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1 Introduction
In this paper, we consider the existence of solutions for the prescribed variable exponent
mean curvature system

–
(
ϕ
(
t,u′))′ + f

(
t,u,u′) = , t ∈ (,T), t �= ti, ()

where u : [,T]→R
N , with the following impulsive conditions:

lim
t→t+i

u(t) – lim
t→t–i

u(t) = Ai

(
lim
t→t–i

u(t), lim
t→t–i

u′(t)
)
, i = , . . . ,k, ()

lim
t→t+i

ϕ
(
t,u′(t)

)
– lim

t→t–i
ϕ
(
t,u′(t)

)
= Bi

(
lim
t→t–i

u(t), lim
t→t–i

u′(t)
)
, i = , . . . ,k, ()

and one of the following boundary value conditions:

u() = u(T), and ϕ
(
,u′()

)
= ϕ

(
T ,u′(T)

)
, ()

u() = u(T) = , ()

u′() = u′(T) = , ()
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where

ϕ(t,x) =
|x|p(t)–x

( + |x|q(t)p(t)) 
q(t)

, ∀t ∈ [,T],x ∈ R
N ,

p,q ∈ C([,T],R+) are absolutely continuous; and p, q satisfy p(t) ≥ , q(t)≥ . –(ϕ(t,u′))′

is called the variable exponent mean curvature operator;  < t < t < · · · < tk < T ; Ai,Bi ∈
C(RN ×R

N ,RN ).
If p() = p(T) and q() = q(T), then ϕ(,u′()) = ϕ(T ,u′(T)) implies u′() = u′(T), and

() is the periodic boundary value condition. Thus we call () the periodic-like boundary
value condition.
The system ()-() is called a prescribed variable exponent mean curvature impulsive

system. It has three characteristics, i.e. impulsive, mean curvature and variable exponent.
Let us simply introduce the three characteristics.
The theory of impulsive differential equations describes processes which experience a

sudden change of their state at certain moments, such as mechanical systems with im-
pact, biological systems such as heart beats, blood flows, population dynamics, theoret-
ical physics, radiophysics, pharmacokinetics, mathematical economy, chemical technol-
ogy, electric technology,metallurgy, ecology, industrial robotics, biotechnology processes,
chemistry, engineering, control theory, medicine, and so on. There are many results on
the Laplacian impulsive differential equations boundary value problems (see [–]). The
results as regards p-Laplacian impulsive differential equations boundary value problems
are more difficult due to the nonlinearity of p-Laplacian (see [–]). Because of the im-
pulsive conditions and the non-continuity of solutions, this paper has more difficulties
than []. In many papers about the usual Laplacian impulsive problems, the authors use
the impulsive condition limt→t+i u

′(t) – limt→t–i u
′(t) = Bi(limt→t–i u(t), limt→t–i u

′(t)), but we
think that the condition () is better in this paper. Therefore, we should consider what
kind of impulsive condition is suitable for prescribed variable exponent mean curvature
problems, it is a difference between this paper with the usual Laplacian impulsive prob-
lems.
Simultaneously, system () is a kind ofmean curvature system. This kind of problems has

attractedmore andmore attentions recently (see [–]). In [], the authors generalized
the usual mean curvature systems to variable exponent mean curvature systems, and dis-
cuss the existence of solutions of () with periodic-like boundary value condition (without
impulsive conditions). In [], the authors dealt with the existence of solutions and non-
negative solutions of ()-() with initial boundary value condition. This paper deals with
the existence of solutions of ()-() with periodic-like boundary value condition,Neumann
boundary value condition, or Dirichlet boundary value condition, respectively. This paper
was motivated by [, ]. Similar to [, ], the proof of our main result is based upon
the Leray-Schauder degree, but this paper is more difficult than [, ].
System () is also a kind of variable exponent equations. The variable exponent equations

arise from the study of nonlinear elasticity, electrorheological fluids and image restoration,
etc. We refer readers to [–] for detailed application backgrounds. There are many
results on this kind of problems [–]. Many results show that problems with variable
exponent growth conditions aremore complex than those with constant exponent growth
conditions. For instance we have the following.
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(a) If� ⊂R
N is a bounded domain, the infimum λp(·) of the eigenvalue of p(x)-Laplacian

is zero in general, and the p(x)-Laplacian does not have the so-called first eigenfunction
(see []); but the fact that λp >  is very important in the study of p-Laplacian problems,
and the first eigenfunction of the p-Laplacian was used to construct subsolutions of a
p-Laplacian problem successfully (see []).
(b) For variable exponent function Lp(·)(RN ), the norm | · |p(·) is not invariant for the

translational coordinate transformation, i.e. under the usual Luxemburg norm | · |p(·), we
have |u(x)|p(·) �= |u(x + x)|p(·) in general (see []).
(c) In [], the author generalized the Picone identities for half-linear elliptic operators

with p(x)-Laplacians and applications to Sturmian comparison theory, but the formula is
different from the constant exponent case.
In this paper, we investigate the existence of solutions for the prescribed variable expo-

nent mean curvature impulsive differential system boundary value problems, the proof of
our main result is based upon the Leray-Schauder degree.
This paper is divided into four sections; in the second section, we will discuss the ex-

istence of solutions of variable exponent mean curvature impulsive system periodic-like
boundary value problems. In the third section, we will discuss the existence of solutions of
variable exponent mean curvature impulsive system Dirichlet boundary value problems.
Finally, in the fourth section, wewill discuss the existence of solutions of variable exponent
mean curvature impulsive system Neumann boundary value problems.

2 Periodic-like boundary value problems
In this section, we will discuss the existence of solutions of variable exponent mean cur-
vature impulsive system periodic-like boundary value problems, i.e. the existence of solu-
tions of ()-(). In order to do that, we give the following notations and basic assumptions:
For any v ∈ R

N , vj will denote the jth component of v; the inner product in R
N

will be denoted by 〈·, ·〉; | · | will denote the absolute value and the Euclidean norm
on R

N . Denote J = [,T], J ′ = [,T]\{t, t, . . . , tk+}, J = [t, t], Ji = (ti, ti+], i = , . . . ,k,
where t = , tk+ = T . Denote Joi the interior of Ji, i = , , . . . ,k. Let PC(J ,RN ) = {x :
J → R

N | x ∈ C(Ji,RN ), i = , , . . . ,k, and x(t+i ) exists for i = , . . . ,k}; PC(J ,RN ) = {x ∈
PC(J ,RN ) | x′ ∈ C(Joi ,RN ), limt→t+i u

′(t) and limt→t–i+ u
′(t) exist for i = , , . . . ,k}. For any

u(t) = (u(t), . . . ,uN (t)) ∈ PC(J ,RN ), we denote |ui| = sup{|ui(t)| | t ∈ J ′}. Obviously,
PC(J ,RN ) is a Banach space with the norm ‖u‖ = (

∑N
i= |ui|)


 , PC(J ,RN ) is a Banach

space with the norm ‖u‖ = ‖u‖ + ‖u′‖. In the following, PC(J ,RN ) and PC(J ,RN ) will
be simply denoted by PC and PC, respectively. Denote L = L(J ,RN ), and the norm in L

is ‖u‖L = [
∑N

i=(
∫ T
 |ui(r)|dr)]  .

Let N ≥ , the function f : J × R
N × R

N → R
N is assumed to be Caratheodory, and by

this we mean:
(i) for almost every t ∈ J the function f (t, ·, ·) is continuous;
(ii) for each (x, y) ∈R

N ×R
N the function f (·,x, y) is measurable on J ;

(iii) for each R >  there is a βR ∈ L(J ,R) such that, for almost every t ∈ J and every
(x, y) ∈ R

N ×R
N with |x| ≤ R, |y| ≤ R, one has |f (t,x, y)| ≤ βR(t).

We say a function u : J → R
N is a solution of () if u ∈ PC with ϕ(t,u′) absolutely con-

tinuous on Joi , i = , , . . . ,k, which satisfies () a.e. on J .
In fact, the above notations and basic assumptions will be used in throughout the paper.
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2.1 Preliminary
In this subsection, we will make some preparations.

Lemma . (see []) ϕ is a continuous function and satisfies the following.
(i) For any t ∈ J , ϕ(t, ·) is strictly monotone, i.e.

〈
ϕ(t,x) – ϕ(t,x),x – x

〉
> , for any x,x ∈R

N ,x �= x.

(ii) For any fixed t ∈ J , ϕ(t, ·) is a homeomorphism from R
N to

E =
{
x ∈R

N | |x| < 
}
.

For any t ∈ J , we denote by ϕ–(t, ·) the inverse operator of ϕ(t, ·), then

ϕ–(t,x) =
(
 – |x|q(t)) –

p(t)q(t) |x| 
p(t) –x, for x ∈ E\{},ϕ–(t, ) = .

Let us now consider the following simple problem:

(
ϕ
(
t,u′(t)

))′ = g(t), t ∈ (,T), t �= ti, ()

with the following impulsive boundary value conditions:

⎧
⎪⎨

⎪⎩

limt→t+i u(t) – limt→t–i u(ti) = ai, i = , . . . ,k,
limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t)) = bi, i = , . . . ,k,
u() = u(T), ϕ(,u′()) = ϕ(T ,u′(T)),

()

where ai,bi ∈R
N ,

∑k
i= |bi| < ; g ∈ L and satisfies

∫ T
 g(t)dt +

∑k
i= bi = .

Denote

Lm =
{
v ∈ L

∣∣
∣
∫ T


v(r)dr = 

}
.

Let h(t) = g(t) + 
T
∑k

i= bi, then h ∈ Lm. If u is a solution of () with (), by integrating ()
from  to t, we find that

ϕ
(
t,u′(t)

)
= ϕ

(
,u′()

)
+
∑

ti<t
bi +

∫ t



[

h(r) –

T

k∑

i=

bi

]

dr, ∀t ∈ J ′. ()

Denote ρ = ϕ(,u′()). Define operator F : L −→ PC as

F(g)(t) =
∫ t


g(t)dt, ∀t ∈ J ,∀g ∈ L.

From () and (ii) in Lemma ., we can see that

sup
t∈J

∣∣ϕ
(
t,u′(t)

)∣∣ = sup
t∈J

∣∣
∣∣
∣
ρ +

∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

)

(t)

∣∣
∣∣
∣
< .
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Denote

D̃b =

{

h ∈ Lm

∣
∣∣
∣ there exists ρ ∈R

N such that

sup
t∈J

∣∣
∣∣
∣
ρ +

∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

)

(t)

∣∣
∣∣
∣
< 

}

.

By (), we have

u(t) = u() +
∑

ti<t
ai + F

{

ϕ–

[

t,

(

ρ +
∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

))]}

(t), ∀t ∈ J ,

the boundary value conditions imply that

k∑

i=

ai +
∫ T


ϕ–

{

t,

[

ρ +
∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

)

(t)

]}

dt = .

Denote a = (a, . . . ,ak) ∈ R
kN , b = (b, . . . ,bk) ∈ R

kN . It is easy to see that ρ is dependent
on a, b and h. For fixed a,b ∈R

kN , h ∈ D̃b, we define

�(a,b,h)(ρ) =
k∑

i=

ai +
∫ T


ϕ–

{

t,

[

ρ +
∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

)

(t)

]}

dt.

Denote

Da,b =

{

h ∈ Lm

∣∣
∣∣ there exists ρ ∈ R

N such that

sup
t∈J

∣
∣∣
∣∣
ρ +

∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

)

(t)

∣
∣∣
∣∣
<  and �(a,b,h)(ρ) = 

}

.

If () with () has a solution in PC, we must have h = g(t) + 
T
∑k

i= bi ∈Da,b.
DenoteWm =R

kN × Lm with the norm

‖w‖Wm =
k∑

i=

|ai| +
k∑

i=

|bi| + ‖h‖L , ∀w = (a,b,h) ∈Wm,

thenWm is a Banach space.
Denote

C∗ =

N

min
t∈J

∣
∣∣
∣ϕ

–
(
t,


N

)∣
∣∣
∣, M =

{

(a, . . . ,ak) ∈ R
kN

∣
∣∣
∣

k∑

i=

|ai| < 

TC∗

}

, ()

M =

{

(b, . . . ,bk) ∈R
kN

∣∣∣
∣

k∑

i=

|bi| < 
N

}

. ()

Lemma . The function �w(·) has the following properties:

http://www.boundaryvalueproblems.com/content/2014/1/139


Yin et al. Boundary Value Problems 2014, 2014:139 Page 6 of 29
http://www.boundaryvalueproblems.com/content/2014/1/139

() For any fixed (a,b) ∈M ×M, ∀h ∈Da,b the equation

�w(ρ) = , where w = (a,b,h) ∈Wm,

has a unique solution ρ(w) ∈R
N .

() For any fixed a = (a, . . . ,ak) ∈ M, b = (b, . . . ,bk) ∈ M, Da,b contains the open ball
E(, 

 ) := {u ∈ Lm|‖u‖L < 
 }, and then one defines a mapping ρ : M × M ×

E(, 
 ) →R

N .
() The function ρ : M × M × E(, 

 ) → R
N , defined in (), is continuous and

bounded.
() For any fixed a = (a, . . . ,ak) ∈ M, b = (b, . . . ,bk) ∈ M, the set Da,b is open and un-

bounded in Lm.

Proof () From the definition of Da,b, for any fixed (a,b) ∈ M × M, ∀h ∈ Da,b, the
equation �w(ρ) =  has at least one solution. Since ϕ(t, ·) is strictly monotone, we can
see that ϕ–(t, ·) is strictly monotone. Thus, the equation �w(ρ) =  has a unique solution
ρ(w) ∈R

N .
() Let h ∈ E(, 

 ), then  ≤ ‖h‖L < 
 . Denote

g = h –

T

k∑

i=

bi, A =
{
x ∈R

N
∣∣
∣ |x| < 



}
.

Obviously, for any (a,b,h) ∈M×M×E(, 
 ), for any ρ ∈ A,�(a,b,h)(ρ) is well defined,

i.e.,

sup
t∈J

∣
∣∣
∣ρ +

∑

ti<t
bi + F(g)(t)

∣
∣∣
∣ < .

Observe that  ≤ |∑ti<t bi + F(g)(t)| < 
 and 

 < |ρ +
∑

ti<t bi + F(g)(t)| < 
 for any

(t,ρ) ∈ J × ∂A.
Since |ρ +

∑
ti<t bi + F(g)(t)| – |∑ti<t bi + F(g)(t)| > 

 for any (t,ρ) ∈ J × ∂A, we have

〈
�w(ρ),ρ

〉
=

〈 k∑

i=

ai,ρ

〉

+
∫ T



〈
ϕ–

{
t,
[
ρ +

∑

ti<t
bi + F(g)(t)

]}
,ρ +

∑

ti<t
bi + F(g)(t)

〉
dt

–
∫ T



〈
ϕ–

{
t,
[
ρ +

∑

ti<t
bi + F(g)(t)

]}
,
∑

ti<t
bi + F(g)(t)

〉
dt

≥
∫ T



(
 –

∣
∣∣∣ρ +

∑

ti<t
bi + F(g)(t)

∣
∣∣∣

q(t)) –
p(t)q(t)

×
∣∣
∣∣ρ +

∑

ti<t
bi + F(g)(t)

∣∣
∣∣


p(t) +

dt –



k∑

i=

|ai|

–
∫ T



(
 –

∣∣∣
∣ρ +

∑

ti<t
bi + F(g)(t)

∣∣∣
∣

q(t)) –
p(t)q(t)

http://www.boundaryvalueproblems.com/content/2014/1/139
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×
∣
∣∣∣ρ +

∑

ti<t
bi + F(g)(t)

∣
∣∣∣


p(t)

∣
∣∣∣
∑

ti<t
bi + F(g)(t)

∣
∣∣∣dt

=
∫ T



(
 –

∣∣
∣∣ρ +

∑

ti<t
bi + F(g)(t)

∣∣
∣∣

q(t)) –
p(t)q(t)

∣∣
∣∣ρ +

∑

ti<t
bi + F(g)(t)

∣∣
∣∣


p(t)

×
(∣∣∣
∣ρ +

∑

ti<t
bi + F(g)(t)

∣∣∣
∣ –

∣∣∣
∣
∑

ti<t
bi + F(g)(t)

∣∣∣
∣

)
dt –




k∑

i=

|ai|

≥ C∗
∫ T



(∣
∣∣
∣ρ +

∑

ti<t
bi + F(g)(t)

∣
∣∣
∣ –

∣
∣∣
∣
∑

ti<t
bi + F(g)(t)

∣
∣∣
∣

)
dt –




k∑

i=

|ai|

≥ 

TC∗ –




k∑

i=

|ai| > .

This means that 〈�w(ρ),ρ〉 >  for any ρ ∈ ∂A.
For any fixed (a,b,x) ∈M ×M × E(, 

 ), let us consider

	(ρ,λ) = λ�(a,b,x)(ρ) + ( – λ)ρ.

It is easy to see that 	(ρ,λ) =  has no solution on ∂A for any λ ∈ [, ]. According
to the homotopy invariance property of the Brouwer degree, we can see that �w(ρ) = 
possesses a solution in A. Thus E(, 

 ) ⊂ Da,b, and one then defines a mapping ρ :M ×
M × E(, 

 ) →R
N .

() For any (a,b,h) ∈M ×M × E(, 
 ), from the definition of Da,b, we have

sup
t∈J

∣
∣∣
∣∣
ρ +

∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

)

(t)

∣
∣∣
∣∣
< .

Since
∑

ti< bi + F(h – 
T
∑k

i= bi)() = , we have

|ρ| =
∣∣
∣∣
∣
ρ +

∑

ti<

bi + F

(

h –

T

k∑

i=

bi

)

()

∣∣
∣∣
∣
< .

Thus the mapping ρ is bounded.
Now, let us prove the continuity of ρ . Let wn = (an,bn,hn) ∈ M × M × E(, 

 ) is a
convergent sequence in M × M × E(, 

 ), and wn → w = (a,b,h) ∈ M × M ×
E(, 

 ) as n → +∞, where b = (b,, . . . ,bk,). Since {ρ(wn)} is a bounded sequence, it
contains a convergent subsequence {ρ(wnj )}.Wemay assume that ρ(wnj ) → ρ as j → +∞.
If �w (ρ) is well defined, i.e., supt∈J |ρ +

∑
ti<t bi, + F(h – 

T
∑k

i= bi,)(t)| < . Since
�wnj

(ρ(wnj )) = , letting j → +∞, we have �w (ρ) = . Combining with (), we get ρ =
ρ(w). This means that ρ is continuous.
It only remains to prove that �w (ρ) is well defined.
Denote by E∗ ⊂R

N an open ball which centered at ρ(w) such that�w (·) is well defined
on E∗. According to Lemma ., we have

〈
�w (ρ),ρ – ρ(w)

〉
=
〈
�w (ρ) –�w

(
ρ(w)

)
,ρ – ρ(w)

〉 ≥ , ∀ρ ∈ E∗,

http://www.boundaryvalueproblems.com/content/2014/1/139
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〈
�w (ρ),ρ – ρ(w)

〉
> , ∀ρ ∈ ∂E∗.

It is easy to see that there exists a neighborhood U ⊂ E(, 
 ) of h in Lm, U ⊂ M is

a neighborhood of a, U ⊂ M is a neighborhood of b, such that, for each (a,b, y) ∈
U ×U ×U , �(a,b,y)(·) is well defined on E∗. In addition, the mapping

(a,b, y) �−→ inf
ρ∈∂E∗

〈
�(a,b,y)(ρ),ρ – ρ(w)

〉

is easily seen to be continuous in U × U × U . Thus, there exists a neighborhood V ×
V ×V ⊂ U ×U ×U of w such that

〈
�(a,b,x)(ρ),ρ – ρ(w)

〉
> , ∀ρ ∈ ∂E∗,∀(a,b,x) ∈ V ×V ×V .

For any fixed (a,b,x) ∈ V ×V ×V , let us consider

	(ρ,λ) = λ�(a,b,x)(ρ) + ( – λ)
(
ρ – ρ(w)

)
.

Obviously, 	(ρ,λ) =  has no solution on ∂E∗ for any λ ∈ [, ].
For any (a,b,x) ∈ V × V × V , according to the homotopy invariance property of the

Brouwer degree, we conclude that the equation �(a,b,x)(ρ) =  has its (unique) solution
on E∗. Since wnj → w as j → +∞, we have wnj ∈ V × V × V when j is large enough,
and ρ(wnj ) ∈ E∗. Since ρ(wnj ) → ρ as j → +∞, ρ ∈ E∗. This means that �w (ρ) is well
defined.
() Let un(t) = n

NT sin nπ t
T · (, , . . . , ), then un ∈ Lm. Denote A = {x ∈ R

N | |x| < 
 }.

For any n ∈N+, ∀a ∈M, ∀b ∈M and ∀ρ ∈ A, we can see the following function is well
defined:

�n(ρ) =
k∑

i=

ai +
∫ T


ϕ–

{

t,

[

ρ +
∑

ti<t
bi + F

(

un –

T

k∑

i=

bi

)

(t)

]}

dt.

If |ρ| = 
 , then there exists some ρ j such that |ρ j| ≥ 

N . Without loss of generality, we
may assume that ρ j ≥ 

N . Since supt∈J |F(un)(t)| ≤ 
Nπ

and
∑k

i= |bi| < 
N , we have

∣∣
∣∣∣

∑

ti<t
bi + F

(

un –

T

k∑

i=

bi

)

(t)

∣∣
∣∣∣
<


N

+


Nπ
+


N

<

N

, ∀t ∈ J .

Denote zn(t) = ρ +
∑

ti<t bi + F(un – 
T
∑k

i= bi). Obviously, 
 < |zn(t)| < 

 , ∀t ∈ J .
Since ρ j ≥ 

N , the jth component zjn of zn satisfies z
j
n(t) > 

N , ∀t ∈ J . Notice that p(t) ≥ ,
then we can see that the jth component (ϕ–(t, zn(t)))j of ϕ–(t, zn(t)) satisfies

(
ϕ–(t, zn(t)

))j =
(
 –

∣
∣zn(t)

∣
∣q(t))

–
p(t)q(t)

∣
∣zn(t)

∣
∣


p(t) –zjn(t)

≥
(
 –

∣
∣∣∣

N

∣
∣∣∣

q(t)) –
p(t)q(t)

∣
∣∣∣

N

∣
∣∣∣


p(t) – 

N
≥ C∗.

Consider �(ρ,λ) = λ�n(ρ) + ( – λ)ρ . Since C∗ = 
N mint∈J ϕ–(t, 

N ) and
∑k

i= |ai| <

TC∗, we have �

j
n(ρ) > TC∗ –

∑k
i= |ai| > . Hence �

j
n(ρ) and ρ j have the same sign, then

http://www.boundaryvalueproblems.com/content/2014/1/139
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�(ρ,λ) has no solution on ∂A for any λ ∈ [, ]. Thus

dB
(
�(ρ, ),A, 

)
= dB

(
�(ρ, ),A, 

)
= .

Thus  = �(ρ, ) = �n(ρ) has a solution on A. Therefore {un} ⊂ Da,b, This means that
Da,b is unbounded.
Similar to the proof of (), for any w = (a,b,h) ∈ {(a,b)} × Da,b, there exists a neigh-

borhood V ⊆ U of h, and a neighborhood E∗ ⊂ R
N of ρ(w) such that �(a,b,x)(ρ) is well

defined for any (a,b,x) ∈ {(a,b)} ×V and ρ ∈ E∗, which satisfies the requirement that, for
any (a,b,x) ∈ {(a,b)}×V ,�(a,b,x)(ρ) =  has a solution ρ ∈ E∗. This means that the setDa,b

is open in Lm.
This completes the proof. �

We continue now with our argument previous to Lemma .. Let us define

P : PC → PC, u �−→ u(); Q : L → L, h �−→ 
T

∫ T


h(t)dt;

�b : L → L, h �−→ (I –Q)h –

T

k∑

i=

bi, for any fixed b ∈R
N .

We can split L as L = Lm + F, where F is the N-dimensional subspace of constant
mappings. The operatorQ is a continuous projection from L onto F. Let us consider the
subset D̂a,b of L which is given by

D̂a,b =Da,b +F,

and define the nonlinear operator K(a,b) : D̂a,b → PC, as

K(a,b)(h)(t) = F
{
ϕ–

[
t,
(

ρ +
∑

ti<t
bi + F(h)

)]}
(t), ∀t ∈ J .

We say U is a closed equi-integrable set in D̂a,b, if there exists β ∈ L, such that, for any
u ∈ U ,

∣
∣u(t)

∣
∣ ≤ β(t) a.e. on J .

Lemma . If (a,b) ∈M ×M, then the operator (K(a,b) ◦�b)(·) is continuous and sends
closed equi-integrable subsets of D̂a,b into relatively compact sets in PC.

Proof It is easy to check that (K(a,b) ◦ �b)(h)(·) ∈ PC, ∀h ∈ D̂a,b. Since

(K(a,b) ◦ �b)(h)′(t) = ϕ–
{
t,
[
ρ +

∑

ti<t
bi + F

(
�b(h)

)
]}

, ∀t ∈ J ,

it is easy to check that (K(a,b) ◦ �b)(·) is a continuous operator from D̂a,b to PC.

http://www.boundaryvalueproblems.com/content/2014/1/139
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Let now U be a closed equi-integrable set in D̂a,b, then there exists β ∈ L, such that, for
any u ∈U ,

∣∣u(t)
∣∣ ≤ β(t) a.e. on J .

We want to show that (K(a,b) ◦ �b)(U) ⊂ PC is a compact set.
Let {un} is a sequence in (K(a,b) ◦�b)(U), then there exists a sequence {hn} ∈ U such that

un = (K(a,b) ◦ �b)(hn). For any r, r ∈ J , we have

∣
∣F

(
�b(hn)

)
(r) – F

(
�b(hn)

)
(r)

∣
∣ ≤

∣∣
∣∣

∫ r

r
β(t)dt

∣∣
∣∣ + |r – r| T

(∫ T


β(t)dt +

∣∣
∣∣
∣

k∑

i=

bi

∣∣
∣∣
∣

)

.

Hence the sequence {F(�b(hn))} is uniformly bounded and equi-continuous. By the
Ascoli-Arzela theorem, there exists a subsequence of {F(�b(hn))} (which we rename
the same) is convergent in PC. According to the bounded continuity of the operator ρ ,
we can choose a subsequence of {ρ(a,b,�b(hn)) + F(�b(hn))} (which we still denote
{ρ(a,b,�b(hn)) + F(�b(hn))}) which is convergent in PC, then the sequence

ϕ
(
t, (K(a,b) ◦ �b)(hn)′(t)

)
= ρ +

∑

ti<t
bi + F

(
�b(hn)

)

is convergent according to the norm in PC, by which, combined with the continuous of
ϕ–, we can see

(K(a,b) ◦ �b)(hn)′(t) = ϕ–
[
t,
(

ρ +
∑

ti<t
bi + F

(
�b(hn)

))]
(t), ∀t ∈ J ,

is convergent according to the norm in PC.
Since

(K(a,b) ◦ �b)(hn)(t) = F
{
ϕ–

[
t,
(

ρ +
∑

ti<t
bi + F

(
�b(hn)

)
)]}

(t), ∀t ∈ J ,

according to the continuity of ϕ–, we can see (K(a,b) ◦ �b)(hn) is convergent in PC. Thus
we conclude that {un} is convergent in PC. This completes the proof. �

We denote by Nf (u) : PC → L the Nemytskii operator associated to f defined by

Nf (u)(t) = f
(
t,u(t),u′(t)

)
, a.e. on J . ()

Denote

�#(Nf )(u) = (I –Q)Nf (u) –

T

k∑

i=

Bi,

K(u) = F
{
ϕ–

[
t,
(

ρ +
∑

ti<t
Bi + F

(
�#(Nf )(u)

))]}
(t),

http://www.boundaryvalueproblems.com/content/2014/1/139
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and

�∗
u(ρ) =

k∑

i=

Ai +
∫ T


ϕ–

{
t,
[
ρ +

∑

ti<t
Bi +

∫ t


f
(
r,u,u′)dr

]}
dt,

where Ai = Ai(limt→t–i u(t), limt→t–i u
′(t)), Bi = Bi(limt→t–i u(t), limt→t–i u

′(t)), ρ is a solution
of �∗

u(ρ) = .
We assume

(H)
∑k

i= |Ai(x, y)| < 
TC∗ and

∑k
i= |Bi(x, y)| < 

N , ∀(x, y) ∈R
N .

Lemma . If (H) is satisfied, then u is a solution of ()-() if and only if u is a solution of
the following abstract operator equation:

u = Pu +
∑

ti<t
Ai +


T

k∑

i=

Bi +QNf (u) +K(u). ()

Proof (i) If u is a solution of ()-(), by integrating () from  to t, we find that

ϕ
(
t,u′(t)

)
= ρ +

∑

ti<t
Bi +

∫ t


f
(
t,u,u′)dt. ()

From (), we have


T

k∑

i=

Bi +

T

∫ T


f
(
t,u,u′)dt =


T

k∑

i=

Bi +QNf (u) = ,

thus �#(Nf )(u) =Nf (u).
From (), we have

u = Pu +
∑

ti<t
Ai +


T

k∑

i=

Bi +QNf (u) +K(u),

where ρ satisfies

k∑

i=

Ai + F
{
ϕ–

[
t,
(

ρ +
∑

ti<t
Bi + F

(
�#(Nf )(u)

))]}
(T) = .

Hence u is a solution of ().
(ii) If u is a solution of (), it is easy to see that () is satisfied. Let t = , we have

u() = Pu +

T

k∑

i=

Bi +QNf (u),

then


T

k∑

i=

Bi +QNf (u) = , ()

thus �#(Nf )(u) =Nf (u).

http://www.boundaryvalueproblems.com/content/2014/1/139
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By the definition of the mapping ρ , we have

k∑

i=

Ai + F
{
ϕ–

[
t,
(

ρ +
∑

ti<t
Bi + F

(
�#(Nf )(u)

)
)]}

(T) = ,

then u() = u(T). From () and (), we also have

ϕ
(
t,u′) = ρ +

∑

ti<t
Bi + F

(
�#(Nf )(u)

)
(t), t ∈ (,T), t �= ti,

(
ϕ
(
t,u′))′ = f

(
t,u,u′), t ∈ (,T), t �= ti.

()

From (), we find that () is satisfied. Since
∑k

i= Bi + F(�#(Nf )(u))(T) = , we have

ϕ
(
,u′()

)
= ϕ

(
T ,u′(T)

)
.

Hence u is a solution of ()-(). This completes the proof. �

2.2 Existence of solutions
In this subsection, we will apply the Leray-Schauder degree to deal with the existence of
solutions of ()-().

Theorem . If (H) is satisfied, � ⊂ PC is open bounded such that the following condi-
tions hold:

() For any u ∈ �, the mapping t → f (t,u,u′) belongs to {u ∈ L | ‖u‖L < 
 }.

() For each λ ∈ (, ), the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ(t,u′))′ = λf (t,u,u′), t ∈ (,T), t �= ti,
limt→t+i u(t) – limt→t–i u(t)

= λAi(limt→t–i u(t), limt→t–i u
′(t)), i = , . . . ,k,

limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t))
= λBi(limt→t–i u(t), limt→t–i u

′(t)), i = , . . . ,k,
u() = u(T), and ϕ(,u′()) = ϕ(T ,u′(T))

()

has no solution on ∂�.
() The equation

ω(l) :=

T

∫ T


f (t, l, )dt +


T

k∑

i=

Bi(l, ) =  ()

has no solution on ∂� ∩ F.
() The Brouwer degree dB[ω,� ∩ F, ] �= .

Then ()-() has a solution on �.

Proof Denote

Ai = Ai

(
lim
t→t–i

u(t), lim
t→t–i

u′(t)
)
, Bi = Bi

(
lim
t→t–i

u(t), lim
t→t–i

u′(t)
)
. ()

http://www.boundaryvalueproblems.com/content/2014/1/139


Yin et al. Boundary Value Problems 2014, 2014:139 Page 13 of 29
http://www.boundaryvalueproblems.com/content/2014/1/139

Let us consider the following impulsive equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ϕ(t,u′))′ = λNf (u) + ( – λ)[QNf (u) + 
T
∑k

i= Bi], t ∈ (,T), t �= ti,
limt→t+i u(t) – limt→t–i u(t) = λAi, i = , . . . ,k,
limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t)) = λBi, i = , . . . ,k,
u() = u(T), ϕ(,u′()) = ϕ(T ,u′(T)).

()

For any λ ∈ (, ], observe that, if u is a solution to () or u is a solution to (), we have
necessarily

QNf (u) +

T

k∑

i=

Bi = .

This means that () and () have the same solutions for λ ∈ (, ].
We denote N(·, ·) : PC × [, ]→ L defined by

N(u,λ) = λNf (u) + ( – λ)

[

QNf (u) +

T

k∑

i=

Bi

]

,

where Nf (u) is defined by (). Denote

�λ : PC → PC, u �−→ (I –Q)N(u,λ) –
λ

T

k∑

i=

Bi,

Kλ(u)(t) = F
{
ϕ–

[
t,
(

ρ + λ
∑

ti<t
Bi + F

(
�λ(u)

))]}
(t), ∀t ∈ J ,

where ρ = ρ(λ,u) is the solution of λ
∑k

i=Ai +Kλ(u) = .
Obviously

�λ(u) = (I –Q)λNf (u) –
λ

T

k∑

i=

Bi, and �(·) = .

From (), we can see that (I –Q)λNf (u) ∈ E(, 
 )⊂ Lm, ∀u ∈ �, ∀λ ∈ [, ]. Combining

(H) and Lemma ., we can see that there exists only one ρ = ρ(λ,u) ∈ F such that

sup
t∈J

∣∣
∣∣ρ + λ

∑

ti<t
Bi + F

(
�λ(u)

)
∣∣
∣∣ <  and λ

k∑

i=

Ai +Kλ(u) = , ∀λ ∈ [, ],∀u ∈ �.

Let

�f (u,λ) := Pu + λ
∑

ti<t
Ai + λ


T

k∑

i=

Bi +QN(u,λ) +Kλ(u)

= Pu + λ
∑

ti<t
Ai +


T

k∑

i=

Bi +QNf (u) +Kλ(u),
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then the fixed point of �f (u, ) is a solution for ()-(). Also problem () can be written
in the equivalent form

u = �f (u,λ). ()

Since f is Caratheodory, it is easy to see that N(·, ·) is continuous and sends bounded
sets into equi-integrable sets. According to Lemma ., we can conclude that �f is com-
pact continuous on � × [, ]. From Lemma ., we can see that the problem ()-() is
equivalent to u = �f (u, ). We assume that for λ = , () does not have a solution on ∂�,
otherwise we complete the proof. Now, from hypothesis (), it follows that () has no so-
lution for (u,λ) ∈ ∂�× (, ]. For λ = , () is equivalent to the following usual differential
equation boundary value problem:

{
–(ϕ(t,u′))′ =QNf (u) + 

T
∑k

i= Bi(limt→t–i u(t), limt→t–i u
′(t)), t ∈ (,T),

u() = u(T), and ϕ(,u′()) = ϕ(T ,u′(T)),

and if u is a solution to this problem, we must have

∫ T


f
(
t,u(t),u′(t)

)
dt +

k∑

i=

Bi

(
lim
t→t–i

u(t), lim
t→t–i

u′(t)
)
= . ()

When λ = , the problem is a usual differential equation boundary value problem.Hence
ϕ(t,u′(t)) ≡ c, where c ∈ F is a constant mapping. Since u() = u(T), for any i ∈ {, . . . ,N},
there exists ri ∈ (,T), such that (ui)′(ri) = , hence (ui)′ ≡ , and we have u ≡ l ∈ F.
Thus, by () we have

∫ T


f (r, l, )dr +

k∑

i=

Bi(l, ) = ,

which, together with hypothesis (), implies that u = l /∈ ∂�. Thus we have proved that
() has no solution (u,λ) on ∂� × [, ], and then we find that, for each λ ∈ [, ], the
Leray-Schauder degree dLS[I –�f (·,λ),�, ] is well defined. From the homotopy invariant
property of that degree, we have

dLS
[
I –�f (·, ),�, 

]
= dLS

[
I –�f (·, ),�, 

]
.

When λ = , we have �(·) = , and K(u) = , ∀u ∈ PC. Thus

�f (u, ) = Pu +

T

k∑

i=

Bi +QNf (u) +K(u) = Pu +

T

k∑

i=

Bi +QNf (u),

and then all the solutions of u –�f (u, ) =  belong to F. Thus

u –�f (u, ) = u – Pu –

T

k∑

i=

Bi –QNf (u) = –

T

k∑

i=

Bi –QNf (u), on � ∩ F.
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By the properties of the Leray-Schauder degree, we have

dLS
[
I –�f (·, ),�, 

]
= (–)NdB[ω,� ∩ F, ],

where the function ω is defined in () and dB denotes the Brouwer degree. Since, by hy-
pothesis (), this last degree is different from zero. Thus ()-() has a solution. This com-
pletes the proof. �

In the following, we will give an application of Theorem ..
Assume:

(H) f (t,u, v) = δg(t,u, v), where δ is a positive parameter, and

g(t,u, v) = τ (t)
(|u|q(t)–u +μ(t)|v|q(t)) + γ (t),

where q,q ∈ C(I,R), and  ≤ q(t) < q(t), ∀t ∈ J or  ≤ q(t) < q(t), ∀t ∈ J .
(H) μ = (μ, . . . ,μN ) ∈ C(J ,RN ), τ ∈ C(J ,R), and τ satisfies τ ≤ mint∈J |τ (t)| ≤

maxt∈J |τ (t)| ≤ τ, where τ and τ are positive constants.

Obviously, there exists a positive constant ε such that

C# := min
t∈J

(
σ

N

∣∣∣
∣
σ


ε

∣∣∣
∣

q(t)

– ‖μ‖|Nε|q(t)
)
> ,

where σ = T
T+ .

(H)
∑k

i= |Ai| ≤ σ
 ε,

∑k
i= |Bi| ≤ min{ 

TδτC#,mint∈I
| ε
T+ |p(t)

(+|Nε|q(t)p(t))


q(t)
}.

(H) Aj
i(x, y)yj ≥ , ∀x, y ∈R

N , i = , . . . ,k, j = , . . . ,N , and
∑k

i= Bi(l, ) = , ∀l ∈R
N .

(H) γ = (γ , . . . ,γ N ) ∈ C(J ,RN ) satisfies |γ i| < 
τC#, for any j = , . . . ,N .

Denote

�ε =
{
u ∈ PC ∣∣ max

≤j≤N

(∣∣uj
∣
∣
 +

∣
∣(uj

)′∣∣


)
< ε

}
.

Obviously, �ε is an open subset of PC.

Theorem . If (H)-(H) are satisfied, then problem ()-() has at least one solution on
�ε , when the positive parameter δ is small enough.

Proof We denote N(·, ·) : PC × [, ] → L defined by

N(u,λ) = λNf (u) + ( – λ)

[

QNf (u) +

T

k∑

i=

Bi

]

,

where Nf (u) is defined by ().
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Let us consider the following problem:

u = �f (u,λ) := Pu + λ
∑

ti<t
Ai + λ


T

k∑

i=

Bi +QN(u,λ) +Kλ(u)

= Pu + λ
∑

ti<t
Ai +


T

k∑

i=

Bi +QNf (u) +Kλ(u). ()

Obviously, u is a solution of ()-() if and only if u is a solution of the abstract equation
() when λ = . We only need to prove that the conditions of Theorem . are satisfied.

() When the positive parameter δ is small enough, for any u ∈ �ε , we can see that the
mapping t �−→ δg(t,u,u′) belongs to {u ∈ L | ‖u‖L < 

 }.
() We shall prove that for each λ ∈ (, ) the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ϕ(t,u′))′ = λf (t,u,u′), t ∈ (,T), t �= ti,
limt→t+i u(t) – limt→t–i u(t) = λAi(limt→t–i u(t), limt→t–i u

′(t)), i = , . . . ,k,
limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t))

= λBi(limt→t–i u(t), limt→t–i u
′(t)), i = , . . . ,k,

u() = u(T), and ϕ(,u′()) = ϕ(T ,u′(T))

has no solution on ∂�ε .

If it is false, then there exists a λ ∈ (, ), and u ∈ ∂�ε is a solution of (). We have

ϕ
(
t,u′) = ρ + λ

∑

ti<t
Bi +

∫ t


λf

(
r,u,u′)dr, ∀t ∈ J ′.

From the boundary value condition (), we have

∫ T


f
(
r,u,u′)dr +

k∑

i=

Bi = . ()

Since u ∈ ∂�ε , there exists an j ∈ {, . . . ,N} such that |uj| + |(uj)′| = ε.
(i) Suppose that |uj| ≥ σε, then |(uj)′| ≤ ( – σ )ε. Let  < r < r < T , according to ()

and (H), we have

∣∣uj(r) – uj(r)
∣∣ =

∣∣∣
∣

∫ r

r

(
uj
)′(r)dr +

∑

r<ti<r

Ai

∣∣∣
∣

≤
∫ T



∣∣(uj
)′(r)

∣∣dr +
∑

r<ti<r

|Ai|

≤
∫ T


( – σ )ε dr +

k∑

i=

|Ai| ≤ σ


ε +

σ


ε =

σ


ε.

Since |uj| ≥ σε, we get |uj(t)| ≥ σ
 ε for any t ∈ J . Obviously, uj has constant sign on J .
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The condition (H) means that τ has constant sign on J . Thus τuj also has constant sign
on J . Assume that τuj is positive, then we have

∫ T


f j
(
t,u,u′)dt +

k∑

i=

Bj
i

≥
∫ T


δ
{∣∣τ (t)

∣
∣(
∣
∣u(t)

∣
∣q(t)–

∣
∣uj(t)

∣
∣ –

∣
∣μj∣∣



∣
∣u′(t)

∣
∣q(t)) –

∣
∣γ j(t)

∣
∣}dt –

k∑

i=

|Bi|

≥ 

TδτC# > .

This is a contradiction to ().
Assume that τuj is negative, from (H) and (H), then we have

∫ T


f j
(
t,u,u′)dt +

k∑

i=

Bj
i

≤
∫ T


–δ

{∣∣τ (t)
∣
∣(
∣
∣u(t)

∣
∣q(t)–

∣
∣uj(t)

∣
∣ –

∣
∣μj∣∣



∣
∣u′(t)

∣
∣q(t)) –

∣
∣γ j(t)

∣
∣}dt +

k∑

i=

|Bi|

≤ –


TδτC# < .

This is a contradiction to ().
(ii) Suppose that |uj| < σε, then ( – σ )ε < |(uj)′| ≤ ε. This implies that |(uj)′(s)| > ( –

σ )ε = 
T+ε for some s ∈ J ′. Without loss of generality, we may assume that (uj)′(s) > ,

the discussion of the case of (uj)′(s) <  is similar.
(a) Suppose that inft∈J ′ (uj)′(t) > . From (H), we have

Aj
i

(
lim
t→t–i

u(t), lim
t→t–i

u′(t)
)

≥ , i = , . . . ,k.

Since

uj(t) = uj() +
∫ t



(
uj
)′(t)dt +

∑

ti<t
Aj
i,

we can see that uj(t) is increasing, and uj(T) > uj(). This is a contradiction to ().
(b) Suppose that inft∈J ′ (uj)′(t) < . Then there exists rj ∈ J ′ such that (uj)′(rj) < . De-

note

ϕj(t,u′)(t) =
|u′|p(t)–(uj)′(t)
( + |u′|q(t)p(t)) 

q(t)
.

We have

ϕj(s,u′)(s) – ϕj(rj,u
′)(rj

)
= λ

∫ s

rj
f j
(
t,u,u′)dt + λ

∑

rj<ti<s

Bj
i + λ

∑

s<ti<r
j


Bj
i.
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According to (H) and (H), when the positive parameter δ is small enough, we have

| ε
T+ |p(s)

( + |Nε|q(s)p(s)) 
q(s)

≤ ∣
∣ϕj(s,u′)(s)

∣
∣≤ ∣

∣ϕj(s,u′)(s) – ϕj(tj,u
′)(tj

)∣∣

≤ λ

∫ T



∣
∣f j

(
t,u,u′)∣∣dt + λ

∣∣
∣∣
∑

rj<ti<s

Bj
i

∣∣
∣∣ + λ

∣∣
∣∣
∑

s<ti<r
j


Bj
i

∣∣
∣∣

≤ δ

∫ T


τ
[|Nε|q(r) + ‖μ‖|Nε|q(t) + ‖γ ‖

]
dt +

k∑

i=

|Bi|

<
| ε
T+ |p(s)

( + |Nε|q(s)p(s)) 
q(s)

.

This is a contradiction to ().
(c) Suppose that inft∈J ′ (uj)′(t) = . Similar to the proof of (b), we can get a contradiction

to ().
Summarizing this argument, for each λ ∈ (, ), problem () has no solution on ∂�ε .
() From (H), (H), and (H), it is easy to see that

ω(l) =
∫ T


f (t, l, )dt +

k∑

i=

Bi(l, ) =
∫ T



(
τ (t)|l|q(t)–l + γ (t)

)
dt = 

has no solution on ∂� ∩ F.
() Let

h(t, l,λ) = λω(l) + ( – λ)
τ (t)
|τ (t)| l = λ

∫ T



(
τ (t)|l|q(t)–l + γ (t)

)
dt + ( – λ)

τ (t)
|τ (t)| l.

According to (H), it is easy to see that ωi(l) and τ (t)
|τ (t)| l

i have the same sign for any |li| = ε.
Denote

�(l,λ) =
∫ T


h(t, l,λ)dt.

For any λ ∈ [, ], we see that �(l,λ) =  does not have solutions on ∂�ε ∩ F, then the
Brouwer degree

dB[ω,�ε ∩ F, ] = dB
[
�(l, ),�ε ∩ F, 

]
= dB

[
�(l, ),�ε ∩ F, 

] �= .

Since () does not have solutions on ∂�ε , we have

dLS
[
I –�f (·, ),�ε , 

]
= dLS

[
I –�f (·, ),�ε , 

]
.

Since

dLS
[
I –�f (·, ),�ε , 

]
= (–)NdB[� ,�ε ∩ F, ] = (–)NdB

[
�(l, ),�ε ∩ F, 

] �= ,
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we have

dLS
[
I –�f (·, ),�ε , 

]
= (–)NdB[� ,�ε ∩ F, ] �= .

This completes the proof. �

3 Dirichlet boundary value problems
In this section, we will discuss the existence of solutions of variable exponent mean curva-
ture impulsive system Dirichlet boundary value problems, i.e. the existence of a solution
of ()-() and ().

3.1 Preliminary
Let us now consider the following simple problem:

(
ϕ
(
t,u′(t)

))′ = g(t), t ∈ (,T), t �= ti, ()

with the following impulsive boundary value conditions:

⎧
⎪⎨

⎪⎩

limt→t+i u(t) – limt→t–i u(t) = ai, i = , . . . ,k,
limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t)) = bi, i = , . . . ,k,
u() = u(T) = ,

()

where ai,bi ∈R
N ,

∑k
i= |bi| < ; g ∈ L.

If u is a solution of () with (), by integrating () from  to t, we find that

ϕ
(
t,u′(t)

)
= ϕ

(
,u′()

)
+
∑

ti<t
bi +

∫ t


g(t)dt, ∀t ∈ J ′. ()

Denote ρ = ϕ(,u′()).
From the definition of ϕ, we can see that

sup
t∈J

∣
∣∣∣ρ +

∑

ti<t
bi + F(g)(t)

∣
∣∣∣ < .

Denote

Ũb =
{
h ∈ L

∣∣
∣ there exists ρ ∈ R

N such that sup
t∈J

∣
∣∣∣ρ +

∑

ti<t
bi + F(h)(t)

∣
∣∣∣ < 

}
.

By (), we have

u(t) =
∑

ti<t
ai + F

{
ϕ–

[
t,
(

ρ +
∑

ti<t
bi + F(g)

)]}
(t), ∀t ∈ J .

The boundary value conditions imply that

k∑

i=

ai +
∫ T


ϕ–

{
t,
[
ρ +

∑

ti<t
bi + F(g)(t)

]}
dt = .
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Denote a = (a, . . . ,ak) ∈ R
kN , b = (b, . . . ,bk) ∈ R

kN . It is easy to see that ρ is dependent
on a, b, and g . For fixed g ∈ Ũb, a ∈ R

kN , we define

�(a,b,g)(ρ) =
k∑

i=

ai +
∫ T


ϕ–

{
t,
[
ρ +

∑

ti<t
bi + F(g)(t)

]}
dt.

Denote

Ua,b =
{
h ∈ Ũb

∣∣
∣ there exists ρ ∈R

N such that

sup
t∈J

∣
∣∣
∣ρ +

∑

ti<t
bi + F(h)(t)

∣
∣∣
∣ <  and �(a,b,h)(ρ) = 

}
.

If () with () has a solution in PC, we must have g(·) ∈Ua,b.
DenoteW =R

kN × L with the norm

‖w‖W =
k∑

i=

|ai| +
k∑

i=

|bi| + ‖g‖L , ∀w = (a,b, g) ∈W ,

thenW is a Banach space.
Copying the proof of Lemma ., we have the following.

Lemma . The function �w(·) has the following properties:
() For any fixed (a,b) ∈M ×M, ∀h ∈Ua,b, the equation

�w(ρ) = , where w = (a,b,h) ∈W ,

has a unique solution ρ(w) ∈R
N , whereM,M are defined in () and ().

() For any fixed a = (a, . . . ,ak) ∈ M, b = (b, . . . ,bk) ∈ M, Ua,b contains the open
ball E#(, 

 ) := {u ∈ L|‖u‖L < 
 }, and then defines a mapping ρ : M × M ×

E#(, 
 ) →R

N .
() The function ρ : M × M × E#(, 

 ) → R
N , defined in (), is continuous and

bounded.
() For any fixed a = (a, . . . ,ak) ∈ M, b = (b, . . . ,bk) ∈ M, the set Ua,b is open and un-

bounded in L.

We continue now with our argument previous to Lemma ..
Define the nonlinear operator K(a,b) :Ua,b → PC, as

K(a,b)(h)(t) = F
{
ϕ–

[
t,
(

ρ +
∑

ti<t
bi + F(h)

)]}
(t), ∀t ∈ J .

Similar to the proof of the Lemma ., we have the following.

Lemma . If (a,b) ∈M ×M, then the operator K(a,b)(·) is continuous and sends closed
equi-integrable subsets of Ua,b into relatively compact sets in PC.
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Denote

G(u) = F
{
ϕ–

[
t,
(

ρ +
∑

ti<t
Bi + F(Nf )(u)

)]}
(t),

and

�∗
u(ρ) =

k∑

i=

Ai +
∫ T


ϕ–

{
t,
[
ρ +

∑

ti<t
Bi +

∫ t


f
(
r,u,u′)dr

]}
dt,

where Ai, Bi are defined in (), ρ is a solution of �∗
u(ρ) = .

Similar to the proof of Lemma ., we have the following.

Lemma . If (H) is satisfied, then u is a solution of ()-() and (), if and only if u is a
solution of the following abstract operator equation:

u =
∑

ti<t
Ai +G(u).

3.2 Existence of solutions
In this subsection, we will apply the Leray-Schauder degree to deal with the existence of
solutions of ()-() and ().

Theorem . If (H) is satisfied, � ⊂ PC is open bounded such that the following condi-
tions hold:

() For any u ∈ �, the mapping t → f (t,u,u′) belongs to {u ∈ L | ‖u‖L < 
 }.

() For each λ ∈ (, ), the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ(t,u′))′ = λf (t,u,u′), t ∈ (,T), t �= ti,
limt→t+i u(t) – limt→t–i u(t)

= λAi(limt→t–i u(t), limt→t–i u
′(t)), i = , . . . ,k,

limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t))
= λBi(limt→t–i u(t), limt→t–i u

′(t)), i = , . . . ,k,
u() = u(T) = 

()

has no solution on ∂�;
()  ∈ �.

Then ()-(), and () have a solution on �.

Proof Denote

Gλ(u)(t) = F
{
ϕ–

[
t,
(

ρ + λ
∑

ti<t
Bi + F

(
λNf (u)

)
)]}

(t), ∀t ∈ J ,

where ρ = ρ(λ,u) is the solution of λ
∑k

i=Ai + Gλ(u) = , Nf (u) is defined by (), Ai, Bi

are defined in ().
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From (), we can see that λNf (u) ∈ E#(, 
 ) ⊂ L, ∀u ∈ �, ∀λ ∈ [, ]. Combining (H)

and Lemma ., we can see that there exists only one ρ = ρ(λ,u) ∈ F such that

sup
t∈J

∣∣
∣∣ρ + λ

∑

ti<t
Bi + F

(
λNf (u)

)
∣∣
∣∣ <  and λ

k∑

i=

Ai +Gλ(u) = , ∀λ ∈ [, ],∀u ∈ �.

Let

�f (u,λ) := λ
∑

ti<t
Ai +Gλ(u),

then the fixed point of �f (u, ) is a solution for ()-() and (). Also problem () can be
written in the equivalent form

u = �f (u,λ). ()

Since f is Caratheodory, it is easy to see that N(·) is continuous and sends bounded sets
into equi-integrable sets. According to Lemma ., we can conclude that �f is compact
continuous on � × [, ]. From Lemma ., we can see that problem ()-() and () is
equivalent to u = �f (u, ). We assume that for λ = , () does not have a solution on
∂�, otherwise we complete the proof. Now, from hypothesis (), it follows that () has
no solution for (u,λ) ∈ ∂� × (, ]. For λ = , () is equivalent to the following usual
differential equation boundary value problem:

{
–(ϕ(t,u′))′ = , t ∈ (,T),
u() = u(T) = .

When λ = , the problem is a usual differential equation boundary value problem.Hence
ϕ(t,u′(t)) ≡ c, where c ∈ F is a constant mapping. Since u() = u(T), for any i ∈ {, . . . ,N},
there exists ri ∈ (,T), such that (ui)′(ri) = , hence (ui)′ ≡ , we have u ≡ l ∈ F. Thus,
we have

u = ,

which, togetherwith hypothesis (), implies that  ∈ �. Thuswehave proved that () has
no solution (u,λ) on ∂� × [, ], then we see that, for each λ ∈ [, ], the Leray-Schauder
degree dLS[I – �f (·,λ),�, ] is well defined. From the condition () and the homotopy
invariant property of that degree, we have

dLS
[
I –�f (·, ),�, 

]
= dLS

[
I –�f (·, ),�, 

]
=  �= .

Thus ()-() and () has a solution. This completes the proof. �

In the following, we will give an application of Theorem ..
Assume the following.

(H) f (t,u, v) = δg(t,u, v), where δ is a positive parameter, g is defined in (H).
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Denote

�∗ =
{
u ∈ PC

∣∣
∣ ‖u‖ < N( + T)max

t∈J

∣∣
∣∣ϕ

–
(
t,



)∣∣
∣∣

}
.

Theorem . If (H) and (H) are satisfied, then problem ()-() and () has at least one
solution on �∗, when the positive parameter δ is small enough.

Proof Let us consider the following problem:

u = �f (u,λ) := λ
∑

ti<t
Ai +Gλ(u). ()

Obviously, u is a solution of ()-() and () if and only if u is a solution of the abstract
equation () when λ = . We only need to prove that the conditions of Lemma . are
satisfied.
() When the positive parameter δ is small enough, for any u ∈ �∗, we can see that the

mapping t �−→ δg(t,u,u′) belongs to {u ∈ L | ‖u‖L < 
 }.

() We shall prove that for each λ ∈ (, ) the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ϕ(t,u′))′ = λf (t,u,u′), t ∈ (,T), t �= ti,
limt→t+i u(t) – limt→t–i u(t) = λAi(limt→t–i u(t), limt→t–i u

′(t)), i = , . . . ,k,
limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t))
= λBi(limt→t–i u(t), limt→t–i u

′(t)), i = , . . . ,k,
u() = u(T) = 

has no solution on ∂�∗.
If it is false, then there exists a λ ∈ (, ), and u ∈ ∂�∗ is a solution of (). We have

ϕ
(
t,u′) = ρ + λ

∑

ti<t
Bi +

∫ t


λf

(
r,u,u′)dr, ∀t ∈ J ′.

From the proof of Lemma ., we can see that |ρ| < 
 . Obviously

∣∣
∣∣ρ + λ

∑

ti<t
Bi +

∫ t


λf

(
r,u,u′)dr

∣∣
∣∣ <




.

It is easy to verify that ‖u‖ < N( + T)maxt∈J |ϕ–(t,  )|.
This is a contradiction.
Thus, for each λ ∈ (, ), problem () has no solution on ∂�∗.
() Obviously  ∈ �∗.
This completes the proof. �

4 Neumann boundary value problems
In this section, we will discuss the existence of solutions of variable exponent mean curva-
ture impulsive system Neumann boundary value problems, i.e. the existence of a solution
of ()-() and ().
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4.1 Preliminary
Let us now consider the following simple problem:

(
ϕ
(
t,u′(t)

))′ = g(t), t ∈ (,T), t �= ti, ()

with the following impulsive boundary value conditions:

⎧
⎪⎨

⎪⎩

limt→t+i u(t) – limt→t–i u(ti) = ai, i = , . . . ,k,
limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t)) = bi, i = , . . . ,k,
u′() = u′(T) = ,

()

where ai,bi ∈R
N ,

∑k
i= |bi| < ; g ∈ L and it satisfies

∫ T
 g(t)dt +

∑k
i= bi = .

Denote a = (a, . . . ,ak) ∈R
kN , b = (b, . . . ,bk) ∈R

kN , and

Lm =
{
v ∈ L

∣
∣∣
∫ T


v(t)dt = 

}
.

Let h(t) = g(t) + 
T
∑k

i= bi, then h ∈ Lm. u′() = u′(T) =  implies ϕ(,u′()) = ϕ(T ,
u′(T)) = .
If u is a solution of () with (), by integrating () from  to t, we find that

ϕ
(
t,u′(t)

)
=
∑

ti<t
bi +

∫ t



[

h(r) –

T

k∑

i=

bi

]

dr, ∀t ∈ J ′. ()

From the definition of ϕ, we can see that

sup
t∈J

∣∣ϕ
(
t,u′(t)

)∣∣ = sup
t∈J

∣∣
∣∣
∣

∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

)

(t)

∣∣
∣∣
∣
< .

Denote

Vb =

{

h ∈ Lm

∣
∣∣
∣ sup

t∈J

∣∣
∣∣∣

∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

)

(t)

∣∣
∣∣∣
< 

}

.

By (), we have

u(t) = u() +
∑

ti<t
ai + F

{

ϕ–

[

t,

(
∑

ti<t
bi + F

(

h –

T

k∑

i=

bi

))]}

(t), ∀t ∈ J .

We can split L as L = Lm + F, where F is the N-dimensional subspace of constant
mappings. The operatorQ is a continuous projection from L onto F. Let us consider the
subset V̂b of L which is given by

V̂b = Vb +F,

and the nonlinear operatorM∗ : V̂b → PC, as

M∗(h)(t) = F
{
ϕ–

[
t,
(∑

ti<t
bi + F(h)

)]}
(t), ∀t ∈ J .
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Copying the proof of Lemma ., we have the following.

Lemma . The operator (M∗ ◦�b)(·) is continuous and sends closed equi-integrable sub-
sets of V̂b into relatively compact sets in PC.
Denote

�#
(
Nf (u)

)
= (I –Q)Nf (u) –


T

k∑

i=

Bi,

M(u) = F
{
ϕ–

[
t,
(∑

ti<t
Bi + F

(
�#

(
Nf (u)

))
)]}

,

where Bi is defined in ().

Similar to the proof of Lemma ., we have the following.

Lemma . u is a solution of ()-() and () if and only if u is a solution of the following
abstract equation:

u = Pu +
∑

ti<t
Ai +


T

k∑

i=

Bi +QNf (u) +M(u),

where Ai, Bi are defined in ().

4.2 Existence of solutions
In this subsection, we will apply the Leray-Schauder degree to deal with the existence of
solutions for ()-() and ().
Assume the following.

(H)
∑k

i= |Bi| ≤ 
 .

Theorem . If (H) is satisfied, � is an open bounded set in PC such that the following
conditions hold:

() For any u ∈ �, the mapping t → f (t,u,u′) belongs to {u ∈ L | ‖u‖L < 
 }.

() For each λ ∈ (, ), the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ϕ(t,u′))′ = λf (t,u,u′), t ∈ (,T), t �= ti,
limt→t+i u(t) – limt→t–i u(t) = λAi(limt→t–i u(t), limt→t–i u

′(t)), i = , . . . ,k,
limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t))

= λBi(limt→t–i u(t), limt→t–i u
′(t)), i = , . . . ,k,

u′() = u′(T) = 

has no solution on ∂�.
() The equation

ω(l) :=

T

∫ T


f (r, l, )dr +


T

k∑

i=

Bi(l, ) = 

has no solution on ∂� ∩ F;
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() The Brouwer degree dB[ω,� ∩ F, ] �= .
Then ()-() and () has a solution on �.

Proof It is similar to the proof of Theorem ., we omit it here. �

In the following, we will give an application of Theorem ..
Assume the following.

(H)
∑k

i= Bi(l, ) = , ∀l ∈R
N .

(H) γ = (γ , . . . ,γ N ) ∈ C(J ,RN ) satisfies |γ i| < 
τC#, for any j = , . . . ,N , where C# is

defined before (H).

Denote

�ε =
{
u ∈ PC ∣∣ max

≤j≤N

(∣∣uj
∣∣
 +

∣∣(uj
)′∣∣



)
< ε

}
.

Obviously, �ε is an open subset of PC.

Theorem . If (H)-(H) and (H)-(H) are satisfied, then problem ()-() and () has
at least one solution on �ε , when the positive parameter δ is small enough.

Proof We denote N(·, ·) : PC × [, ] → L defined by

N(u,λ) = λNf (u) + ( – λ)

[

QNf (u) +

T

k∑

i=

Bi

]

.

Let us consider the problem

u = �f (u,λ) = Pu + λ
∑

ti<t
Ai + λ


T

k∑

i=

Bi +QN(u,λ) +Mλ(u)

= Pu + λ
∑

ti<t
Ai +


T

k∑

i=

Bi +QNf (u) +Mλ(u), ()

where Ai, Bi are defined in ().
It is easy to see u is a solution of ()-() and () if and only if u is a solution of the abstract

equation () when λ = . We only need to prove that the conditions of Theorem . are
satisfied.

() When the positive parameter δ is small enough, for any u ∈ �ε , we can see that the
mapping t �−→ δg(t,u,u′) belongs to {u ∈ L | ‖u‖L < 

 }.
() We shall prove that for each λ ∈ (, ) the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ(t,u′))′ = λf (t,u,u′), t ∈ (,T), t �= ti,
limt→t+i u(t) – limt→t–i u(t)

= λAi(limt→t–i u(t), limt→t–i u
′(t)), i = , . . . ,k,

limt→t+i ϕ(t,u′(t)) – limt→t–i ϕ(t,u′(t))
= λBi(limt→t–i u(t), limt→t–i u

′(t)), i = , . . . ,k,
u′() = u′(T) = ,

()

has no solution on ∂�ε , i.e. () has no solution on ∂�ε .
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If it is false, then there exists a λ ∈ (, ), and u ∈ ∂�ε is a solution of (). Integrating
() from  to t, we have

ϕ
(
t,u′) = λ

∑

ti<t
Bi +

∫ t


λf

(
t,u,u′)dt, ∀t ∈ J ′.

From the boundary value condition (), we have

∫ T


f
(
t,u,u′)dt +

k∑

i=

Bi = . ()

Since u ∈ ∂�ε , there exists an j ∈ {, . . . ,N} such that |uj| + |(uj)′| = ε.
(i) Suppose that |uj| ≥ σε, ( – σ )ε ≤ |(uj)′| ≤ ε.
Similar to the proof of (i) of () of Theorem ., we get a contradiction to ().
(ii) Suppose that |uj| < σε, ( –σ )ε < |(uj)′| ≤ ε. This implies that |(uj)′(r∗)| > (–σ )ε =


T+ε for some r∗ ∈ J .
Denote

ϕj(t,u′)(t) =
|u′|p(t)–(uj)′(t)
( + |u′|q(t)p(t)) 

q(t)
.

Since u′() = u′(T) = , we have

ϕj(r∗,u′)(r∗) :=
|u′|p(r∗)–(uj)′(r∗)

( + |u′|q(r∗)p(r∗)) 
q(r∗)

= λ

∫ r∗


f j
(
r,u,u′)dr + λ

∑

<ti<r∗
Bj
i.

According to (H), when the positive parameter δ is small enough, we have

| ε
T+ |p(r∗)

( + |Nε|q(r∗)p(r∗)) 
q(r∗)

≤ ∣∣ϕj(r∗,u′)(r∗)
∣∣ ≤ λ

∫ r∗



∣∣f j
(
t,u,u′)∣∣dt + λ

∣
∣∣
∣
∑

<ti<r∗
Bj
i

∣
∣∣
∣

≤ δ

∫ T


τ
[|Nε|q(t) + ‖μ‖|Nε|q(t) + ‖γ ‖

]
dt +

k∑

i=

|Bi|

<
| ε
T+ |p(r∗)

( + |Nε|q(r∗)p(r∗)) 
q(r∗)

.

This is a contradiction.
Summarizing this argument, for each λ ∈ (, ), problem () has no solution on ∂�ε .
() and () similar to the proof of () and () of Theorem .. �
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50. Diening, L, Harjulehto, P, Hästö, P, Růžička, M: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes
in Mathematics, vol. 2017. Springer, Berlin (2011)

51. Yoshida, N: Picone identities for half-linear elliptic operators with p(x)-Laplacians and applications to Sturmian
comparison theory. Nonlinear Anal. 74, 5631-5642 (2011)

doi:10.1186/s13661-014-0139-x
Cite this article as: Yin et al.: On the prescribed variable exponent mean curvature impulsive system boundary value
problems. Boundary Value Problems 2014 2014:139.

http://www.boundaryvalueproblems.com/content/2014/1/139

	On the prescribed variable exponent mean curvature impulsive system boundary value problems
	Abstract
	MSC
	Keywords

	Introduction
	Periodic-like boundary value problems
	Preliminary
	Existence of solutions

	Dirichlet boundary value problems
	Preliminary
	Existence of solutions

	Neumann boundary value problems
	Preliminary
	Existence of solutions

	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


