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Abstract
In this paper, we consider a nonlinear model describing crystal surface growth. For the
equation, the finite element method is presented and a nice error estimate is derived
in the L2 norm by means of a finite element biharmonic projection approximation.

1 Introduction
The finite element method is essentially a discretization method for the approximate so-
lution of partial differential equations. It has the natural advantage of keeping the physical
properties of the primitive problems. There are many papers that have already been pub-
lished to study the finite element method for a fourth-order nonlinear parabolic equation
(see [–]).
In this paper, we consider the finite element analysis for the following problem:

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t + γuxxxx – (|ux|ux – ux)x = , (x, t) ∈ (,π )× (,T),

ux(x, t) = uxxx(x, t) = , x = ,π ,

u(x, ) = u(x), in (,π ),

()

where γ is a positive constant.
Problem () arises in epitaxial growth of nanoscale thin films [, ], where u(x, t) de-

notes the height from the surface of the film in epitaxial growth. The term uxxxx de-
notes the capillarity-driven surface diffusion, uxx denotes diffusion due to evaporation-
condensation and |ux|ux corresponds to the upward hopping of atoms. During the past
years, many authors have paid much attention to problem (), for example [, –].
Here, we give the existence and uniqueness of a global solution for problem () (see[]).

Theorem . Suppose that H
E(,π ) = {u ∈ H(,π ) : ux() = ux(π ) = }, and u ∈

H
E(,π ) ∩ W ,(,π ), then there exists a unique global solution u(x, t) for problem (),

such that

u(x, t) ∈ C([,T];L(,π )) ∩ L∞(
[,T];H

E(,π )
) ∩ L∞(

[,T];W ,(,π )
)
.

The outline of this paper is as follows. In the next section, we establish a semi-discrete
approximation and derive its error bound. In Section , the full-discrete approximation

©2014 Liu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2014/1/46
mailto:zxp032@yeah.net
http://creativecommons.org/licenses/by/2.0


Liu et al. Boundary Value Problems 2014, 2014:46 Page 2 of 13
http://www.boundaryvalueproblems.com/content/2014/1/46

for problem () is studied. In the last section, some numerical experiments which confirm
our results are presented.
Throughout this paper, we denote the L, Lp, L∞,Hk norms in (, ) simply by ‖·‖, ‖·‖Lp ,

| · |∞, and ‖ · ‖k . Define the inner product of L space as (·, ·), we have the space

Lp(,T ;X) =
{
u(t) : ‖u‖Lp(X) =

(∫ T



∥∥u(t)∥∥p
X dt

) 
p
< ∞

}
, ≤ p ≤ ∞.

On the other hand, the letters C, C′ denote generic constants independent of the finite
element division size and not necessarily the same at different occurrences.

2 Semi-discrete approximation
Let Ih :  = x < x < · · · < xN = π be a finite element division for the interval I = [,π ],
hi = xi – xi–, h =maxhi. Let S(k)h be the piecewise polynomial spline space with the degree
k ≥ , and

S(k)h ⊂H
E(I) =

{
u ∈H(I) : ux() = ux(π ) = 

}
.

The weak formulation of problem () reads

⎧⎨
⎩(ut , v) + γ (Du,Dv) + (|Du|Du –Du,Dv) = , ∀v ∈ H

E(I),

u(x, ) = u(x),
()

where ut = ∂u
∂t , Du = ∂u

∂x . Based on (), we define the semi-discrete finite element approxi-
mation to problem (). Find uh(t) : (,T]→ S(k)h such that

⎧⎨
⎩(uh,t , vh) + γ (Duh,Dvh) + (|Duh|Duh –Duh,Dvh) = , ∀vh ∈ S(k)h ,

(uh() – u(), vh) = , ∀vh ∈ S(k)h .
()

It is clear that the conservation of mass for () holds as it does for the classical solution.
Setting vh =  ∈ S(k)h in (), we get

∫ π


uh(t,x)dx =

∫ π


uh(,x)dx, ≤ t ≤ T .

Theorem . Let uh() ∈H
E(I), then there exists a unique approximation solution uh(t) ∈

S(k)h for problem (), such that

∥∥uh(t)∥∥ ≤ C,  ≤ t ≤ T , ()

where C is a positive constant depending only on γ and ‖uh()‖, independent of h.

Proof The equation of problem () is an ordinary differential equation and according to
ODE theory, there exists a unique local solution to problem () in the interval [, tn). If
we have (), then according to the extension theorem, we can also obtain the existence of
unique global solution. So, we only need to prove ().
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Setting vh = uh in (), we derive



d
dt

∥∥uh(t)∥∥ + γ
∥∥Duh

∥∥ +
(|Duh|Duh,Duh)

= ‖Duh‖ = –
(
uh,Duh

) ≤ γ


∥∥Duh

∥∥ +

γ

‖uh‖.

Therefore

d
dt

∥∥uh(t)∥∥ + γ
∥∥Duh

∥∥ ≤ 
γ

‖uh‖. ()

Letting β = 
γ
, we have

d
dt

(
e–βt∥∥uh(t)∥∥) ≤ . ()

Integrating () with respect to the time t, we get

∥∥uh(t)∥∥ ≤ eβt∥∥uh()∥∥,  ≤ t ≤ T ,β =

γ
. ()

Setting vh = uh,t in (), we deduce that

‖uh,t‖ + γ
(
Duh,Duh,t

)
+

(|Duh|Duh –Duh,Duh,t
)
= . ()

Let

Fh(t) =
γ


∥∥Duh

∥∥ +



‖Duh‖L –


‖Duh‖.

Differentiating Fh(t) with respect to t, using (), we get

d
dt

Fh(t) = γ

∫
�

DuhDuh,t dx +
∫

�

|Duh|DuhDuh,t dx –
∫

�

DuhDuh,t dx

= –‖uh,t‖ ≤ .

Therefore Fh(t) ≤ Fh(), that is

γ


∥∥Duh

∥∥ +



‖Duh‖L +


∥∥Duh()∥∥

≤ γ


∥∥Duh()

∥∥ +



∥∥Duh()∥∥
L +



‖Duh‖

≤ γ


∥∥Duh()

∥∥ +



∥∥Duh()∥∥
L +

γ


∥∥Duh

∥∥ +

γ

‖uh‖

≤ γ


∥∥Duh()

∥∥ +



∥∥Duh()∥∥
L +

γ


∥∥Duh

∥∥ +

γ

eβT∥∥uh()∥∥. ()

Hence

∥∥Duh
∥∥ ≤ C. ()
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We also have

‖Duh‖ = –
(
uh,Duh

) ≤ 

‖uh‖ + 


∥∥Duh

∥∥. ()

By (), (), and (), we complete the proof of Theorem .. �

Remark . By the above argument, we can obtain a better result. Let C′
 = min{ γ

 ,

 },

C′
 =max{ γ

 ,

 ,


γ
eβT }. It then follows from () that

C′

(∥∥Duh

∥∥ + ‖Duh‖L
) ≤ C′


(∥∥Duh()

∥∥ +
∥∥Duh()∥∥

L +
∥∥uh()∥∥).

Furthermore, we have

∥∥uh(t)∥∥
 +

∥∥Duh(t)∥∥
L ≤ C

(∥∥uh()∥∥
 +

∥∥Duh()∥∥
L

)
,

where C is a positive constant dependent only on γ , independent of uh() and h.

In order to consider the error estimate, we first introduce a finite element approximation
projection for a steady-state problem. Let u, v ∈H

E(I), define a(u, v)≡ γ (Du,Dv)+ (u, v),
define the biharmonic projection Rh : u→ Rhu ∈ S(k)h such that

a(u – Rhu, vh) ≡ γ
(
D(u – Rhu),Dvh

)
+ (u – Rhu, vh) = , ∀vh ∈ S(k)h . ()

It then follows () that

‖u‖ ≤ ca(u,u), ∀u ∈H
E(I), ()

where c is a positive constant depends only on γ and μ. Hence, a(u, v) is a symmetrical
positive determined bilinear form, and there exists a unique solution uh ∈ S(k)h for problem
().
Based on the standard finite element method for a biharmonic equation (see []), we

have

‖u – Rhu‖ + h‖u – Rhu‖ + h‖u – Rhu‖ ≤ Chr+‖u‖r+,  ≤ r ≤ k. ()

Now, we consider the error estimate for the semi-discrete finite element solution. Let
u be the solution of (), and uh be the solution of (). Denote η(t) = u – Rhu and θ (t) =
Rhu – uh, then

u – uh = u – Rhu + Rhu – uh = η(t) + θ (t). ()

Combining () and () gives

(ut – uh,t , vh) + γ
(
Du –Duh,Dvh

)
+

(|Du|Du – |Duh|Duh,Dvh
)

– (Du –Duh,Dvh) = ,
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that is

(ηt + θt , vh) + γ
(
Dη +Dθ ,Dvh

)
+

(|Du|Du – |Duh|Duh,Dvh
)

– (Dη +Dθ ,Dvh) = . ()

It then follows from () and () that

(θt , vh) + γ
(
Dθ ,Dvh

)
= (η – ηt , vh) –

(|Du|Du – |Duh|Duh,Dvh
)
+ (Dθ ,Dvh). ()

Lemma . Let u be the solution of (), uh be the solution of (), u ∈ L∞(,T ;H(I)). Then
there exists a constant C = C(u,uh(),γ ) such that

–
(|Du|Du – |Duh|Duh,Dθ

) ≤ C
(‖θ‖ + ‖η‖) + γ


∥∥Dθ

∥∥.

Proof First of all, we give some estimates which will be used in this proof. It follows from
Theorem ., (), and () that

‖u – uh‖ ≤ ‖u‖ +C ≤ C, ()

and

‖η‖ = ‖u – Rhu‖ ≤ ‖u‖ +C‖u‖ ≤ C. ()

We notice that

|Du|Du – |Duh|Duh =
[
(Du) +DuDuh + (Duh)

]
(Du –Duh).

By Sobolev’s embedding theorem, we have H(I) ↪→W ,∞(I). Hence

|Du|∞ ≤ C′, |Duh|∞ ≤ C′, |Dθ |∞ ≤ C′‖θ‖.

Thus, using the method of integration by parts, we get

–
(|Du|Du – |Duh|Duh,Dθ

)
= –

([
(Du) +DuDuh + (Duh)

]
(Du –Duh),Dθ

)
=

([
(Du) +DuDuh + (Duh)

]
(θ + η),Dθ

)
+

(
θ + η,Dθ

[
DuDu +DuDuh +DuDuh + DuhDuh

])
≤ ‖θ + η‖∥∥Dθ

∥∥ + |Dθ |∞
× ‖θ + η‖(|Du|∞

∥∥Du
∥∥ + |Du|∞

∥∥Duh
∥∥ + |Duh|∞

∥∥Du
∥∥ + |Duh|∞

∥∥Duh
∥∥)

≤ ‖θ + η‖∥∥Dθ
∥∥ +C′‖θ‖‖θ + η‖

≤ C
(‖θ‖ + ‖η‖) + ε

∥∥Dθ
∥∥.

Then the proof of Lemma . is completed. �
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Remark . We use the integration by parts for the term –(|Du|Du– |Duh|Duh,Dθ ) in
the proof of Lemma .. Then a better convergency is obtained.

Theorem . Let u be the solution of (), uh be the solution of (), u() ∈ Hk+(I), ut ∈
L(,T ;Hk+(I)), and the initial value satisfies

∥∥u() – uh()
∥∥ ≤ Chk+

∥∥u()∥∥k+. ()

Then we have the following error estimate:

∥∥u(t) – uh(t)
∥∥ ≤ C′hk+

(∥∥u()∥∥
k+ +

∫ T



∥∥ut(τ )∥∥
k+ dτ

) 

,  ≤ t ≤ T ,

where the constant C′ = C′(u,uh(),γ ).

Proof By ()-() and Lemma ., we only need to estimate θ (t). Setting vh = θ in (),
using Cauchy’s inequality, we immediately conclude that



d
dt

‖θ‖ + γ
∥∥Dθ

∥∥

≤ (‖η‖ + ‖ηt‖
)‖θ‖ – (|Du|Du – |Duh|Duh,Dθ

)
+

∥∥Dθ
∥∥‖θ‖

≤ 

(‖η‖ + ‖ηt‖

) +C
(‖θ‖ + ‖η‖) + γ


∥∥Dθ

∥∥ +

γ

‖θ‖ + γ


∥∥Dθ

∥∥

≤
(
C +




)(‖η‖ + ‖ηt‖
) + γ


∥∥Dθ

∥∥ +
(
C +


γ

)
‖θ‖.

It then follows from the above inequality that

d
dt

‖θ‖ + γ
∥∥Dθ

∥∥ ≤ (C + )
(‖η‖ + ‖ηt‖

) +(
C +


γ

)
‖θ‖.

By Gronwall’s inequality, we deduce that

‖θ‖ ≤ C′
(∥∥θ ()

∥∥ +
∫ t



(∥∥η(τ )
∥∥ +

∥∥ηt(τ )
∥∥)dτ

)
.

Combing () and () (noticing that (Rhu)t = Rhut), and using the triangle inequality, we
complete the proof of Theorem .. �

Remark . In Theorem ., we give the L-norm error estimate for the semi-discrete
approximation. In fact, we want to obtain some better result for the error estimates. Our
best guess on the H-norm error estimate is

∥∥u(t) – uh(t)
∥∥
 ≤ C′hk–

(∥∥u()∥∥
k+ +

∫ T



∥∥ut(τ )∥∥
k+ dτ

) 

,  ≤ t ≤ T ,

where the constant C′ = C′(u,uh(),γ ). We will prove it in the next step.
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3 Full-discrete approximation
For any given positive integer M, let �t = T/M denote the size of the time discretization.
Denote Un = U(x, tn) for tn = n�t, n = , , . . . ,M. Introduce the forward Euler difference
formula,

ut(tn) =
un – un–

�t
+


�t

∫ tn

tn–
(τ – tn)utt(τ )dτ = δtun + εn, ()

where un = u(tn).
Now, we define the full-discrete finite element form to approximate problem (): Find

Un ∈ S(k)h (n = , , . . . ,M) such that

⎧⎪⎪⎨
⎪⎪⎩
(δtUn, vh) + γ (DUn,Dvh) – (DUn,Dvh) + ((DUn–)DUn,Dvh) = ,

∀vh ∈ S(k)h ,

(U – u(), vh) = , ∀vh ∈ S(k)h .

()

For the above form, ifUn– is known and�t sufficiently small, by solving a positive definite
system of linear equations which is equal to (), we can obtain Un. Let

un –Un = un – Rhun + Rhun –Un = ηn + θn, θn ∈ S(k)h .

Using () and (), Rhun satisfies

(
δtRhun, vh

)
+ γ

(
DRhun,Dvh

)
=

(
ηn – εn – δtη

n, vh
)
+

(
DRhun,Dvh

)
–

(∣∣Dun∣∣Dun,Dvh
)
. ()

Adding () and (), ∀vh ∈ S(k)h , we have

(
δtθ

n, vh
)
+ γ

(
Dθn,Dvh

)
=

(
ηn – εn – δtη

n, vh
)
+

(
Dθn,Dvh

)
–

(∣∣Dun∣∣Dun – ∣∣DUn–∣∣DUn,Dvh
)
.

()

Theorem . Let u be the solution of (), Un be the solution of (), u() ∈ Hk+(I), ut ∈
L(,T ;Hk+(I)), utt ∈ L(,T ;L(I)), �t/h ≤ c, and U ∈ S(k)h satisfies

∥∥u() –U∥∥
i ≤ Chk+–i

∥∥u()∥∥,

where i = , . Then if h is sufficiently small, there exists a constant C = C(u,γ ) which is
independent of h, �t, and n, such that

∥∥un –Un∥∥ ≤ C
(
�t + hk

)
, n = , , . . . ,M – . ()

Proof First of all, we give a posterior hypothesis: There exists a h; when  < h ≤ h, we
have

∥∥Dum –DUm∥∥∞ ≤ C, m = , , . . . ,n – . ()

We will prove the correctness of () in the end of this proof.
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Setting vh = θn in (), we derive

(
δtθ

n, θn) + γ
∥∥Dθn∥∥

≤ ∥∥ηn – εn – δtη
n∥∥∥∥θn∥∥ +

∥∥Dθn∥∥ –
∥∥∣∣Dun∣∣Dun – ∣∣DUn–∣∣DUn∥∥∥∥Dθn∥∥

≤ 

∥∥ηn – εn – δtη

n∥∥ +


∥∥θn∥∥ + 

∥∥Dθn∥∥

+



∥∥∣∣Dun∣∣Dun – ∣∣DUn–∣∣DUn∥∥

≤ 

∥∥ηn – εn – δtη

n∥∥ +
(


+

γ

)∥∥θn∥∥ +
γ


∥∥Dθn∥∥

+



∥∥∣∣Dun∣∣Dun – ∣∣DUn–∣∣DUn∥∥.

Hence

∥∥θn∥∥ + γ
∥∥Dθn∥∥

≤ ∥∥θn–∥∥ + �t
{


∥∥ηn – εn – δtη

n∥∥ +
(


+

γ

)∥∥θn∥∥

+



∥∥∣∣Dun∣∣Dun – ∣∣DUn–∣∣DUn∥∥
}
. ()

Using () and (), we get

∥∥ηn∥∥ ≤ Chk+
∥∥u(tn)∥∥k+,

∥∥εn
∥∥ ≤

∫ tn

tn–

∥∥utt(τ )∥∥dτ ≤ (�t)



(∫ tn

tn–

∥∥utt(τ )∥∥ dτ

) 

,

∥∥δtη
n∥∥ =

∥∥∥∥ 
�t

∫ tn

tn–
ηt(τ )dτ

∥∥∥∥ ≤ C


�t
hk+

∫ tn

tn–

∥∥ut(τ )∥∥k+ dτ

≤ C


(�t) 
hk+

(∫ tn

tn–

∥∥ut(τ )∥∥
k+ dτ

) 

.

In addition, we have

∥∥∣∣Dun∣∣Dun – ∣∣DUn–∣∣DUn∥∥
=

∥∥∣∣Dun∣∣Dun – ∣∣Dun–∣∣Dun + ∣∣Dun–∣∣Dun – ∣∣DUn–∣∣Dun
+

∣∣DUn–∣∣Dun – ∣∣DUn–∣∣DUn∥∥
≤ ∥∥∣∣Dun∣∣Dun – ∣∣Dun–∣∣Dun∥∥ +

∥∥∣∣Dun–∣∣Dun – ∣∣DUn–∣∣Dun∥∥
+

∥∥∣∣DUn–∣∣Dun – ∣∣DUn–∣∣DUn∥∥
≤ ∣∣Dun∣∣∞∣∣Dun +Dun–

∣∣∞∥∥Dun –Dun–
∥∥

+
∣∣Dun∣∣∞∣∣Dun– +DUn–∣∣∞∥∥Dun– –DUn–∥∥

+
∣∣DUn–∣∣∞∥∥Dun –DUn∥∥. ()
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By Theorem . and Sobolev’s embedding theorem, we have

∣∣Dun∣∣∞ ≤ C
∥∥un∥∥ ≤ C,∣∣Dun +Dun–
∣∣∞ ≤ C

(∣∣Dun∣∣∞ +
∣∣Dun–∣∣∞) ≤ C

(∥∥un∥∥
 +

∥∥un–∥∥


) ≤ C,
()

and

∣∣DUn–∣∣∞ ≤ ∣∣Dun– –DUn–∣∣∞ +
∣∣Dun–∣∣∞ ≤ C +

∣∣Dun–∣∣∞,∣∣Dun– +DUn–∣∣∞ ≤ ∣∣Dun– –DUn–∣∣∞ + 
∣∣Dun–∣∣∞ ≤ C +

∣∣Dun–∣∣∞.
()

We have used the posterior hypothesis in (). Adding ()-() gives

∥∥∣∣Dun∣∣Dun – ∣∣DUn–∣∣DUn∥∥
≤ C

(∥∥Dun –Dun–
∥∥ +

∥∥Dun– –DUn–∥∥ +
∥∥Dun –DUn∥∥)

≤ C
(∥∥Dun –Dun–

∥∥ +
∥∥Dθn– +Dηn–∥∥ +

∥∥Dθn +Dηn∥∥)
≤ C

(∫ tn

tn–

∥∥Dut(τ )∥∥dτ +
∥∥Dηn–∥∥ +

∥∥Dθn–∥∥ +
∥∥Dηn∥∥ +

∥∥Dθn∥∥)

≤ C
[
(�t)




(∫ tn

tn–

∥∥Dut(τ )∥∥ dτ

) 

+ hk

(∥∥u(tn)∥∥k+ +
∥∥u(tn–)∥∥k+

)

+
∥∥Dθn–∥∥ +

∥∥Dθn∥∥]
.

Taking the above estimates into (), we derive

∥∥θn∥∥ –
∥∥θn–∥∥ + γ

∥∥Dθn∥∥

≤ C�t
(∥∥Dθn∥∥ +

∥∥Dθn–∥∥ + hk
∥∥u(tn)∥∥

k+

)
+C

[
hk + (�t)

](∫ tn

tn–

(∥∥ut(τ )∥∥
k+ + ‖utt‖

)
dτ

)
.

Taking the sum of n, noticing that ‖Dθ‖ ≤ Chk‖u()‖, n�t = tn ≤ T , we obtain

∥∥θn∥∥ + γ

n∑
i=

∥∥Dθ i∥∥

≤ C�t

[∥∥Dθ∥∥ +
n∑
i=

∥∥Dθ i∥∥
]

+C
[
(�t) + hk

](∫ tn



(∥∥ut(τ )∥∥
k+ + ‖utt‖

)
dτ

)

≤ C�t

[∥∥Dθ∥∥ +



n∑
i=

(∥∥Dθ i∥∥ +
∥∥θ i∥∥)]

+C
[
(�t) + hk

](∫ tn



(∥∥ut(τ )∥∥
k+ + ‖utt‖

)
dτ

)
.
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Let �t be sufficiently small, which satisfies C
γ �t ≤  and C�t < 

 , and we deduce

∥∥θn∥∥ ≤ C�t
n–∑
i=

∥∥θ i∥∥ +C
[
(�t) + hk

]
.

Using the discrete Gronwall inequality, (), and the triangle inequality, we obtain ().
Now, in order to complete the proof of Theorem ., we only need to prove the pos-

terior hypothesis (). Use the inductive method. When m = , based on the initial ap-
proximation assumption and the finite element inverse inequality, letting h ≤ h and h
be sufficiently small, we obtain (). If we assume that () is correct for m = l – , based
on the above proof, we can easily see that the estimate () is correct for n = l, where C
is a constant independent of n, �t, and h (noticing that tn ≤ T ). Using the finite element
inverse inequality, the interpolation approximation properties, and (), we have

∥∥Dul –DUl∥∥∞ ≤ C
∥∥ul –Ul∥∥

 ≤ C
(∥∥ul – ulI

∥∥
 +

∥∥ulI –Ul∥∥


)
≤ C

(∥∥ul – ulI
∥∥
 + h–

∥∥ulI –Ul∥∥)
≤ C

[∥∥ul – ulI
∥∥
 + h–

(∥∥ulI – ul
∥∥ +

∥∥ul –Ul∥∥)]
≤ C

(
hk– + h–�t

) ≤ C,

where ui ∈ S()h is the Hermite type interpolation approximation of the function u. Hence,
() is correct for m = l. Then, using the inductive method, the correctness of () is
proved, and the proof of Theorem . is completed. �

Remark . In Theorem ., we give the L-norm error estimate for the full-discrete ap-
proximation. In fact, we want to obtain some better result on the error estimates. Our best
guess on the H-norm error estimate is

∥∥un –Un∥∥
 ≤ C

(
�t + hk–

)
, n = , , . . . ,M – .

We will prove it in the next step.

4 Numerical approximation
In this section, using the full-discrete form (), we approximate the solution of problem
(). Let u = cosx, γ = , T = , h = π

 , �t = 
 . We get the solution which evolves from

t =  to t =  (cf. Figure ).
In addition, we consider the change of error when the time t = .. Since there is no exact

solution to problem () to the best of our knowledge, we make a comparison between the
solution of () on coarse meshes and the fine mesh.
Choose �t = .,.,.,., ., respectively, to solve (). Set

umin
N (x, .) as the solution for �tmin = .. Denote

err(.,�t) =
(∫ 



[
ukN (x, .) – umin

N (x, .)
] dx) 


, k = , , , . ()

Then the error is shown in Table .
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Figure 1 The approximation solution of the full-discrete form.

Table 1 The error for difference time step at t = 0.5

�t err(0.5,�t) err(0.5,�t)
�t

err(0.5,�t)
(�t)2

0.1000 0.0253 0.2530 2.5300
0.0500 0.0117 0.2340 4.6800
0.0250 0.0045 0.1800 7.2000
0.0167 0.0020 0.1198 7.1736
0.0125 7.5745e–4 0.0606 4.848

In Table , it is easy to see that the third column err(.,�t)
�t is monotone decreasing along

with the time step’s waning and the fourth column err(.,�t)
(�t) is not monotone decreasing

along with the time step’s waning. Then the order of convergence for time is ofO(�t) and
O((�t)). It is easy to see that the result of the numerical analysis on time is better than
the theoretical result. The reason may be the existence of a nonlinear term or the limit of
the theoretical proof tool.
Now, we consider the error for the difference h at t = .. We choose h = ., .,

., ., respectively, to solve (). Set umin
N (x, .) as the solution for h = π

 , �t =


 , and use the discrete L norm to obtain the error err(.,h) for t = .. Then the error
is shown in Table .
In Table , it is easy to see that the fourth column err(.,h)

h is monotone decreasing along
with the space step’s waning. The fifth column err(.,h)

h is not monotone increasing along
with the space step’s waning, and it tends to a positive constant when the space subdivision
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Table 2 The error for difference h at t = 0.5

h err(0.5,h) err(0.5,h)
h

err(0.5,h)
h2

err(0.5,h)
h3

0.1571 2.6459e–7 1.6842e–6 1.0721e–5 6.8241e–5

0.1047 3.6393e–8 3.4759e–7 3.3199e–6 3.1709e–5

0.0785 1.8007e–8 2.2939e–7 2.9222e–6 3.7225e–5

0.0628 4.9313e–9 7.8524e–8 1.2504e–6 1.9911e–5

0.0524 9.5773e–10 1.8277e–8 3.4880e–7 6.6566e–6

Table 3 The error for the differences h and �t at t = 0.5

h �t err(0.5,h,�t) err(0.5,h,�t)
h3+�t

0.3927 0.1000 0.0525 0.3270
0.2614 0.0500 0.0266 0.3286
0.1963 0.0250 0.0125 0.3839
0.1571 0.0167 0.0062 0.3018
0.1257 0.0125 0.0026 0.1795

is small enough. Hence, we can find a positive constant C, such that

err(.,h)
h

≤ C,

which means the order of the error estimates is O(h).
On the other hand, we consider the error for difference h and �t at t = .. We choose

(h,�t) = (π
 ,


 ), (

π
 ,


 ), (

π
 ,


 ), (

π
 ,


 ), (

π
 ,


 ), respectively, to solve (), set u

min
N (x, .)

as the solution for h = π
 , �t = 

 , use the discrete L norm to obtain the error
err(.,h,�t) for t = ., which is shown in Table .
In Table , it is easy to see that the fourth column err(.,h,�t)

h+�t tends to a positive constant.
Hence, we can find a positive constant C, such that

err(.,h,�t)
h +�t

≤ C,

which means that the order of error estimates is of O(h +�t).
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