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Abstract
In this paper, using fixed point index and the mixed monotone technique, we present
some multiplicity and uniqueness results for the singular nonlocal boundary value
problems involving nonlinear integral conditions. Our nonlinearity may be singular in
its dependent variable and it is allowed to change sign.

1 Introduction
In this paper, we consider the existence of positive solutions of nonlinear nonlocal bound-
ary value problem (BVP) of the form

–y′′ = q(t)f
(
t, y(t)

)
, t ∈ (, ) (.)

with integral boundary conditions

y() = α[y] =
∫ 



(
y(s)

)a dA(s), y() = β[y] =
∫ 



(
y(s)

)b dB(s) (.)

involving Stieltjes integrals, a ≥ , b ≥ .
In [], using the Leray-Schauder alternative, Z. Yang considered the problem

–y′′ = f
(
y(t)

)
, t ∈ (, ) (.)

with integral boundary conditions

y() = α[y] =
∫ 


y(s)dA(s), y() = β[y] =

∫ 


y(s)dB(s) (.)

and discussed the existence and uniqueness of a positive solution for BVP (.)-(.) with
a sign-changing nonlinearity f . C.S. Goodrich discussed (.) with nonlinear integral con-
ditions

y() =H

(∫ 


y(s)dA(s)

)
+

∫

E
H

(
s, y(s)

)
ds, y() = ,
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where E ⊆ (, ) is some measurable set (see []). Moreover, there are some interesting
results when the measures are signed (see [–]). Using the mixed monotone technique,
L. Kong considered

–y′′ = λf
(
t, y(t)

)
, t ∈ (, ) (.)

with (.) and discussed the uniqueness of positive solutions (see []). J.R.L. Webb dis-
cussed the multiplicity of positive solutions for BVP (.)-(.) when f (t, y) is positive and
continuous on (, )× [, +∞); note that f has no singularities at y =  (see []). Using the
fixed point index, G. Infante discussed (.) with nonlinear integral boundary conditions
(see []),

y() +H

(∫ 


y(s)dA(s)

)
= , y() + u(η) =H

(∫ 


y(s)dB(s)

)
.

Inspired by the above works and [–], we consider the BVP (.)-(.) when f is singular
at y =  and f may be sign changing. Using the fixed point index and the mixed monotone
technique we establish some new existence results for the BVP (.)-(.).
Our paper is organized as follows. In Section , we present some lemmas and prelimi-

naries. Section  discusses the existence of multiple positive solutions for BVP (.)-(.)
when f is positive. In Section , we discuss the multiplicity of positive solutions for the
semipositone BVP (.)-(.). In Section , using the mixed monotone technique, we dis-
cuss the uniqueness of a positive solution of BVP (.)-(.).

2 Preliminaries
Let C[, ] = {y : [, ]→R|y(t) is continuous on [, ]} with norm ‖y‖ = maxt∈[,] |y(t)|. It
is easy to see that C[, ] is a Banach space. Define

P =
{
y ∈ C[, ]|y is concave on [, ] with y(t) ≥  for all t ∈ [, ]

}
. (.)

It is easy to prove P is a cone of C[, ].

Lemma . (see []) Let � be a bounded open set in a real Banach space E, P be a cone
of E, θ ∈ � and A : � ∩ P → P be continuous and compact. Suppose λAx 
= x, ∀x ∈ ∂� ∩ P,
λ ∈ (, ]. Then

i(A,� ∩ P,P) = . (.)

Lemma . (see []) Let � be a bounded open set in a real Banach space E, P be a cone
of E, θ ∈ � and A : � ∩ P → P be continuous and compact. Suppose Ax� x, ∀x ∈ ∂� ∩ P.
Then

i(A,� ∩ P,P) = . (.)

Lemma . (see []) Let y ∈ P (defined in (.)). Then

y(t) ≥ t( – t)‖y‖ for t ∈ [, ]. (.)

http://www.boundaryvalueproblems.com/content/2014/1/148
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Now we present the following conditions for convenience:

(C) A and B are of bounded variation with positive measures,  <
∫ 
 dA(s), a > ,

 <
∫ 
 dB(s), b > ,

(C)

⎧
⎪⎪⎨

⎪⎪⎩

there exists a function ψ

continuous on [, ] and positive on (, ) such that

f (t, y) ≥ ψ(t) on (, )× (, ],

(.)

(C)

q ∈ C(, ), q >  on (, ) and
∫ 


t( – t)q(t)dt < ∞, (.)

(C)

f : [, ]× (,∞)→ (,∞) is continuous, (.)

(C) there exists a continuous function g : [, ]× (,∞)× (,∞) → (,∞) with g(t,x, y)
nondecreasing in x and nonincreasing in y and for x >  we have f (t,x) = g(t,x,x).
Moreover, there is a constant θ with  ≤ θ <  such that

g
(
t,λx,


λ
y
)

≥ λθg(t,x, y), ∀x > , y > , < λ < .

3 Multiplicity of positive solutions for singular boundary value problems with
positive nonlinearities

In this section, we consider the existence of multiple positive solutions for BVP (.)-(.).
To show that BVP (.)-(.) has a solution, for y ∈ P, define

(Tεy)(t) = ( – t)α[y] + tβ[y]

+
∫ 


k(t, s)q(s)f

(
s,max

{
ε, y(s)

})
ds, t ∈ [, ],  ≥ ε > , (.)

where

k(t, s) =

⎧
⎨

⎩
( – t)s,  ≤ s≤ t ≤ ,

( – s)t,  ≤ t ≤ s≤ .

Lemma . Suppose (C)-(C) hold. Then Tε : P → P is continuous and completely con-
tinuous for all  ≥ ε > .

Proof It is easy to prove that Tε is well defined and (Tεy)(t) ≥  for all t ∈ P. For y ∈ P, we
have

⎧
⎨

⎩
(Tεy)′′(t) ≤  on (, ),

(Tεy)() = α[y], (Tεy)() = β[y],
(.)

http://www.boundaryvalueproblems.com/content/2014/1/148
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so

(Tεy)(t) is concave on [, ]. (.)

Consequently, Tε : P → P. A standard argument shows that Tε : P → P is continuous
and completely continuous (see [, , ]). �

Lemma . Suppose that
∫ 
 dA(s) >  and

∫ 
 dB(s) > . Then

∫ 


sa( – s)a dA(s) > ,

∫ 


sb( – s)b dB(s) > .

The proof is trivial and we omit it.
Define

H =
{
x ∈ C

(
[, ],R

) ∩C([, ),R
) ∩C

(
(, ), (, +∞)

) ∩C((, ),R
)|x satisfies

x′′(t) + q(t)f
(
t,max

{
ε,x(t)

})
= , < t < ,x() = α[x],x() = β[x],∀≥ ε > 

}
.

Lemma . If H 
= ∅ and (C) hold, there exists a δ >  such that

x(t)≥ δ, ∀t ∈ [, ],x ∈H .

Proof Suppose x ∈H . There are two cases to consider:
() ‖x‖ > . Lemma . implies that

x(t)≥ t( – t)‖x‖ ≥ t( – t), t ∈ [, ]. (.)

()  < ‖x‖ ≤ . Condition (C) guarantees that

x(t) = ( – t)α[x] + tβ[x] +
∫ 


k(t, s)q(s)f

(
s,max

{
ε,x(s)

})
ds

≥
∫ 


k(t, s)q(s)ψ(s)ds = γ(t), t ∈ [, ].

Since γ ′′
 (t)≥  and γ() =  and γ() = , Lemma . implies that

γ(t) ≥ t( – t)‖γ‖, ∀t ∈ [, ]. (.)

Let δ = min{,‖γ‖}. From (.) and (.), one has

x(t)≥ δt( – t), ∀t ∈ [, ].

Lemma . implies that

x() = α[x] =
∫ 


xa(s)dA(s)≥ δa

∫ 


sa( – s)a dA(s) > 

http://www.boundaryvalueproblems.com/content/2014/1/148
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and

x() = β[x] =
∫ 


xb(s)dB(s)≥ δb

∫ 


sb( – s)b dB(s) > .

Set

δ = min

{
δa

∫ 


sa( – s)a dA(s), δb

∫ 


sb( – s)b dB(s)

}
.

Since x(t) is concave on [, ], we have

x(t)≥ δ, ∀t ∈ [, ],x ∈H .

The proof is complete. �

Lemma . Suppose that there exists an ā ∈ (,  ) such that

lim
y→+∞

f (t, y)
y

= +∞ (.)

uniformly on [ā,  – ā]. Then there exists an R′ >  such that for all R≥ R′

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

Proof From (.), there exists a R >  such that

f (t, y) ≥ N∗y, ∀y≥ R, (.)

where

N∗ >


ā
∫ –ā
ā k(ā, s)q(s)ds

.

Let R′ = R
ā and

�R =
{
x ∈ C[, ]|‖x‖ < R

}
, ∀R≥ R′.

Now we show

Tεy� y for y ∈ P ∩ ∂�R,∀ < ε ≤ . (.)

Suppose that there exists a y ∈ P∩∂�R withTεy ≤ y. Then ‖y‖ = R. Also since y(t) is
concave on [, ] (since y ∈ P) we have fromLemma . that y(t) ≥ t(– t)‖y‖ ≥ t(– t)R
for t ∈ [, ]. For t ∈ [ā,  – ā], one has

y(t) ≥ āR ≥ āR′ = R, ∀t ∈ [ā,  – ā],

which together with (.) yields the result that

f
(
t, y(t)

) ≥ N∗y(t)≥ N∗āR, ∀t ∈ [ā,  – ā]. (.)

http://www.boundaryvalueproblems.com/content/2014/1/148
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Then we have, using (.),

y(ā) ≥ Tεy(ā) = ( – ā)α[y] + āβ[y] +
∫ 


k(ā, s)q(s)f

(
s,max

{
ε, y(s)

})
ds

≥
∫ –ā

ā
k(ā, s)q(s)f

(
s,max

{
ε, y(s)

})
ds

=
∫ –ā

ā
k(ā, s)q(s)f

(
s, y(s)

)
ds

≥ N∗Rā
∫ –ā

ā
k(ā, s)q(s)ds

> R = ‖y‖,

which is a contradiction. Hence (.) is true. Lemma . guarantees that

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

The proof is complete. �

Lemma . Suppose that max{a,b} > . Then there exists an R′ >  such that for all R≥ R′

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

Proof Since max{a,b} > , without loss of generality, we suppose that a > . Let R′ >  with
R′a– ∫ 

 s
a( – s)a dA(s) > . Set

�R =
{
x ∈ C[, ]|‖x‖ < R

}
, R≥ R′.

Now we show

Tεx� x, ∀x ∈ ∂�R ∩ P,∀ < ε ≤ .

In fact, suppose that x ∈ ∂�R ∩ P and satisfies

Tεx ≤ x.

Lemma . guarantees that

x(t) ≥ ‖x‖t( – t) ≥ Rt( – t), t ∈ [, ].

Then

R ≥ x() =
∫ 


xa(s)dA(s) ≥

∫ 


‖x‖asa( – s)a dA(s)

= RRa–
∫ 


sa( – s)a dA(s) ≥ RR′a–

∫ 


sa( – s)a dA(s) > R.

http://www.boundaryvalueproblems.com/content/2014/1/148
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This is a contradiction. Lemma . guarantees that

i(Tε ,�R ∩ P,P) = , ∀R≥ R′,∀ < ε ≤ .

The proof is complete. �

Theorem . Suppose (C), (C), (C), and (C) hold and the following conditions are sat-
isfied:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

≤ f (t, y) ≤ g(y) + h(y) on [, ]× (,∞) with

g >  continuous and nonincreasing on (,∞),

h≥  continuous on [,∞), and h
g

nondecreasing on (,∞)

(.)

and

sup
r∈(,+∞)


 + h(r)

g(r)

∫ r

c max{ra ,rb}
dy
g(y)

> b (.)

hold; here

c = max

{∫ 


dA(s),

∫ 


dB(s)

}
,

b = max

{

∫ 




t( – t)q(t)dt, 

∫ 




t( – t)q(t)dt
}
.

(.)

Then BVP (.)-(.) has at least one positive solution.

Proof Choose ε >  and r >  with ε < min{, c{ra, rb}} and


 + h(r)

g(r)

∫ r

c{ra ,rb}
dy
g(y)

> b. (.)

Let

� =
{
y ∈ C[, ]|‖y‖ < r

}
,

and Tε is defined in (.). Lemma . guarantees that Tε : P → P is continuous and com-
pletely continuous.
Now we show that

y 
= λTεy, ∀y ∈ ∂� ∩ P,λ ∈ (, ]. (.)

Suppose that there is a y ∈ ∂� ∩ P and λ ∈ [, ] with y = λTεy, i.e., y satisfies

⎧
⎨

⎩
y′′
 + λq(t)f (t,max{ε, y(t)}) = ,  < t < ,

y() = λα[y], y() = λβ[y].
(.)

http://www.boundaryvalueproblems.com/content/2014/1/148
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Then y′′
(t) ≤  on (, ) and y() = λα[y] ≤ ra

∫ 
 dA(s) ≤ cra < r = ‖y‖, y() =

λβ[y] ≤ rb
∫ 
 dB(s) ≤ crb < r = ‖y‖, which guarantees that there exists a t ∈ (, ),

r = ‖y‖ = y(t) with y′(t) =  and y′
(t)≥  for all t ∈ (, t) and y′

(t) ≤  for all t ∈ (t, ).
For t ∈ (, ), we have

–y′′
(t) ≤ g

(
max

{
ε, y(t)

})
{
 +

h(max{ε, y(t)})
g(max{ε, y(t)})

}
q(t)

≤ g
(
max

{
ε, y(t)

}){
 +

h(r)
g(r)

}
q(t). (.)

Integrate from t (t < t) to t to obtain

y′
(t) ≤ g

(
max

{
ε, y(t)

})
{
 +

h(r)
g(r)

}∫ t

t
q(s)ds≤ g

(
y(t)

)
{
 +

h(r)
g(r)

}∫ t

t
q(s)ds

and then integrate from  to t to obtain

∫ y(t)

α[y]

dy
g(y)

≤
{
 +

h(r)
g(r)

}∫ t



∫ t

s
q(τ )dτ ds

=
{
 +

h(r)
g(r)

}∫ t


sq(s)ds

≤
{
 +

h(r)
g(r)

}


 – t

∫ t


s( – s)q(s)ds

(
note  ≤  – s

 – t
,∀s ∈ [t, )

)
,

which together with α[y] ≤ cra ≤ c max{ra, rb} yields the result that
∫ r

c max{rα ,rβ }
dy
g(y)

≤
∫ r

α[y]

dy
g(y)

≤
{
 +

h(r)
g(r)

}


 – t

∫ t


s( – s)q(s)ds. (.)

Similarly if we integrate (.) from t to t (t ≥ t) and then from t to  we obtain

∫ r

c max{ra ,rb}
du
g(u)

≤
{
 +

h(r)
g(r)

}

t

∫ 

t
s( – s)q(s)ds. (.)

Now (.) and (.) imply

∫ r

c max{ra ,rb}
du
g(u)

≤ b
{
 +

h(r)
g(r)

}
,

which contradicts (.). Therefore, (.) is true. Lemma . implies that

i(Tε ,� ∩ P,P) = , (.)

which yields the result that there exists a y,ε ∈ � ∩ P such that

Tεy,ε = y,ε ,

http://www.boundaryvalueproblems.com/content/2014/1/148
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i.e., H 
= ∅ in Lemma .. Moreover, Lemma . is true, which guarantees that there exists
a δ >  such that

x(t)≥ δ, ∀t ∈ [, ],x ∈H . (.)

Now let ε = δ
 . From the above proof, there exists a x,ε ∈ � ∩ P such that

Tεx,ε = x,ε .

Since  < ε ≤ , (.) implies that

x,ε (t)≥ δ > ε, t ∈ [, ]. (.)

Moreover, since x,ε (t) satisfies

⎧
⎨

⎩
x′′
,ε (t) + q(t)f (t,max{ε,x,ε (t)}) = ,  < t < ,

x,ε () = α[x,ε ], x,ε () = β[x,ε ],

(.) guarantees that

⎧
⎨

⎩
x′′
,ε (t) + q(t)f (t,x,ε (t)) = ,  < t < ,

x,ε () = α[x,ε ], x,ε () = β[x,ε ].

Thus, BVP (.)-(.) has at least one positive solution. The proof is complete. �

Theorem . Suppose the conditions of Theorem . hold and there exists an ā ∈ (,  )
such that

lim
y→+∞

f (t, y)
y

= +∞

uniformly on [ā,  – ā]. Then BVP (.)-(.) has at least two positive solutions.

Proof Choose r >  as in (.), ε >  with ε < min{δ, , c{ra, rb}}, where δ is defined
in (.), and R > max{r,R′} in Lemma .. Set

� =
{
y ∈ C[, ]|‖y‖ < r

}
,

� =
{
y ∈ C[, ]|‖y‖ < R

}
.

From the proof of Theorem . and Lemma ., we have

i(Tε ,� ∩ P,P) = 

and

i(Tε ,� ∩ P,P) = ,

http://www.boundaryvalueproblems.com/content/2014/1/148
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which implies that

i
(
Tε , (� –�)∩ P,P

)
= –.

Thus, there exist x,ε ∈ � ∩ P and x,ε ∈ (� –�)∩ P such that

Tεx,ε = x,ε , Tεx,ε = x,ε .

From the proof of Theorem ., x,ε (t) and x,ε (t) are two positive solutions for
BVP (.)-(.). The proof is complete. �

Theorem . Suppose the conditions of Theorem . hold and max{a,b} > . Then
BVP (.)-(.) has at least two positive solutions.

Proof Choose r >  as in (.), ε >  with ε < min{δ, , c{ra, rb}}, where δ is defined
in (.), and R > max{r,R′} in Lemma .. Set

� =
{
y ∈ C[, ]|‖y‖ < r

}
,

� =
{
y ∈ C[, ]|‖y‖ < R

}
.

From the proof of Theorem . and Lemma ., we have

i(Tε ,� ∩ P,P) = 

and

i(Tε ,� ∩ P,P) = ,

which implies that

i
(
Tε , (� –�)∩ P,P

)
= –.

Thus, there exist x,ε ∈ � ∩ P and x,ε ∈ (� –�)∩ P such that

Tεx,ε = x,ε , Tεx,ε = x,ε .

From the proof of Theorem ., x,ε (t) and x,ε (t) are two positive solutions for
BVP (.)-(.). The proof is complete. �

Example . Consider

y′′(t) +μ
(
y–δ (t) + yδ (t)

)
= ,  < t < , (.)

with

y() =
∫ 


y

 (s)dA(s), y() =

∫ 


y

 (s)dB(s), dA(s) =



ds,dB(s) =



des, (.)

where δ > , δ > .

http://www.boundaryvalueproblems.com/content/2014/1/148
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Let q(t) = μ, f (t, y) = y–δ + yδ , g(y) = y–δ , h(y) = yδ , c = max{∫ 
 dA(s),

∫ 
 dB(s)} = 

 ,
b = 

μ. It is easy to see that (C)-(C) and (.) hold. Since


 + h()

g()

∫ 

c max{  ,  }


g(y)
dy =

 – (  )
δ+

( + δ)
,

letting μ <  –(  )
δ+

(+δ)
, we have

sup
r∈(,+∞)


 + h(r)

g(r)

∫ r

c max{r  ,r  }


g(y)
dy > b

for all μ ≤ μ, which guarantees that (.) is true. Moreover, since

lim
y→+∞

f (t, y)
y

= +∞

uniformly on [, ], all the conditions of Theorem. hold, which implies that (.)-(.)
has at least two positive solutions (for μ ≤ μ).

Example . Consider

y′′(t) +μ
(
y–δ (t) + yδ (t)

)
= ,  < t < , (.)

with

y() =
∫ 


y(s)dA(s), y() =

∫ 


y

 (s)dB(s), dA(s) =



ds,dB(s) =



des, (.)

where δ > , δ < .
It is easy to see that all conditions of Theorem . hold, which implies that (.)-(.)

has at least two positive solutions.

4 Multiplicity of positive solutions for the singular semipositone boundary
value problem

In this section, we consider the case

f (t, y) = F(t, y) – γ (t), t ∈ (, ),

where the conditions (C), (C), (C) for F(t, y) instead of f (t, y) hold and γ ∈ C((, ),
(, +∞)) with

w(t) =
∫ 


k(t, s)q(s)γ (s)ds < +∞, t ∈ [, ], c =

∫ 


q(t)γ (t)dt < +∞.

For y ∈ P, define

(Tεy)(t) = ( – t)α
[
[y –w]∗

]
+ tβ

[
[y –w]∗

]

+
∫ 


k(t, s)q(s)F

(
s,max

{
ε,

[
y(s) –w(s)

]∗})ds, t ∈ [, ],  < ε ≤ , (.)

http://www.boundaryvalueproblems.com/content/2014/1/148
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where k(t, s) is defined in (.) and

[
y(t) –w(t)

]∗ =

⎧
⎨

⎩
y(t) –w(t), if y(t) –w(t) > ,

, if y(t) –w(t) ≤ .

Now we present the following condition for convenience:

(C)′

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

there exists a function ψc

continuous on [, ] and positive on (, ) such that

F(t, y)≥ ψc (t) on (, )× (, c] with

maxt∈[,]
∫ 
 k(t, s)q(s)ψc (s)ds > c.

Define

H =
{
x ∈ C

(
[, ],R

) ∩C([, ),R
) ∩C

(
(, ), (, +∞)

) ∩C((, ),R
)|x satisfies

x′′(t) + q(t)F
(
t,max

{
ε,

[
x(t) –w(t)

]∗}) = , < t < ,

x() = α
[
[x –w]∗

]
,x() = β

[
[x –w]∗

]
,∀ ≥ ε > 

}
.

Lemma . If H 
= ∅ and (C)′ hold, then there exists a δ >  such that

[
x(t) –w(t)

]∗ ≥ δ, ∀t ∈ [, ],x ∈H .

Proof Suppose that x ∈H . There are two cases to consider:
() ‖x‖ ≥ c. Since

w(t) ≤ t( – t)
∫ 


q(s)γ (s)ds = ct( – t), (.)

we have

w(t) ≤ 

ct( – t) ≤ 


‖x‖t( – t).

From Lemma ., we have

x(t)≥ ‖x‖t( – t)≥ ct( – t), ∀t ∈ (, ),

which implies that

x(t) –w(t) ≥ ‖x‖t( – t) –



‖x‖t( – t) =



‖x‖t( – t)

≥ 

ct( – t) = ct( – t), t ∈ [, ].

Hence

[
x(t) –w(t)

]∗ ≥ ct( – t), t ∈ [, ]
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and so

x() = α
[
[x–w]∗

] ≥
∫ 



(
cs(– s)

)a dA(s),x() = β
[
[x–w]∗

] ≥
∫ 



(
cs(– s)

)b dB(s).

The concavity of x(t) implies that

x(t)≥ min

{∫ 



(
cs( – s)

)a dA(s),
∫ 



(
cs( – s)

)b dB(s)
}

def.= δ.

Then

[
x(t) –w(t)

]∗ ≥ 

x(t)≥ 


δ, t ∈ [, ]. (.)

()  < ‖x‖ ≤ c. Condition (C)′ guarantees that

‖x‖ ≥ max
t∈[,]

∫ 


k(t, s)q(s)F

(
s,max

{
ε,

[
x(s) –w(s)

]∗})ds

≥ max
t∈[,]

∫ 


k(t, s)q(s)ψc (s)ds > c,

which together with x ∈ P implies that

x(t)≥ t( – t)‖x‖ ≥ ct( – t), t ∈ [, ]. (.)

From (.) and (.), we have

w(t) ≤ ct( – t) =


ct( – t) ≤ 


x(t), t ∈ [, ],

and so

[
x(t) –w(t)

]∗ ≥ 

x(t) ≥ ct( – t), t ∈ [, ].

Then

x(t) = ( – t)α
[
[x –w]∗

]
+ tβ

[
[x –w]∗

]
+

∫ 


k(t, s)q(s)F

(
s,max

{
ε,

[
x(s) –w(s)

]∗})ds

≥ ( – t)
∫ 



(
cs( – s)

)a dA(s) + t
∫ 



(
cs( – s)

)b dB(s)

≥ min
t∈[,]

[
( – t)

∫ 



(
cs( – s)

)a dA(s) + t
∫ 



(
cs( – s)

)b dB(s)
]
, t ∈ [, ],

which implies

[
x(t) –w(t)

]∗ ≥ 

x(t)

≥ 


min
t∈[,]

[
( – t)

∫ 



(
cs( – s)

)a dA(s) + t
∫ 



(
cs( – s)

)b dB(s)
]

def.= δ. (.)
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Let

δ = min

{
δ,




δ

}
.

Now (.) and (.) guarantee that

[
x(t) –w(t)

]∗ ≥ δ, t ∈ [, ].

The proof is complete. �

Lemma . Suppose there exists an ā ∈ (,  ) such that

lim
y→+∞

F(t, y)
y

= +∞ (.)

uniformly on [ā,  – ā]. Then there exists an R′ >  such that for all R≥ R′

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

Proof From (.), there exists a R > max{, c} such that

F(t, y) ≥ N∗y, ∀y≥ R, (.)

where

N∗ >


ā
∫ –ā
ā k(ā, s)q(s)ds

.

Let R′ = 
āR and

�R =
{
x ∈ C[, ]|‖x‖ < R

}
, R≥ R′.

Now we show

Tεy� y for y ∈ P ∩ ∂�R,  < ε ≤ . (.)

Suppose that there exists a y ∈ P∩ ∂�R with Tεy ≤ y. Then ‖y‖ = R. Also since y(t) is
concave on [, ] (since y ∈ P) we have fromLemma . that y(t) ≥ t(– t)‖y‖ ≥ t(– t)R
for t ∈ [, ]. For t ∈ [ā,  – ā], we have (notice ‖y‖ = R≥ c)

[
y(t) –w(t)

]∗ ≥ 

y(t) ≥ 


Rā ≥ R, ∀t ∈ [ā,  – ā],

which together with (.) yields the result that

F
(
t,max

{
ε,

[
y(t) –w(t)

]∗}) ≥ N∗[y(t) –w(t)
]∗ ≥ N∗ 


Rā, ∀t ∈ [ā,  – ā]. (.)

http://www.boundaryvalueproblems.com/content/2014/1/148
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Then we have, using (.),

y(ā) ≥ Tεy(ā)

= ( – ā)α
[
[y –w]∗

]
+ āβ

[
[y –w]∗

]

+
∫ 


k(ā, s)q(s)F

(
s,max

{
ε,

[
y(s) –w(s)

]∗})ds

≥
∫ –ā

ā
k(ā, s)q(s)F

(
s,max

{
ε,

[
y(s) –w(s)

]∗})ds

=
∫ –ā

ā
k(ā, s)q(s)F

(
s,

[
y(s) –w(s)

]∗)ds

≥ N∗ 

Rā

∫ –ā

ā
k(ā, s)q(s)ds > R = ‖y‖,

which is a contradiction. Hence (.) is true. Thus Lemma . guarantees that

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

The proof is complete. �

Lemma . Suppose that max{a,b} > . Then there exists an R′ >  such that for all R≥ R′

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

Proof Since max{a,b} > , without loss of generality, we suppose that a > . Let R′ >
max{, c} with 

a R
′a– ∫ 

 s
a( – s)a dA(s) > . Set

�R =
{
x ∈ C[, ]|‖x‖ < R

}
.

Now we show that

Tεx� x, ∀x ∈ ∂�R ∩ P,∀ < ε ≤ .

In fact, suppose that x ∈ ∂�R ∩ P and satisfies

Tεx≤ x.

Then ‖y‖ = R. Also since y(t) is concave on [, ] (since y ∈ P) we have from Lemma .
that y(t) ≥ t( – t)‖y‖ ≥ t( – t)R for t ∈ [, ]. For t ∈ [, ] we have

[
y(t) –w(t)

]∗ ≥ 

y(t) ≥ 


Rt( – t).

Then

R ≥ y() =
∫ 



([
y(s) –w(s)

]∗)a dA(s)≥
∫ 



(


‖y‖s( – s)

)a

dA(s)

=

a

RRa–
∫ 


sa( – s)a dA(s)≥ 

a
RR′a–

∫ 


sa( – s)a dA(s) > R.
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This is a contradiction. Lemma . guarantees that

i(Tε ,�R ∩ P,P) = , ∀ < ε ≤ .

The proof is complete. �

Theorem . Suppose (C), (C)′, (C), and (C) hold and the following conditions are
satisfied:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

≤ F(t, y) ≤ g(y) + h(y) on [, ]× (,∞) with

g >  continuous and nonincreasing on (,∞),

h≥  continuous on [,∞), and h
g

nondecreasing on (,∞),

(.)

and

sup
r∈(c,+∞)


 + h(r)

g(r)

∫ r

c max{ra ,rb}
dy

g( y)
> b (.)

holds; here

c = max

{∫ 


dA(s),

∫ 


dB(s)

}
,

b = max

{

∫ 




t( – t)q(t)dt, 

∫ 




t( – t)q(t)dt
}
.

(.)

Then BVP (.)-(.) has at least one positive solution.

Proof From (.), choose r > c, ε >  with ε < min{,  c max{ra, rb}} with


 + h(r)

g(r)

∫ r

c max{ra ,rb}
dy

g( y)
> b. (.)

Let

� =
{
y ∈ C[, ]|‖y‖ < r

}
.

Let Tε be defined as in (.). Lemma . guarantees that Tε : P → P is continuous and
completely continuous.
Now we show that

y 
= λTεy, ∀y ∈ ∂� ∩ P,λ ∈ [, ]. (.)

Suppose that there is a y ∈ ∂� ∩ P and λ ∈ [, ] with y = λTεy. Since y(t) ≥
t( – t)‖y‖ ≥ t( – t)c and w(t) =

∫ 
 k(t, s)q(s)γ (s)ds≤ t( – t)

∫ 
 q(s)γ (s)ds = ct( – t) =

c
‖y‖ t( – t)‖y‖ ≤ 

y(t), we have

y(t) –w(t) ≥ 

y(t), t ∈ [, ].
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Since y satisfies

⎧
⎨

⎩
y′′
 + λq(t)F(t,max{ε, [y(t) –w(t)]∗}) = ,  < t < ,

y() = λα[[y –w]∗], y() = λβ[[y –w]∗],
(.)

y() = λα[[y – w]∗] ≤ ra
∫ 
 dA(s) ≤ cra < r = ‖y‖ and y() = λβ[[y – w]∗] ≤

rb
∫ 
 dB(s) ≤ crb < r = ‖y‖, there exists a t ∈ (, ) such that y′

(t) =  and y′
(t) ≥ 

on (, t), y′
(t)≤  on (t, ). For t ∈ (, ), it is easy to see that

–y′′
(t) ≤ g

(
max

{
ε,

[
y(t) –w(t)

]∗})
{
 +

h(max{ε, [y(t) –w(t)]∗})
g(max{ε, [y(t) –w(t)]∗})

}
q(t)

≤ g
(
max

{
ε,

[
y(t) –w(t)

]∗})
{
 +

h(r)
g(r)

}
q(t). (.)

Integrate from t to t to obtain

y′
(t) ≤ g

(
max

{
ε,

[
y(t) –w(t)

]∗})
{
 +

h(r)
g(r)

}∫ t

t
q(s)ds

≤ g
(

max

{
ε,



y(t)

}){
 +

h(r)
g(r)

}∫ t

t
q(s)ds

≤ g
(


y(t)

){
 +

h(r)
g(r)

}∫ t

t
q(s)ds

and then integrate from  to t to obtain

∫ y(t)

α[[y–w]∗]

dy
g( y)

≤
{
 +

h(r)
g(r)

}∫ t


sq(s)ds≤

{
 +

h(r)
g(r)

}


 – t

∫ t


s( – s)ds,

which together with α[[y –w]∗]≤ α[y] ≤ c max{ra, rb} yields
∫ r

c max{ra ,rβ }
dy

g( y)
≤

∫ r

α[[y–w]∗]

dy
g( y)

≤
{
 +

h(r)
g(r)

}


 – t

∫ t


s( – s)ds. (.)

Similarly if we integrate (.) from t to t (t ≥ t) and then from t to  we obtain

∫ r

c max{ra ,rb}
du

g( u)
≤

{
 +

h(r)
g(r)

}

t

∫ 

t
s( – s)q(s)ds. (.)

Now (.) and (.) imply

∫ r

c max{ra ,rb}
du

g( u)
≤ b

{
 +

h(r)
g(r)

}
,

which contradicts (.). Then (.) is true. Lemma . implies that

i(Tε ,� ∩ P,P) = . (.)
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Thus, there exists an xε ∈ P ∩ � such that Tεxε = xε , which yields the result that H 
= ∅
in Lemma . and there is a δ >  such that

[
x(t) –w(t)

]∗ ≥ δ, ∀x ∈H . (.)

Let ε = 
δ and Tεxε = xε . Obviously xε ∈H and [xε (t) –w(t)]∗ ≥ δ. From

xε (t) = ( – t)α
[
[xε –w]∗

]
+ tβ

[
[xε –w]∗

]
+

∫ 


k(t, s)q(s)F

(
s,

[[
xε (s) –w(s)

]∗])ds,

we have

xε (t) = ( – t)α[xε –w] + tβ[xε –w] +
∫ 


k(t, s)q(s)F

(
s,xε (s) –w(s)

)
ds, t ∈ [, ].

Let y(t) = xε (t) –w(t), t ∈ [, ]. It is easy to see that y(t) is a positive solution of BVP (.)-
(.). The proof is complete. �

Theorem . Suppose the conditions of Theorem . hold and there exists an ā ∈ (,  )
such that

lim
y→+∞

F(t, y)
y

= +∞

uniformly on [ā,  – ā]. Then BVP (.)-(.) has at least two positive solutions.

Proof Choose r as in (.), ε >  with ε < min{δ, ,  c max{ra, rb}}, where δ is defined
in (.), and R > max{, r} in Lemma .. Set

� =
{
y ∈ C[, ]|‖y‖ < r

}
,

� =
{
y ∈ C[, ]|‖y‖ < R

}
.

From the proof of Theorem . and Lemma ., we have

i(Tε ,� ∩ P,P) = 

and

i(Tε ,� ∩ P,P) = ,

which implies that

i
(
Tε , (� –�)∩ P,P

)
= –.

Thus, there exist x,ε ∈ � ∩ P and x,ε ∈ (� –�)∩ P such that

Tεx,ε = x,ε , Tεx,ε = x,ε .
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Let y,ε (t) = x,ε (t)–w(t) and y,ε (t) = x,ε (t)–w(t) for all t ∈ [, ]. It is easy to see that
y,ε (t) and y,ε (t) are two positive solutions for BVP (.)-(.). The proof is complete.

�

Theorem . Suppose the conditions of Theorem . hold and max{a,b} > . Then
BVP (.)-(.) has at least two positive solutions.

Proof Choose r as in (.), ε >  with ε < min{δ, ,  c max{ra, rb}}, where δ is defined
in (.), and R > max{, r} in Lemma .. Set

� =
{
y ∈ C[, ]|‖y‖ < r

}
,

� =
{
y ∈ C[, ]|‖y‖ < R

}
.

From the proof of Theorem . and Lemma ., we have

i(Tε ,� ∩ P,P) = 

and

i(Tε ,� ∩ P,P) = ,

which implies that

i
(
Tε , (� –�)∩ P,P

)
= –.

Thus, there exist x,ε ∈ � ∩ P and x,ε ∈ (� –�)∩ P such that

Tεx,ε = x,ε , Tεx,ε = x,ε .

Let y,ε (t) = x,ε (t)–w(t) and y,ε (t) = x,ε (t)–w(t) for all t ∈ [, ]. It is easy to see that
y,ε (t) and y,ε (t) are two positive solutions for BVP (.)-(.). The proof is complete.

�

Example . Consider

y′′(t) +



(
y–(t) + yδ (t) –





t 
 ( – t) 

)
= ,  < t < , (.)

y() =
∫ 


y

 (s)dA(s),

y() =
∫ 



(
y(s)

) 
 dB(s), dA(s) =



ds,dB(s) =



d sin s,

(.)

where δ > .
Let q(t) = 

 , F(t, y) = y– + yδ , g(y) = y–, h(y) = yδ , c = max{∫ 
 dA(s),

∫ 
 dB(s)} = 

 ,
b = 

 , γ (t) =





t

 (–t)



, c =

∫ 
 q(s)γ (s)ds ≤ 

 . It is easy to see that (C), (C)-(C)
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and (.) hold, and since F(t, y) ≥ 
(c)

≥ () for (t, y) ∈ [, ]× (, c] and

max
t∈[,]

∫ 


k(t, s)q(s)() ds =




 max
t∈[,]

∫ 


k(t, s)ds > c,

we find that (C)′ is true.
Since


 + h()

g()

∫ 

c max{  ,  }


g( y)
dy =

 – 



=




,

we have

sup
r∈(c,+∞)


 + h(r)

g(r)

∫ r

c max{r  ,  }


g( y)
dy > b,

which guarantees that (.) is true. Moreover, since

lim
y→+∞

F(t, y)
y

= +∞

uniformly on [, ], all the conditions of Theorem . hold. Then (.)-(.) has at least
two positive solutions.

Example . Consider

y′′(t) +



(
y–(t) + yδ (t) –





t 
 ( – t) 

)
= ,  < t < , (.)

y() =
∫ 


y(s)dA(s),

y() =
∫ 



(
y(s)

) 
 dB(s), dA(s) =



ds,dB(s) =



d sin s,

(.)

where  < δ ≤ .
Since a =  > , using Theorem ., we see that (.)-(.) has at least two positive

solutions.

5 Uniqueness of positive solutions for the singular boundary value problem
In this section, we consider the uniqueness of positive solution for BVP (.)-(.).

Lemma. (see []) Suppose that E is a Banach spacewith a normal and solid cone P ⊆ E
and A :

◦
P× ◦

P → ◦
P is a mixed monotone operator. Moreover, suppose there is a constant θ

with  ≤ θ <  such that

A
(
tx,


t
y
)

≥ tθA(x, y), ∀x, y ∈ ◦
P,  < t < .

Then A has a unique fixed point in
◦
P.
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Theorem . Suppose that (C), (C), (C), (C) hold and  > max{a,b} > . Then
BVP (.)-(.) has a unique positive solution.

Proof It is easy to see that P defined by (.) is a normal and solid cone. For x, y ∈ ◦
P, define

A(x, y)(t) = ( – t)α[x] + tβ[y] +
∫ 


k(t, s)q(s)g

(
s,x(s), y(s)

)
ds, t ∈ [, ],

where g is given in (C). Since x, y ∈ ◦
P, we have mint∈[,] x(t) >  and mint∈[,] y(t) > .

Then (C) guarantees that

∫ 


xa(s)dA(s) > ,

∫ 


yb(s)dB(s) > ,

which implies that

min
t∈[,]

[
( – t)α[x] + tβ[y]

]
> .

Therefore, A(x, y) ∈ ◦
P.

Let θ = max{θ ,max{a,b}}. For  < λ <  and x ∈ ◦
P, y ∈ ◦

P, from (C), we have

A
(

λx,

λ
y
)
(t) = ( – t)α[λx] + tβ[λy] +

∫ 


k(t, s)g

(
s,λx(s),


λ
y(s)

)
ds

≥ ( – t)λaα[x] + tλbβ[y] + λθ

∫ 


k(t, s)g

(
s,x(s), y(s)

)
ds

≥ ( – t)λθα[x] + tλθβ[y] + λθ

∫ 


k(t, s)g

(
s,x(s), y(s)

)
ds

= λθA(x, y)(t), ∀t ∈ [, ].

From Lemma ., A has a unique fixed point x∗ in
◦
P, which satisfies

x∗(t) = ( – t)α
[
x∗] + tβ

[
x∗] +

∫ 


k(t, s)q(s)g

(
s,x∗(s),x∗(s)

)
ds

= ( – t)α
[
x∗] + tβ

[
x∗] +

∫ 


k(t, s)q(s)f

(
s,x∗(s)

)
ds, t ∈ [, ].

Then x∗(t) is the unique positive solution of BVP (.)-(.). The proof is complete. �

Example . Consider

y′′(t) +



(
y–δ (t) + yδ (t)

)
= ,  < t < , (.)

y() =
∫ 


yδ (s)dA(s),

y() =
∫ 



(
y(s)

)δ dA(s), dA(s) = d sin s,dB(s) = des,
(.)

where  < max{δ, δ, δ, δ} < .
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It is easy to see that all conditions of Theorem . hold, which guarantees that (.)-(.)
has a unique positive solution.
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