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Abstract
The wave equation with boundary source term and fractional boundary dissipation is
considered. The exponential growth for sufficiently large initial data is proved. To this
end some techniques based on Fourier transforms and some inequalities such as the
Hardy-Littlewood-Soblev inequality are used.
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1 Introduction
In this paperwe consider the unboundedness of the classical energy for the following prob-
lem:

utt = �u, x ∈ �, t > , ()

u = , x ∈ �, t > , ()

∂u
∂v

+ ∂α
t u = |u|m–u, x ∈ �, t > , ()

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �, ()

where � is a bounded domain in Rn with smooth boundary � such that � = �̄ ∩ �̄ = φ,
m >  is a constant. The initial data u(x) and u(x) are given function, ∂

∂v denotes the
outward normal derivative. The notation ∂α

t stands for the Caputo fractional derivative of
order α with respect to the time variable [, ]. It is defined as follows:

∂α
t ω(t) =


�( – α)

∫ t


(t – s)–αωt(s)ds,  < α < .

Let us mention here that the case α =  in ()-() corresponds to a boundary damping
and it has been extensively studied bymany authors (see, for instance, [–] and references
therein). It has been proved, in particular, that solutions exist globally in time when the
initial data are in a stable set and the solution blows up in finite time when the initial data
are in an unstable set.
The problem is motivated by some phenomena in viscoelasticity. Fractional differential

systems have proved to be useful in control processing for the last two decades. Recently
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the linear wave equation with fractionally damped structures has received much atten-
tion (see [, –]) and there has been a growing interest in investigating the solutions
and properties of these evolution equation, where the source term vanish. But few con-
tributions are concerned with the nonlinear or semi-linear wave equation with fraction-
ally damped structure. This may be partly attributed to the fact that we do not benefit
from a theoretical setting as convenient as the one provided by the semigroup theory [].
Liang et al. [] studied the boundary stabilization of a wave equation with fractional order
boundary controller by symbolic algebra and numerical similarity.Mbodje [] investigated
the asymptotic behavior of solutions of the wave equation with a boundary viscoelastic
damper of the fractional derivative type by semigroup theory. When the fractional order
damped and sources term are the terms of the wave equation, Kirane and Tatar [] and
Tatar [] proved that exponential growth and blow-up result for sufficient large initial
data.
The fractional boundary dissipation can also be regarded as a viscosity term and bound-

ary conditions of memory boundary terms. It is worthmentioning here that many authors
have considered memory boundary terms (see [–] and references therein). However,
in all these works the kernels appearing in their integral terms are all regular. In our case
the kernel is not only singular but also non-integral. In this paper, we prove that the clas-
sical energy grows up exponentially when time goes to infinity by means of Fourier trans-
forms and Hardy-Littlewood-Sobolev inequality. This technique has been used success-
fully by Kirane and Tatar [] and Tatar [] for the wave equation with fractional order
damping. We also pointed out a similar problem with a fractional derivative term on part
of its boundary which may blow up in finite time using the different method [–] and
our main idea follows from [].
The plan of the paper is as follows: in the next section we will prepare some materials

needed to prove our result. Section  is devoted to the proof of our main result.

2 Preliminaries
Throughout this paper, we denote by Hm(�), Lp(�) the usual Sobolev space, and

(u, v)(t) =
∫

�

u(x, t)v(x, t)dt, ‖u‖ = (u,u)(t), ‖u‖pp,� =
∫

�

∣∣u(x)∣∣p d�.

Let us define

E(t) = E
(
u(t)

)
=


‖ut‖ + 


‖∇u‖ – 

m + 
‖u‖m+

m+,� . ()

It is easily seen that

dE(t)
dt

= –


�( – α)

∫
�

ut
∫ t


(t – s)–αut(s)dsd�. ()

Observe that dE(t)
dt is of an undefined sign and then the decreasing of the energy is not

guaranteed. However, an integration of () with respect to time yields

E(t) – E() = –


�( – α)

∫ t



∫
�

ut(s)
∫ s


(s – z)–αut(z)dzdxds≤ . ()
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Hence E(t) is uniformly bounded by E(), this is

E(t)≤ E(), t ≥ .

Lemma . (Hardy-Littlewood-Sobolev inequality, [], p. in []) Let u ∈ Lp(R), p >
,  < λ <  and λ >  – 

p , then ( 
|x|λ ) ∗ u ∈ Lq(R) with 

q = λ + 
p – . Also the mapping from

u ∈ Lp(R) into ( 
|x|λ ) ∗ u ∈ Lq(R) is continuous.

Lemma . ([]) In the subspace

V =
{
v ∈ H(�), v =  on �

}

of the Sobolev space H(�), there exists a constant C >  such that

‖v‖ ≤ C‖∇v‖, v ∈ V .

Lemma . ([, ]) If we denote t–β

�(–β) by kβ (t), then we have

kr+η–(t) = (kr ∗ kη)(t),  < r,η < .

3 Exponential growth of the solution
Theorem . Let u(x, t) be a regular solution of ()-(). If the initial data E() is large
enough, m > , then the solution u(x, t) grows up exponentially in the Lm+(�)-norm.

Proof Let us define

G(t) = E(t) – δ(u,ut),

where  < δ <  is a small constant to be determined later. Multiplying () by ut and then
integrating over �, we get

d
dt

(
E(t) – δ(u,ut)

)
+


�( – α)

∫
�

ut(t)
∫ t


(t – s)–αut(s)dsd�

=
δ

�( – α)

∫
�

u
∫ t


(t – s)–αut(s)dsd� – δ‖ut‖ – δ‖u‖m+

m+,� + δ‖∇u‖. ()

For simplicity, we denote

I =


�( – α)

∫ T


u(s)

∫ s


(s – z)–αut(z)dsdz,

I =


�( – α)

∫ T


ut(s)

∫ s


(s – z)–αut(z)dsdz.

Then, using the definition of G(t) and integrating () over [, t] for t, we may write

G(t) –G() + I = δI – δ

∫ t


‖ut‖ ds – δ

∫ t


‖u‖m+

m+,� ds + δ

∫ t


‖∇u‖ ds. ()
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Next, we estimate, for a fixed t = T > ,

LTω(τ ) =

{
ω(τ ), τ ∈ [,T],
, τ ∈ R – [,T],

and

Lκβ (τ ) :=

{
κβ (τ ), τ > ,
, τ ≤ ,

where κβ (τ ) is as in Lemma .. Then we can easily see that

I =
∫ +∞

–∞
LTu(s)

∫ +∞

–∞
Lκα(s – z)LTut(z)dzds

=
∫ +∞

–∞
F(LTu)(σ )F(Lκα ∗ LTut)(σ )dσ , ()

wherewe have used the Parseval theorem [] and denoted by F(f ) the usual Fourier trans-
form of f . Then, using Lemma ., the Cauchy-Schwarz inequality, and the Young inequal-
ity, we obtain for ρ > 

I ≤
(∫ +∞

–∞

∣∣F(Lκα+

)F(LTu)

∣∣ dσ

) 

(∫ +∞

–∞

∣∣F(Lκα+

)F(LTut)

∣∣ dσ

) 


≤ ρ

∫ +∞

–∞

∣∣F(Lκα+

)F(LTut)

∣∣ dσ +


ρ

∫ +∞

–∞

∣∣F(Lκα+

)F(LTu)

∣∣ dσ . ()

For the last term in (), we have

I =
∫ +∞

–∞

∣∣F(Lκα+

)F(LTu)

∣∣ dσ ≤ 
cos( α–

 π )

∫ +∞

–∞
LTu(s)(Lκα ∗ LTu)(s)ds

≤ 
cos( α–

 π )

(∫ +∞

–∞
|LTu|m+ ds

) 
m+

(∫ +∞

–∞
(Lκα ∗ LTu)

m+
m (s)ds

) m
m+

; ()

here we have used theHölder inequality and the following inequality [, Theorem ..]:

∫ +∞

–∞

∣∣F(κβ )F(u)
∣∣ dσ ≤ 

cos((β – )π )

∫ +∞

–∞
u(s)(kβ– ∗ u)(s)ds.

Next we consider three cases.
() If m

m+ < α < , then the Lemma . with

q =
m

m + 
, λ = α, p = r =

m + 
m +  – α(m + )

> 

implies that

(∫ +∞

–∞
(Lκ(α+) ∗ LTu)

m+
m (s)ds

) m
m+ ≤ C

�( – α)

(∫ +∞

–∞
|LTu|r ds

) 
r
, ()

where C = C(m,α) depends onlym and α.
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Since r <  <m + , it is easily to see that

(∫ +∞

–∞
|LTu|r ds

) 
r
≤ T

m+–r
m+

(∫ T



∣∣u(s)∣∣m+ ds
) 

m+

= T
m+–r
m+

(∫ +∞

–∞
|LTu|m+(s)ds

) 
m+

. ()

Thus, from ()-(), we deduce that

I ≤ C

�( – α) cos( α–
 π )

T
m+–r
m+

(∫ +∞

–∞
|LTu|m+(s)ds

) 
m+

≤ 
m + 

C
m+




[
�( – α) cos

(
α – 


π

)]–m+


∫ +∞

–∞
|LTu|m+ ds +

m – 
m + 

T
m+–r
m+ . ()

Using the estimate () in (), we have

I ≤ ρ

∫ +∞

–∞

∣∣F(
Lκα+


(s – z)

)
F(LTut)

∣∣ dσ

+
M
ρ

∫ +∞

–∞
|LTu|m+ ds +

m – 
ρ(m + )

T
m+–r
m–

= ρ

∫ T


|κα+


∗ ut| ds + M

ρ

∫ T


um+ ds +

m – 
ρ(m + )

T
m+–r
m– , ()

whereM = 
(m+) [

�(–α)
C

cos( α+
 π )]–m+

 . Analogously,

I ≤
∫ +∞

–∞
LTut(s)

∫ +∞

–∞
Lκα(s – z)(LTut)(z)dzds

=
∫ +∞

–∞
F(LTut)(σ )F(Lκα ∗ LTut)(σ )dσ

≤
∫ +∞

–∞

∣∣F(Lκα+

)F(LTut)

∣∣ dσ =
∫ T


|κα+


∗ ut| dσ . ()

Hence, choosing ρ = M(m+)
m– and taking into account (), (), and (), we get

G(t) + [ – δρ]
∫

�

∫ T


|κα+


∗ ut| dsd�

≤ G() – δ

∫ T


‖ut‖ ds + δ

∫ T


‖∇u‖ ds

+
–(m + )
(m + )

δ

∫ T


‖u‖m+

m+,� ds +NTσ , ()

where N = δ(m–)|�|
M(m+) and σ = m+–r

m– , |�| is the measure of �.
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Choosing  < δ < 
ρ
, we may reduce the inequality () to

G(T) ≤ G() +
δ(m + )



∫ T


G(s)ds –

m + 


δ

∫ T


‖ut‖(s)ds

+
δ(m + )



∫ T


(u,ut)ds +

 –m


δ

∫ T


‖∇u‖(s)ds. ()

By using the Cauchy-Schwarz inequality and the Poincaré inequality, we obtain

G(t) ≤ G() +
δ(m + )



∫ T


G(s) +

δ



[
δ(m + )

ρ
–
(m + )



]∫ T


‖ut‖(s)ds

+
δ


[
δρC(m + ) –m + 

] ∫ T


‖∇u‖(s)ds +NTσ , ()

where C is the Poincaré constant.
Clearly, it is possible to choose

 < δ < min

{
,
(m + )ρ
m + 

,
m – 

ρC(m + )

}
. ()

Thus the third and the fourth terms on the right-hand side of () are also negative. Then

G(t) ≤ G() +
δ(m + )



∫ T


G(s)ds +NTσ .

We define �(t) = –G(t). Clearly

�(T)≥ �() +
δ(m + )



∫ T


�(s)ds –NTσ . ()

Furthermore, we deduce from () that

�(T) ≥ �()e
δ(m+)T

 – σNe
δ(m+)T



∫ T


sσ–e

δ(m+)s
 ds

≥
{
�() – σN

(
δ(m + )T



)–σ

�(σ)
}
e

δ(m+)T
 .

Since E() is large enough, we can choose the initial data u and u such that

�() – σN
(

δ(m + )


)–σ

�(σ) ≥ k > ,

then we get

�(T)≥ ke
δ(m+)T

 . ()

On the other hand, from the definition of �(t), the Cauchy-Schwarz inequality, and the
Poincaré inequality, we see that

�(T)≤ 
m + 

‖u‖m+
m+,� –

 – δ


‖ut‖ –  – δ


‖∇u‖.
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According to the choice of δ in (), we get

�(T)≤ (
/(m + )

)‖u‖m+
m+,� .

From the formulas () and () we conclude the exponential growth of the solution in
the Lm+(�) norm.
() For the case  < α < m

m+ , we note that

(Lκα ∗ LTu)(s) =


�( – α)

∫ s


(s – z)–αu(z)dz

≤ C|s|– α(m+)
m

(∫ s



∣∣u(z)∣∣m+ dz
) m

m+
,

where C = 
�(–α) ( –

α(m+)
m )– m

m+ with  – α(m+)
m >  (since  < α < m

m+ ). Taking this esti-
mate into account in () and using the Young inequality, we find

I ≤ C

cos( α–
 π )

(∫ T


|s|– (α+)(m+)

m ds
) m

m+
(∫ T


|u|m+ ds

) 
m+

≤ m – 
m + 

(
 –

(α + )(m + )
m

) –m
m–

T – (α+)(m+)
(m–)

+


m + 

(
C

cos( α–
 π )

)m+


∫ T


|u|m+ ds.

Using this estimate in () and proceeding as in part (), we may conclude.
() If α = m

m+ , we use the estimate

I ≤ 
cos( α–

 π )

(∫ +∞

–∞
|LTu| ds

) 

(∫ +∞

–∞
(Lκα+


∗ LTu)(s)ds

) 

.

In this case Lemma . is applicable with q = , λ =  – α
 , p = r = (m+)

m+ , we find

I ≤ C

�( – α) cos( α–
 π )

(∫ T


|u| ds

) 

(∫ T


|u|r ds

) 
r
.

Next, by the Hölder inequality and the Young inequality, we see that

I ≤ C

�( – α) cos( α–
 π )

T
m–r
m+

(∫ T


|u|m+ ds

) 
m+

≤ m – 
m + 

T
(m–r)
(m+) +


m + 

(
C

�( – α) cos( α–
 π )

)m+


∫ T


|u|m+ ds.

This leads to an estimation of (). Again the rest of the proof is similar to that in case ().
�
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