# RESEARCH

## **Open Access**

# Mountain pass lemma and new periodic solutions of the singular second order Hamiltonian system

Bingyu Li<sup>1</sup> and Fengying Li<sup>2\*</sup>

\*Correspondence: lify0308@163.com <sup>2</sup>School of Economic and Mathematics, Southwestern University of Finance and Economics, Chengdu, 611130, China Full list of author information is available at the end of the article

# Abstract

We generalize the classical Ambrosetti-Rabinowitz mountain pass lemma with the Palais-Smale condition for C<sup>1</sup> functional to some singular case with the Cerami-Palais-Smale condition and then we study the existence of new periodic solutions with a fixed period for the singular second-order Hamiltonian systems with a strong force potential. **MSC:** 34C15; 34C25; 58F

**Keywords:** Ambrosetti-Rabinowitz's mountain pass lemma; singular second-order Hamiltonian systems; periodic solutions; Cerami-Palais-Smale condition

## 1 Introduction

Many authors [1–19] studied the existence of periodic solutions  $t \mapsto x(t) \in \Omega$ , with a prescribed period, of the following second-order differential equations:

$$\ddot{x} = -V'(t, x), \tag{1.1}$$

where  $\Omega = \mathbb{R}^N - \{0\}$  ( $N \in \mathbb{N}, N \ge 2$ ) and  $V \in C^1(\mathbb{R} \times \Omega, \mathbb{R})$ ;  $V'(t, \cdot)$  denotes the gradient of the function  $V(t, \cdot)$  defined on  $\Omega$ .

In 1975, Gordon [10] firstly used variational methods to study periodic solutions of planar 2-body type problems, he assumed the condition nowadays called Gordon's strong force condition.

Condition (V<sub>1</sub>): There exists a neighborhood  $\mathcal{N}$  of 0 and a function  $U \in C^1(\Omega, \mathbb{R})$  such that:

- (i)  $\lim_{x\to 0} U(x) = -\infty$ ;
- (ii)  $-V(t,x) \ge |U'(x)|^2$  for every  $x \in \mathcal{N} \{0\}$  and  $t \in [0, T]$ .

Moreover,

(iii)  $\lim_{x\to 0} V(t,x) = -\infty$ .

In the 1980s and 1990s, Ambsosetti-Coti Zelati, Bahri-Rabinowitz, Greco *etc.* [1–9, 11–19] further studied 2-body type problems in  $\mathbb{R}^N$  ( $N \ge 2$ ).

Suppose that V(t, x) is *T*-periodic in *t*; as regards the behavior of V(t, x) at infinity, they suppose that one of the following conditions holds.

Condition (V<sub>2</sub>):  $\lim_{|x|\to\infty} V(t,x) = 0$ ,  $\lim_{|x|\to\infty} V'(t,x) = 0$  (uniformly for *t*) and V(t,x) < 0 for every  $t \in [0, T]$ ,  $x \in \Omega$ .

©2014 Li and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Condition (V<sub>3</sub>): There exist  $c_1, M_1, R_1, \nu > 0$  such that, for every  $t \in [0, T]$  and  $x \in \mathbb{R}^N$  with  $|x| \ge R_1$ :

(i) |V'(t,x)| ≤ M<sub>1</sub>;
(ii) V(t,x) ≥ c<sub>1</sub>|x|<sup>ν</sup>.
Condition (V<sub>4</sub>): There exist c<sub>1</sub>, R<sub>1</sub> > 0, θ > <sup>1</sup>/<sub>2</sub>, ν > 1 such that, for every t ∈ [0, T], |x| ≥ R<sub>1</sub>:
(i) θV'(t,x)x ≤ V(t,x);
(ii) V(t,x) ≥ c<sub>1</sub>|x|<sup>ν</sup>.
Setting K = {x ∈ Ω|V'(t,x) = 0 for every t ∈ [0, T]}, they got the following results.

**Theorem 1.1** (Greco [11]) If  $(V_1)$  and one of  $(V_2)$ - $(V_4)$  hold, and moreover  $K = \emptyset$ , then there is at least one non-constant *T*-periodic  $C^2$  solution.

**Theorem 1.2** (Bahri-Rabinowitz [3], Greco [11]) Suppose that  $\partial V/\partial t \equiv 0$ , so  $V(t,x) \equiv V(x)$ ; moreover suppose we have the following condition.

*Condition*  $(V_5)$ : *K* is compact (or empty).

Then, if  $(V_1)$  and one of  $(V_2)$ - $(V_4)$  hold, there exist infinitely many non-constant *T*-periodic  $C^2$  solutions.

In this paper, we prove the following new theorem.

**Theorem 1.3** Suppose  $V \in C^1(\mathbb{R} \times \Omega, \mathbb{R})$  satisfies the conditions:

- (V1) For the given T > 0, V(t + T, x) = V(t, x).
- (V2)  $\forall (t,x) \in \mathbb{R} \times \Omega, V(t + \frac{T}{2}, -x) = V(t,x).$
- (V3) There is a > 0,  $\alpha \ge 2$  such that for any given  $\epsilon > 0$  and

$$\forall t \in [0,T], \quad |x| \leq \left(\frac{T}{12}\right)^{\frac{1}{2}} [(b\alpha)^{\frac{1}{(\alpha+2)}} + \epsilon],$$

we have

$$-V(t,x)\geq rac{a}{|x|^{lpha}},$$

where

$$b = a(2\pi)^{\alpha} T^{1-\frac{\alpha}{2}}.$$

(V4) There exists M > 0 such that  $\forall (t, x) \in \mathbb{R} \times \Omega$ ,

 $3V(t,x) - V'(t,x)x \le M.$ 

(V5)  $V(t,x) \to +\infty$  as  $|x| \to +\infty$  uniformly for  $0 \le t \le T$ . Then the system (1.1) has at least a non-constant *T*-periodic solution.

**Corollary 1.1** Suppose  $\alpha \ge 2$ ,  $\beta \ge 3$ , a > 0, a' > 0,  $V \in C^1(\Omega, \mathbb{R})$  and

$$\begin{split} V(x) &= -a|x|^{-\alpha}, \quad 0 < |x| \le r_1 = \left(\frac{T}{12}\right)^{\frac{1}{2}} \left[ (b\alpha)^{\frac{1}{(\alpha+2)}} + \epsilon \right]; \\ V(x) &= a'|x|^{\beta}, \quad |x| \ge r_2 > r_1; \end{split}$$

then  $\forall T > 0$ , (1.1) has at least a *T*-periodic solution.

## 2 A few lemmas

Lemma 2.1 (Sobolev-Rellich-Kondrachov [20]) We have

$$H^1 = W^{1,2}(R/TZ, \mathbb{R}^N) \subset C(\mathbb{R}/TZ, \mathbb{R}^N)$$

and the embedding is compact.

**Lemma 2.2** (Eberlein-Shmulyan [20]) A Banach space X is reflexive if and only if any bounded sequence in X has a weakly convergent subsequence.

**Lemma 2.3** ([21]) (i) Let  $q \in W^{1,2}(R/ZT, R^N)$  and  $\int_0^T q(t) dt = 0$ , then we have Wirtinger's inequality:

$$\int_0^T \left| \dot{q}(t) \right|^2 dt \ge \left( \frac{2\pi}{T} \right)^2 \int_0^T \left| q(t) \right|^2 dt.$$

(ii) Let  $q \in W^{1,2}(\mathbb{R}/\mathbb{Z}T,\mathbb{R}^N)$  and  $\int_0^T q(t) dt = 0$ , then we have Sobolev's inequality:

$$\|q\|_{\infty}^{2} \leq \frac{T}{12} \int_{0}^{T} |\dot{q}(t)|^{2} dt.$$

(iii) Let  $\phi$  be a convex function on the real line;  $f : [a, b] \rightarrow R$  is a non-negative real-valued function which is Lebesgue-integrable, then

$$\phi\left(\int_a^b f(x)\,dx\right) \leq \frac{1}{b-a}\int_a^b \phi\left((b-a)f(x)\right)\,dx.$$

**Lemma 2.4** (Ekeland [8]) Let X be a Banach space; suppose that  $\Phi$  defined on X is Gateaux-differentiable and lower semi-continuous and bounded from below. Then there is a sequence  $\{x_n\}$  such that

$$\Phi(x_n) \to \inf \Phi,$$
  
$$(1 + ||x_n||) || \Phi'(x_n) || \to 0.$$

**Definition 2.1** (Palais and Smale [22]) Let *X* be a Banach space;  $f \in C^1(X, R)$ , if  $\{x_n\} \subset X$  s.t.

$$f(x_n) \to c, \qquad f'(x_n) \to 0,$$

and  $\{x_n\}$  has a strongly convergent subsequence; then we say that f satisfies the  $(PS)_c$  condition.

Cerami [23] presented a weaker compact condition than the above classical  $(PS)_c$  condition.

**Definition 2.2** ([8]) Let *X* be a Banach space,  $\Lambda \subset X$ , and suppose that  $\Phi$  is defined on  $\Lambda$  is Gateaux-differentiable, if the sequence  $\{x_n\}$  is such that

$$\Phi(x_n) \to c,$$
  
$$(1 + ||x_n||) || \Phi'(x_n) || \to 0,$$

then  $\{x_n\}$  has a strongly convergent subsequence in  $\Lambda$ .

Then we say that f satisfies the  $(CPS)_c$  condition.

We can give a weaker condition than the  $(CPS)_c$  condition.

**Definition 2.3** Let *X* be a Banach space,  $\Lambda \subset X$ , and suppose that  $\Phi$  defined on  $\Lambda$  is Gateaux-differentiable; if the sequence  $\{x_n\}$  is such that

$$\Phi(x_n) \to c,$$
  
$$(1 + ||x_n||) || \Phi'(x_n) || \to 0,$$

and  $\{x_n\}$  has a weakly convergent subsequence in  $\Lambda$ , then we say that f satisfies the  $(WCPS)_c$  condition.

**Lemma 2.5** (Ambrosetti-Rabinowitz [24], mountain pass lemma) Let X be a Banach space,  $\Lambda \subset X, f \in C^1(\Lambda, R)$ . We have

$$B_{\rho} = \{ x \in \Lambda | ||x|| \le \rho \},\$$
  
$$S_{\rho} = \partial B_{\rho} \cap X, \quad \rho > 0.$$

If there are two points  $e_1 \in B_\rho - S_\rho$ ,  $e_2 \in \Lambda - B_\rho$  such that

$$f|_{S_0} \ge \alpha > 0$$

and

$$f(e_1), f(e_2) \le 0,$$

then  $C = \inf_{\phi \in \Gamma} \sup_{t \in [0,1]} f(\phi(t)) \ge \alpha$ , where  $\Gamma = \{h(t) \in C^1([0,1], \Lambda), h(0) = e_1, h(1) = e_2\}$ . If *f* satisfies the (CPS)<sub>C</sub> condition on  $\Lambda \subset X$ , furthermore, if  $f(x_n) \to +\infty$  as  $x_n \to \partial \Lambda$ , then *C* is a critical value for *f*.

## 3 The proof of Theorem 1.3

Let

$$H^{1} = \left\{ q: R \to R^{n} | q \in L^{2}, \dot{q} \in L^{2}, q(t+T) = q(t) \right\},$$
$$\Lambda = \left\{ q \in H^{1}, q\left(t + \frac{T}{2}\right) = -q(t), q(t) \neq 0, \forall t \right\}.$$

**Lemma 3.1** ([2, 25]) If  $V \in C^1(\mathbb{R} \times \Omega, \mathbb{R})$  satisfies the conditions (V1)-(V2), let

$$f(q) = \frac{1}{2} \int_0^T |\dot{q}|^2 dt - \int_0^T V(t,q) dt, \quad q \in \Lambda,$$

then the critical point of f(q) on  $\Lambda$  is a *T*-periodic solution of (1.1).

**Lemma 3.2** If V satisfies (V3), (V4) in Theorem 1.1, then f satisfies the Cerami-Palais-Smale condition for any c > 0, that is, for any  $\{x_n\} \subset \Lambda$ :

$$f(x_n) \to c, \qquad (1 + ||x_n||)f'(x_n) \to 0,$$
 (3.1)

 $\{x_n\}$  has a strongly convergent subsequence and the limit is in  $\Lambda$ .

*Proof* By the condition (V3), it is well known [10] that  $f(x_n) \to +\infty$  as  $x_n \to \partial \Lambda$ . Since  $f(x_n) \to c$ , we know that for any given  $\epsilon > 0$ , there exists *N* such that when n > N, we have

$$\frac{1}{2} \int_0^T |\dot{x}_n|^2 dt - \int_0^T V(x_n) dt \le c + \epsilon.$$
(3.2)

By  $(1 + ||x_n||)f'(x_n) \to 0$ , we have

$$f'(x_n)x_n \to 0, \tag{3.3}$$

$$f'(x_n)x_n = 2f(x_n) + \int_0^T \left[ 2V(t,x_n) - V'(t,x_n)x_n \right] dt \to 0.$$
(3.4)

So by (V4) and (3.2) and (3.4), we have d > 0 such that when *n* large enough, we have

$$\int_0^T |\dot{x}_n|^2 dt \le d. \tag{3.5}$$

So  $\int_0^T |\dot{x}_n|^2 dt$  is bounded. Then  $\{x_n\}$  has a weakly convergence subsequence, and it is standard to further prove that this subsequence is strongly convergent in  $\Lambda$ .

Now we can prove our theorem.

In order to apply for Ambrosetti-Rabinowitz's mountain pass lemma, we notice that

$$\forall x \in \Lambda, \quad \int_0^T x(t) \, dt = 0,$$

so by (V3) and Wirtinger's inequality we have

$$f(x) = \frac{1}{2} \int_0^T |\dot{x}|^2 dt - \int_0^T V(t, x) dt$$
(3.6)

$$\geq \frac{1}{2} \int_0^T |\dot{x}|^2 dt + a \int_0^T |x|^{-\alpha} dt$$
(3.7)

$$\geq \frac{1}{2} \int_0^T |\dot{x}|^2 + a T^{1+\frac{\alpha}{2}} \left( \int_0^T |x|^2 \, dt \right)^{\frac{-\alpha}{2}} \tag{3.8}$$

$$\geq \frac{1}{2} \int_0^T |\dot{x}|^2 + aT^{1+\frac{\alpha}{2}} \left(\frac{T}{2\pi}\right)^{-\alpha} \left(\int_0^T |\dot{x}|^2 dt\right)^{-\frac{\alpha}{2}}$$
(3.9)

$$=\frac{1}{2}s^{2}+bs^{-\alpha}=\phi(s),$$
(3.10)

where

$$s = \left(\int_0^T |\dot{x}|^2 dt\right)^{1/2}, \qquad b = aT^{1+\frac{\alpha}{2}} \left(\frac{T}{2\pi}\right)^{-\alpha} = a(2\pi)^{\alpha} T^{1-\frac{\alpha}{2}}.$$
 (3.11)

It is easy to see that if  $s_0 = (b\alpha)^{\frac{1}{\alpha+2}}$ ,  $\phi$  attains its infimum which is a positive number.  $\forall \epsilon > 0$ , we can take  $\rho = s_0 + \epsilon$ , take  $e_1(t) \neq 0$ ,  $\|\dot{e_1}\| = s_0 < \rho$ . By Sobolev's inequality, we know that  $(\int_0^T |\dot{x}|^2 dt) \ge \frac{12}{T} \|x\|_{\infty}^2$ , so if  $\|x(t)\|_{\infty} \le (\frac{T}{12})^{\frac{1}{2}} [(b\alpha)^{\frac{1}{(\alpha+2)}} + \epsilon]$ , then the above proofs hold.

Let us choose  $e_2$  = constant value vector in  $\mathbb{R}^n$ ,  $\dot{e_2}$  = 0. Then by (V1) and (V5), we have

$$f(e_2) = -\int_0^T V(t, e_2) \le -T \min_{0 \le t \le T} |V(t, e_2)| \to -\infty \quad \text{as } |e_2| = R \to +\infty.$$
(3.12)

So if  $|e_2| = R$  is large enough, we have

 $f|_{e_2} \leq 0.$ 

By Lemmas 2.5 and 3.2, f has a critical value C > 0, and the corresponding critical point is a T-periodic solution of the system (1.1). Furthermore, we claim that the critical point is non-constant; in fact, if otherwise, by the anti-T/2 periodic property, we know that the critical point must be constant zero, which is impossible since  $f(0) = +\infty$ .

#### Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### Author details

<sup>1</sup>Department of Mathematics, Sichuan University, Chengdu, 610064, China. <sup>2</sup>School of Economic and Mathematics, Southwestern University of Finance and Economics, Chengdu, 611130, China.

#### Received: 2 February 2014 Accepted: 18 February 2014 Published: 27 Feb 2014

#### References

- Ambrosetti, A, Coti Zelati, V: Closed orbits of fixed energy for singular Hamiltonian systems. Arch. Ration. Mech. Anal. 112, 339-362 (1990)
- 2. Ambrosetti, A, Coti Zelati, V: Periodic Solutions for Singular Lagrangian Systems. Springer, Berlin (1993)
- 3. Bahri, A, Rabinowitz, PH: A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal. 82, 412-428 (1989)
- Benci, V, Giannoni, G: Periodic solutions of prescribed energy for a class of Hamiltonian system with singular potentials. J. Differ. Equ. 82, 60-70 (1989)
- Carminati, C, Sere, E, Tanaka, K: The fixed energy problem for a class of nonconvex singular Hamiltonian systems. J. Differ. Equ. 230, 362-377 (2006)
- 6. Chang, KC: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)
- Degiovanni, M, Giannoni, F: Dynamical systems with Newtonian type potentials. Ann. Sc. Norm. Super. Pisa 15, 467-494 (1988)
- 8. Ekeland, I: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)
- 9. Fadell, E, Husseini, S: A note on the category of free loop space. Proc. Am. Math. Soc. 102, 527-536 (1989)
- 10. Gordon, WB: Conservative dynamical systems involving strong forces. Trans. Am. Math. Soc. 204, 113-135 (1975)
- 11. Greco, C: Periodic solutions of a class of singular Hamiltonian systems. Nonlinear Anal. TMA 12, 259-269 (1988)
- Majer, P: Ljusternik-Schnirelmann theory with local Palais-Smale conditions and singular dynamical systems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8, 459-476 (1991)
- Pisani, L: Periodic solutions with prescribed energy for singular conservative systems involving strong forces. Nonlinear Anal. TMA 21, 167-179 (1993)
- Rabinowitz, PH: A note on periodic solutions of prescribed energy for singular Hamiltonian systems. J. Comput. Appl. Math. 52, 147-154 (1994)
- Tanaka, K: A prescribed energy problem for a singular Hamiltonian system with weak force. J. Funct. Anal. 113, 351-390 (1993)
- Tanaka, K: A prescribed energy problem for conservative singular Hamiltonian system. Arch. Ration. Mech. Anal. 128, 127-164 (1994)
- 17. Tanaka, K: Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds. Ann. Inst. Henri Poincaré, Anal. Non Linéaire **17**, 1-33 (2000)
- Terracini, S: Multiplicity of periodic solutions of prescribed energy problem for singular dynamical system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 9, 597-641 (1992)
- Zhang, SQ, Zhou, Q: Symmetric periodic noncollision solutions for N-body-type problems. Acta Math. Sin. New Ser. 11, 37-43 (1995)
- 20. Mawhin, J, Willem, M: Critical Point Theory and Applications. Springer, Berlin (1989)
- 21. Hardy, G, Littlewood, JE, Polya, G: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)
- 22. Palais, R, Smale, S: A generalized Morse theory. Bull. Am. Math. Soc. 70, 165-171 (1964)
- 23. Cerami, G: Un criterio di esistenza per i punti critici so variete illimitate. Rend. Accad. Sci. Lomb. 112, 332-336 (1978)

- 24. Ambrosetti, A, Rabinowitz, P: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-381 (1973)
- 25. Palais, R: The principle of symmetric criticality. Commun. Math. Phys. 69, 19-30 (1979)

## 10.1186/1687-2770-2014-49

Cite this article as: Li and Li: Mountain pass lemma and new periodic solutions of the singular second order Hamiltonian system. *Boundary Value Problems* 2014, 2014:49

# Submit your manuscript to a SpringerOpen<sup></sup><sup>⊗</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com