(t_{2 i}\right)=y\left(t_{2 i+1}\right), y^{\prime}\left(t_{2 i}\right)=0, i=1,2,3, \ldots$,
3. $y(t)$ is strictly decreasing in $\left[t_{2 i}, t_{2 i-1}\right], i=1,2,3, \ldots$ (if $y(t)$ is strictly decreasing in $\left[t^{*}, t_{1}\right]$, put $m=1$; i.e, $\left.\left[t_{2}, t_{1}\right]=\left[t^{*}, t_{1}\right]\right)$.
Differentiating equation (4.3) and using the assumptions $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{4}\right)$, we obtain

$$
\begin{align*}
-y^{\prime \prime}(t) & =\lambda q(t) f\left(t, \max \left\{b_{n}, y(t)\right\}\right) \\
& \leq \lambda q(t)\left(F\left(\max \left\{b_{n}, y(t)\right\}\right)+G\left(\max \left\{b_{n}, y(t)\right\}\right)\right) \\
& =\lambda q(t) F\left(\max \left\{b_{n}, y(t)\right\}\right)\left(1+\frac{G\left(\max \left\{b_{n}, y(t)\right\}\right)}{F\left(\max \left\{b_{n}, y(t)\right\}\right)}\right) \\
& <q(t) F\left(\max \left\{b_{n}, y(t)\right\}\right)\left(1+\frac{\bar{G}(R)}{F(R)}\right) \\
& \leq q(t) F(y(t))\left(1+\frac{\bar{G}(R)}{F(R)}\right), \quad t \in\left[t_{2 i}, t_{2 i-1}\right), i=1,2,3, \ldots \tag{4.4}
\end{align*}
$$

Integrating (4.4) from $t_{2 i}$ to t, we have, by the decreasing property of $F(y)$,

$$
-\int_{t_{2 i}}^{t} y^{\prime \prime}(s) d s \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{2 i}}^{t} q(s) F(y(s)) d s \leq F(y(t))\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{2 i}}^{t} q(s) d s,
$$

for $t \in\left[t_{2 i}, t_{2 i-1}\right), i=1,2,3, \ldots$; that is to say,

$$
\begin{equation*}
-y^{\prime}(t) \leq F(y(t))\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{2 i}}^{t} q(s) d s, \quad t \in\left[t_{2 i}, t_{2 i-1}\right), i=1,2,3, \ldots . \tag{4.5}
\end{equation*}
$$

It follows from equation (4.5) that

$$
\begin{equation*}
-\frac{y^{\prime}(t)}{F(y(t))} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{2 i}}^{t} q(s) d s \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{t} q(s) d s \tag{4.6}
\end{equation*}
$$

for $t \in\left[t_{2 i}, t_{2 i-1}\right), i=1,2,3, \ldots$.
On the other hand, for any $z \in\left(\frac{1}{n}, 1-\frac{1}{n}\right)$ with $y(z)>\lambda b_{n}$, we can choose i_{0} and $z^{\prime} \in\left(t^{*}, t_{1}\right)$ such that $z^{\prime} \in\left[t_{2 i_{0}}, t_{2 i_{0}-1}\right), y\left(z^{\prime}\right)=y(z)$ and $z \leq z^{\prime}$. Integrating equation (4.6) from $t_{2 i}$ to $t_{2 i-1}$, $i=1,2,3, \ldots, i_{0}-1$ and from $t_{2 i_{0}}$ to z^{\prime}, we have

$$
\begin{equation*}
\int_{y\left(t_{2 i-1}\right)}^{y\left(t_{2 i}\right)} \frac{d y}{F(y)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{2 i}}^{t_{2 i-1}} \int_{0}^{t} q(s) d s d t, \quad i=1,2,3, \ldots, i_{0}-1, \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{y\left(t_{i_{0}}\right)}^{y\left(z^{\prime}\right)} \frac{d y}{F(y)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{z^{\prime}}^{t_{2 i_{0}}} \int_{0}^{t} q(s) d s d t \tag{4.8}
\end{equation*}
$$

Summing equation (4.7) from 1 to $i_{0}-1$, we have by equation (4.8) and $y\left(t_{2 i}\right)=y\left(t_{2 i+1}\right)$

$$
\int_{y\left(t_{1}\right)}^{y\left(z^{\prime}\right)} \frac{d y}{F(y)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{z^{\prime}}^{t_{1}} \int_{0}^{t} q(s) d s d t \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{z}^{t_{1}} \int_{0}^{t} q(s) d s d t
$$

Since $y(z)=y\left(z^{\prime}\right)$,

$$
\begin{equation*}
\int_{y\left(t_{1}\right)}^{y(z)} \frac{d y}{F(y)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{z}^{t_{1}} \int_{0}^{t} q(s) d s d t \tag{4.9}
\end{equation*}
$$

For the properties of y on $\left(t_{1}^{\prime}, t_{*}\right)$, a similar argument shows that for any $z>t_{1}^{\prime}$

$$
\begin{equation*}
\int_{y\left(t_{1}^{\prime}\right)}^{y(z)} \frac{d y}{F(y)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{1}^{\prime}}^{z} \int_{0}^{t} q(s) d s d t . \tag{4.10}
\end{equation*}
$$

Letting $z \rightarrow t^{*}$ in (4.9), we have

$$
\begin{aligned}
\int_{\epsilon_{0}}^{R} \frac{d y}{F(y)} & \leq \int_{y\left(t_{1}\right)}^{R} \frac{d y}{F(y)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t^{*}}^{t_{1}} \int_{0}^{t} q(s) d s d t \\
& \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{1} \int_{0}^{t} q(s) d s d t \\
& =\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{1}(1-s) q(s) d s
\end{aligned}
$$

which contradicts equation (4.1). Hence equation (4.2) holds.
It follows from Lemma 3.2 that T_{n} has a fixed point x_{n} in C_{n}. Using x_{n} and 1 in place of y and λ in (4.3), we obtain easily $b_{n} \leq x_{n}(t) \leq R, t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]$. And x_{n} satisfies

$$
\begin{align*}
x_{n}(t) & =\left(1-\frac{1}{n}-t\right) H\left(\phi_{n}\left(x_{n}\right)\right)+b_{n}+\int_{0}^{1} k_{n}(t, s) q(s) f\left(s, x_{n}(s)\right) d s, \\
t & \in\left[\frac{1}{n}, 1-\frac{1}{n}\right] . \tag{4.11}
\end{align*}
$$

The proof is complete.

Lemma 4.3 Suppose that all conditions of Lemma 4.2 hold and x_{n} satisfies (4.11). For a fixed $h \in\left(0, \min \left\{\frac{1}{2}, \eta\right\}\right)$, let $m_{n, h}=\min \left\{x_{n}(t), t \in[h, 1-h]\right\}$. Then $m_{h}=\inf \left\{m_{n, h}\right\}>0$.

Proof Since $x_{n}(t) \geq b_{n}>0$, we get $m_{h} \geq 0$. For any fixed natural number n ($n>n_{0}$ defined in Lemma 4.2), let $t_{n} \in[h, 1-h]$ such that $x_{n}\left(t_{n}\right)=\min \left\{x_{n}(t), t \in[h, 1-h]\right\}$. If $m_{h}=0$, there exists a countable set $\left\{n_{i}\right\}$ such that

$$
\lim _{n_{i} \rightarrow+\infty} x_{n_{i}}\left(t_{n_{i}}\right)=0 .
$$

So there exists N_{0} such that $x_{n_{i}}\left(t_{n_{i}}\right) \leq \min \left\{b(t), t \in\left[\frac{h}{2}, 1-h\right]\right\}, n_{i}>N_{0}$. Let $\overline{\mathbb{N}}_{0}=\left\{n_{0}>N_{0}\right.$: $n \in \mathbb{N}_{0}$ with $\left.\lim _{n_{i} \rightarrow+\infty} x_{n_{i}}\left(t_{n_{i}}\right)=0\right\}$. Then we have two cases.

Case 1. There exist $n_{k} \in \overline{\mathbb{N}}_{0}$ and $t_{n_{k}}^{*} \in\left[\frac{h}{2}, h\right]$ such that $x_{n_{k}}\left(t_{n_{k}}^{*}\right) \geq x_{n_{k}}\left(t_{n_{k}}\right)$. By the same argument in Lemma 4.2, we can get $t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime} \in\left[\frac{h}{2}, 1\right], t_{n_{k}}^{\prime}<t_{n_{k}}^{\prime \prime}$ such that

$$
\begin{align*}
& x_{n_{k}}(t) \leq \min \left\{b(t), t \in\left[\frac{h}{2}, 1\right]\right\}, \quad t \in\left[t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime}\right], \\
& x_{n_{k}}(t) \leq x_{n_{k}}\left(t_{n_{k}}^{\prime}\right), \quad x_{n_{k}}(t) \leq x_{n_{k}}\left(t_{n_{k}}^{\prime \prime}\right), \quad t \in\left(t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime}\right), \tag{4.12}
\end{align*}
$$

and

$$
\begin{equation*}
x_{n_{k}}^{\prime \prime}(t)=-q(t) f\left(t, x_{n_{k}}(t)\right)<0, \quad t \in\left(t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime}\right) . \tag{4.13}
\end{equation*}
$$

The inequality (4.13) shows that $x_{n_{k}}(t)$ is concave down in $\left[t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime}\right]$, which contradicts equation (4.12).

Case 2. $x_{n_{i}}(t)<x_{n_{i}}\left(t_{n_{i}}\right), t \in\left[\frac{h}{2}, h\right]$ for any $n_{i} \in \overline{\mathbb{N}}_{0}$. And so we have

$$
\begin{equation*}
\lim _{n_{i} \rightarrow+\infty} x_{n_{i}}(t)=0, \quad t \in\left[\frac{h}{2}, h\right] . \tag{4.14}
\end{equation*}
$$

On the other hand, for any $t \in\left[\frac{h}{2}, h\right]$,

$$
\begin{aligned}
x_{n_{i}}(t)= & \frac{2}{h} \int_{\frac{h}{2}}^{t}\left(s-\frac{h}{2}\right)(h-t) q(s) f\left(s, x_{n_{i}}(s)\right) d s \\
& +\frac{2}{h} \int_{t}^{h}\left(t-\frac{h}{2}\right)(h-s) q(s) f\left(s, x_{n_{i}}(s)\right) d s+x_{n_{i}}\left(\frac{h}{2}\right)+x_{n_{i}}(h) \\
\geq & \frac{2}{h}\left[\int_{\frac{h}{2}}^{t}\left(s-\frac{h}{2}\right)(h-t) a(s) d s+\int_{t}^{h}\left(t-\frac{h}{2}\right)(h-s) a(s) d s\right]>0,
\end{aligned}
$$

which contradicts equation (4.14). Hence, $m_{h}>0$. The proof is complete.

Theorem 4.1 If $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)$ hold, then BVP (1.1)-(1.2) has at least one positive solution.

Proof For any natural number $n \in \mathbb{N}$ (defined in Lemma 4.2), it follows from Lemma 4.2 that there exist $x_{n} \in C_{n}, b_{n} \leq x_{n}(t) \leq R$ for all $t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ satisfying (4.11). Now we divide the proof into three steps.

Step 1. There exists a convergent subsequence of $\left\{x_{n}\right\}$ in (0,1). For a natural number $k \geq n_{0}$ in Lemma 4.2, it follows from Lemma 4.3 that $0<m_{\frac{1}{k}} \leq x_{n}(t) \leq R, t \in\left[\frac{1}{k}, 1-\frac{1}{k}\right]$ for any natural numbers $n \in N$; i.e., $\left\{x_{n}\right\}$ is uniformly bounded in $\left[\frac{1}{k}, 1-\frac{1}{k}\right]$. Since x_{n} also satisfies

$$
\begin{aligned}
x_{n}(t)= & \frac{1}{1-\frac{2}{k}} \int_{\frac{1}{k}}^{t}\left(s-\frac{1}{k}\right)\left(1-\frac{1}{k}-t\right) q(s) f\left(s, x_{n}(s)\right) d s \\
& +\frac{1}{1-\frac{2}{k}} \int_{t}^{1-\frac{1}{k}}\left(t-\frac{1}{k}\right)\left(1-\frac{1}{k}-s\right) q(s) f\left(s, x_{n}(s)\right) d s+x_{n}\left(\frac{1}{k}\right)+x_{n}\left(1-\frac{1}{k}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
x_{n}^{\prime}(t)= & -\frac{1}{1-\frac{2}{k}} \int_{\frac{1}{k}}^{t}\left(s-\frac{1}{k}\right) q(s) f\left(s, x_{n}(s)\right) d s \\
& +\frac{1}{1-\frac{2}{k}} \int_{t}^{1-\frac{1}{k}}\left(1-\frac{1}{k}-s\right) q(s) f\left(s, x_{n}(s)\right) d s .
\end{aligned}
$$

Obviously

$$
\begin{equation*}
\left|x_{n}^{\prime}(t)\right| \leq 2\left(1-\frac{2}{k}\right) \max \left\{q(t)\left|f\left(t, x_{n}(t)\right)\right|:(t, x) \in\left[\frac{1}{k}, 1-\frac{1}{k}\right] \times\left[m_{\frac{1}{k}}, R\right]\right\}, \tag{4.15}
\end{equation*}
$$

for $t \in\left[\frac{1}{k}, 1-\frac{1}{k}\right]$. It follows from inequality (4.15) that $\left\{x_{n}\right\}$ is equicontinuous in $\left[\frac{1}{k}, 1-\frac{1}{k}\right]$. The Ascoli-Arzela theorem guarantees that there exists a subsequence of $\left\{x_{n}(t)\right\}$ which converges uniformly on $\left[\frac{1}{k}, 1-\frac{1}{k}\right]$. Then, for $k=n_{0}$, we choose a convergent subsequence of $\left\{x_{n}\right\}$ on $\left[\frac{1}{n_{0}}, 1-\frac{1}{n_{0}}\right]$,

$$
x_{n_{1}\left(n_{0}\right)}(t), x_{n_{2}\left(n_{0}\right)}(t), x_{n_{3}\left(n_{0}\right)}(t), \ldots, x_{n_{k}\left(n_{0}\right)}(t), \ldots ;
$$

for $k=n_{0}+1$, we choose a convergent subsequence of $\left\{x_{n_{k}\left(n_{0}\right)}\right\}$ on $\left[\frac{1}{n_{0}+1}, 1-\frac{1}{n_{0}+1}\right]$,

$$
x_{n_{1}\left(n_{0}+1\right)}(t), x_{n_{2}\left(n_{0}+1\right)}(t), x_{n_{3}\left(n_{0}+1\right)}(t), \ldots, x_{n_{k}\left(n_{0}+1\right)}(t), \ldots ;
$$

for $k=n_{0}+2$, we choose a convergent subsequence of $\left\{x_{n_{k}\left(n_{0}+1\right)}\right\}$ on $\left[\frac{1}{n_{0}+2}, 1-\frac{1}{n_{0}+2}\right]$,

$$
\begin{aligned}
& x_{n_{1}\left(n_{0}+2\right)}(t), x_{n_{2}\left(n_{0}+2\right)}(t), x_{n_{3}\left(n_{0}+2\right)}(t), \ldots, x_{n_{k}\left(n_{0}+2\right)}(t), \ldots ; \\
& \ldots, \ldots, \ldots, \ldots ;
\end{aligned}
$$

for $k=n_{0}+j$, we choose a convergent subsequence of $\left\{x_{n_{k}\left(n_{0}+j-1\right)}\right\}$ on $\left[\frac{1}{n_{0}+j}, 1-\frac{1}{n_{0}+j}\right]$,

```
\(x_{n_{1}\left(n_{0}+j\right)}(t), x_{n_{2}\left(n_{0}+j\right)}(t), x_{n_{3}\left(n_{0}+j\right)}(t), \ldots, x_{n_{k}\left(n_{0}+j\right)}(t), \ldots ;\)
```

\qquad

We may choose the diagonal sequence $\left\{x_{n_{k+1}\left(n_{0}+k\right)}(t)\right\}$ which converges everywhere in $(0,1)$ and it is easy to verify that $\left\{x_{n_{k+1}\left(n_{0}+k\right)}(t)\right\}$ converges uniformly on any interval $[c, d] \subseteq$ $(0,1)$. Without loss of generality, let $\left\{x_{n_{k+1}\left(n_{0}+k\right)}(t)\right\}$ be $\left\{x_{n}(t)\right\}$ in the rest. Putting $x(t)=$ $\lim _{n \rightarrow+\infty} x_{n}(t), t \in(0,1)$, we have $x(t)$ continuous in $(0,1)$ and $x(t) \geq m_{h}>0, t \in[h, 1-h]$ for any $h \in\left(0, \frac{1}{2}\right)$ by Lemma 4.3.

Step 2. $x(t)$ satisfies equation (1.1). Fixed $t \in(0,1)$, we may choose $h \in\left(0, \frac{1}{2}\right)$ such that $t \in(h, 1-h)$ and

$$
\begin{aligned}
x_{n}(t)= & \frac{1}{1-2 h} \int_{h}^{t}(s-h)(1-h-t) q(s) f\left(s, x_{n}(s)\right) d s \\
& +\frac{1}{1-2 h} \int_{t}^{1-h}(t-h)(1-h-s) q(s) f\left(s, x_{n}(s)\right) d s+x_{n}(h)+x_{n}(1-h) .
\end{aligned}
$$

Letting $n \rightarrow+\infty$ in above equation, we have

$$
\begin{align*}
x(t)= & \frac{1}{1-2 h} \int_{h}^{t}(s-h)(1-h-t) q(s) f(s, x(s)) d s \\
& +\frac{1}{1-2 h} \int_{t}^{1-h}(t-h)(1-h-s) q(s) f(s, x(s)) d s+x(h)+x(1-h) . \tag{4.16}
\end{align*}
$$

Differentiating equation (4.16), we get the desired result.
Step 3. $x(t)$ satisfies equation (1.2). Let

$$
t_{n}=\sup \left\{t: x_{n}(t)=\left\|x_{n}\right\|, x_{n}^{\prime}(t)=0, t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]\right\}
$$

and

$$
t_{n}^{\prime}=\inf \left\{t: x_{n}(t)=\left\|x_{n}\right\|, x_{n}^{\prime}(t)=0, t \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]\right\},
$$

where $\left\|x_{n}\right\|=\max _{\frac{1}{n} \leq t \leq 1-\frac{1}{n}} x_{n}(t) \leq R$. Then

$$
t_{n}, t_{n}^{\prime} \in\left[\frac{1}{n}, 1-\frac{1}{n}\right], \quad x_{n}\left(t_{n}\right)=x_{n}\left(t_{n}^{\prime}\right)=\left\|x_{n}\right\|, \quad x_{n}^{\prime}\left(t_{n}\right)=x_{n}^{\prime}\left(t_{n}^{\prime}\right)=0
$$

Using $x_{n}(t), 1, t_{n}$ in place of $y(t), \lambda$ and t^{*} in Lemma 4.2, from equation (4.9); we have

$$
\int_{b_{n}}^{\left\|x_{n}\right\|} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{n}}^{1-\frac{1}{n}} \int_{0}^{t} q(s) d s d t
$$

and using $x_{n}(t), 1, t_{n}^{\prime}$ in place of $y(t), \lambda$ and t_{*} in Lemma 4.2, from equation (4.10), we obtain easily

$$
\int_{x_{n}\left(\frac{1}{n}\right)+b_{n}}^{\left\|x_{n}\right\|} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{\frac{1}{n}}^{t_{n}^{\prime}} \int_{0}^{t} q(s) d s d t .
$$

It follows from the above inequalities that $a=\inf \left\{t_{n}^{\prime}\right\}>0$ and $b=\sup \left\{t_{n}\right\}<1$.
(1) Fixing $z \in(b, 1)$, we get $b_{n}<x_{n}(z)<\left\|x_{n}\right\| \leq R$. From equation (4.9) of the proof in Lemma 4.2 , one easily has

$$
\int_{b_{n}}^{x_{n}(z)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{z}^{1-\frac{1}{n}} \int_{0}^{t} q(s) d s d t, \quad z \in(b, 1) .
$$

Letting $n \rightarrow+\infty$ in the above inequality and noticing $b_{n} \rightarrow 0$, we have

$$
\begin{equation*}
\int_{0}^{x(z)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{z}^{1} \int_{0}^{t} q(s) d s d t, \quad z \in(b, 1) . \tag{4.17}
\end{equation*}
$$

It follows from equation (4.17) that $x(1)=\lim _{z \rightarrow 1^{-}} x(z)=0$.
(2) Fixing $z \in(0, a)$, we get $x_{n}\left(\frac{1}{n}\right)+b_{n}<x_{n}(z)<\left\|x_{n}\right\| \leq R$. From equation (4.10) in the proof of Lemma 4.2, we easily get

$$
\begin{equation*}
\int_{x_{n}\left(\frac{1}{n}\right)+b_{n}}^{x_{n}(z)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{\frac{1}{n}}^{z} \int_{0}^{t} q(s) d s d t, \quad z \in(0, a) . \tag{4.18}
\end{equation*}
$$

Since $\lim _{n \rightarrow+\infty} x_{n}(t)=x(t)$ and $\left\|x_{n}\right\| \leq R$, the Lebesgue Dominated Convergent theorem guarantees that

$$
\lim _{n \rightarrow+\infty} \int_{\frac{1}{n}}^{1-\frac{1}{n}} x_{n}(t) d \alpha_{1}(t)=\int_{0}^{1} x(t) d \alpha_{1}(t), \quad \lim _{n \rightarrow+\infty} \int_{\frac{1}{n}}^{1-\frac{1}{n}} x_{n}(t) d \alpha_{2}(t)=\int_{0}^{1} x(t) d \alpha_{2}(t) .
$$

Since H is continuous, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} x_{n}\left(\frac{1}{n}\right)=\lim _{n \rightarrow+\infty}\left(1-\frac{2}{n}\right) H\left(\phi_{n}\left(x_{n}\right)\right)=H(\phi(x)) . \tag{4.19}
\end{equation*}
$$

Letting $n \rightarrow+\infty$ in equation (4.18) and noticing $b_{n} \rightarrow 0$ and equation (4.19), we have

$$
\begin{equation*}
\int_{H(\phi(x))}^{x(z)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{z} \int_{0}^{t} q(s) d s d t, \quad z \in(0, a) . \tag{4.20}
\end{equation*}
$$

It follows from equation (4.20) that $x(0)=\lim _{z \rightarrow 0+} x(z)=H(\phi(x))$. This complete the proof.

Example 4.1 Consider

$$
\begin{equation*}
y^{\prime \prime}(t)+\frac{1}{8}\left(\frac{1}{217} y^{2}(t)+\frac{1}{100}\left(\frac{1}{y^{2}(t)}-\frac{y^{3}(t)}{t^{10}}-\frac{3}{t^{4}}\right)\right)=0, \quad 0<t<1 \tag{4.21}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
y(0)=\frac{1}{100}\left|\int_{0}^{1} y(s) d \alpha_{1}(s)+\int_{0}^{1} y(s) d \alpha_{2}(s)\right|^{3}, \quad y(1)=0, \tag{4.22}
\end{equation*}
$$

where

$$
d \alpha_{1}(s)=-\frac{1}{10} \cos 4 \pi s d s, \quad d \alpha_{2}(s)=\frac{1}{9}\left(e^{s}-2\right) d s
$$

Then the BVP (4.21)-(4.22) has at least one positive solution.
Let $q(t)=\frac{1}{8}, f(t, y)=\frac{1}{217} y^{2}+\frac{1}{100}\left(\frac{1}{y^{2}}-\frac{y^{3}}{t^{10}}-\frac{3}{t^{4}}\right), G(y)=\frac{1}{217} y^{2}, F(y)=\frac{1}{100 y^{2}}, b(t)=\frac{1}{2} t^{2}, a(t)=$ $\frac{7}{8 t^{4}}$. Let $R=2$ and $H(y)=\frac{1}{100}|y|^{3}$. We have

$$
\begin{aligned}
& \int_{0}^{2} \frac{1}{F(y)} d y\left(1+\frac{G(2)}{F(2)}\right)^{-1}>\frac{200}{9}>\frac{1}{16}=\int_{0}^{1}(1-s) q(s) d s, \\
& \max _{y \in\left[0, c_{0} r\right]} H(r)=\frac{1}{100}\left(c_{0} r\right)^{3}<r, \quad \forall r \in(0,2],
\end{aligned}
$$

where $c_{0}=\int_{0}^{1}\left|d \alpha_{1}(s)\right|+\int_{0}^{1}\left|d \alpha_{2}(s)\right|<1$ and

$$
f(t, y) \geq a(t), \quad \forall 0<y \leq b(t), t \in(0,1) .
$$

Then $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)$ hold. Now Theorem 4.1 guarantees that the BVP (4.21)-(4.22) has at least one positive solution.

Competing interests

The author declares that he has no competing interests.

Author's contributions

The author finished the paper himself

Acknowledgements

The author thanks the referees for their suggestions and this research is supported by Young Award of Shandong Province (ZR2013AQ008).

Received: 16 April 2013 Accepted: 20 December 2013 Published: 07 Feb 2014

References

1. Boucherif, A: Second-order boundary value problems with integral boundary conditions. Nonlinear Anal. 70, 364-371 (2009)
2. Goodrich, CS: On nonlocal BVPs with nonlinear boundary conditions with asymptotically sublinear or superlinear growth. Math. Nachr. 285, 1404-1421 (2012)
3. Goodrich, CS: On nonlinear boundary conditions satisfying certain asymptotic behavior. Nonlinear Anal. 76, 58-67 (2013)
4. Infante, G: Nonlocal boundary value problems with two nonlinear boundary conditions. Commun. Appl. Anal. 12, 279-288 (2008)
5. Infante, G: Positive solutions of some nonlinear BVPs involving singularities and integral BCs. Discrete Contin. Dyn. Syst., Ser. S 1, 99-106 (2008)
6. Infante, G: Positive solutions of nonlocal boundary value problems with singularities. Discrete Contin. Dyn. Syst Supplement, 377-384 (2009)
7. Infante, G, Pietramala, P: A cantilever equation with nonlinear boundary conditions. Electron. J. Qual. Theory Differ. Equ. Special Edition I, 15, 1-14 (2009)
8. Jiang, J, Liu, L, Wu, Y: Positive solutions for second-order singular semipositone differential equations involving Stieltjes integral conditions. Abstr. Appl. Anal. 2012, Article ID 696283 (2012)
9. Kong, L: Second order singular boundary value problems with integral boundary conditions. Nonlinear Anal. 72(5), 2628-2638 (2010)
10. Pietramala, P: A note on a beam equation with nonlinear boundary conditions. Bound. Value Probl. 2011, Article ID 376782 (2011)
11. Webb, JRL: Existence of positive solutions for a thermostat model. Nonlinear Anal., Real World Appl. 13, 923-938 (2012)
12. Webb, JRL, Infante, G: Positive solutions of nonlocal boundary value problems involving integral conditions. NoDEA Nonlinear Differ. Equ. Appl. 15, 45-67 (2008)
13. Webb, JRL, Infante, G: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 74, 673-693 (2006)
14. Webb, JRL: Positive solutions of a boundary value problem with integral boundary conditions. Electron. J. Differ. Equ. 2011, 1-10 (2011)
15. Yang, G: Positive solutions of singular Dirichlet boundary value problems with sign-changing nonlinearities. Comput. Math. Appl. 51, 1463-1470 (2006)
16. Yang, Z: Existence and uniqueness of positive solutions for an integral boundary value problem. Nonlinear Anal. 69(11), 3910-3918 (2006)
17. Yang, Z: Existence of nontrivial solutions for a nonlinear Sturm-Liouville problem with integral boundary conditions Nonlinear Anal. 68, 216-225 (2008)
18. Agarwal, RP, Meehan, M, O'Regan, D: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (2001)
19. Agarwal, RP, O'Regan, D: Existence theory for single and multiple solutions to singular positone boundary value problems. J. Differ. Equ. 175, 393-414 (2001)
20. Agarwal, RP, O'Regan, D: A survey of recent results for initial and boundary value problems singular in the dependent variable. In: Handbook of Differential Equations: Ordinary Differential Equations, vol. 1, pp. 1-68 (2000)
21. Baxley, JV: A singular nonlinear boundary value problem: membrane response of a spherical cap. SIAM J. Appl. Math. 48, 497-505 (1988)
22. Bobisud, LE, Calvert, JE, Royalty, WD: Some existence results for singular boundary value problems. Differ. Integral Equ. 6, 553-571 (1993)
23. O'Regan, D: Existence Theory for Nonlinear Ordinary Differential Equations. Kluwer Academic, Dordrecht (1997)
24. Taliaferro, S: A nonlinear singular boundary value problem. Nonlinear Anal. 3, 897-904 (1979)
25. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)
26. Deimling, K: Nonlinear Functional Analysis. Springer, New York (1985)
10.1186/1687-2770-2014-38

Cite this article as: Yan: Positive solutions for the singular nonlocal boundary value problems involving nonlinear integral conditions. Boundary Value Problems 2014, 2014:38

