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Abstract
We develop a new function space and discuss trace operator on the same
genealogical spaces. We also prove that the nonlinear boundary value problem with
Dirichlet condition: –�u = f (|u|) sgnu in the given domain, u = 0 on the boundary,
possesses only a trivial solution if f obeys the slope condition: α′(x) > 2n

n–2
α(x)
x , where α

is the anti-derivative of f with α(0) = 0.
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1 Introduction
We are interested in the nonlinear boundary value problem with Dirichlet condition:

⎧
⎨

⎩

–�u = f (|u|) sgnu in �,

u =  on ∂�,
()

where� is an open subset of the n-dimensional Euclidean spaceRn. Questions of this kind
occur inmany problems ofmathematical physics, in the theory of travelingwaves, homog-
enization, stationary states, boundary layer theory, biology, flame propagation, probability
theory, and so on. This problem has been one of the most important and most discussed
topics in the theory of partial differential equations during the past several decades.
Many physicists and mathematicians have studied the simplest form

–�u = |u|p sgnu = |u|p–u, p > ,

which is a special case of () with f (|x|) = |x|p. A critical reason for studying this special
case is that the function spaces that have been used to deal with these problems are just
the Lebesgue spaces Lp(�) (especially for the existence theory). However, it is too good to
be true in reality!
In this paper we build up a new function space which has been designed to handle so-

lutions of the general nonlinear boundary value problem () without imposing too much
assumption on the function f . As a matter of fact, in [], one can find series of attempts
to construct new function spaces which generalize classical Lebesgue spaces. We extend
those ideas to obtain a better space. Themotivation of these research comes from taking a
close look at the Lp-norm: ‖f ‖Lp = (

∫

X |f (x)|p dμ)/p of the classical Lebesgue spaces Lp(X),
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 ≤ p < ∞. It can be rewritten as

‖f ‖Lp := α–
(∫

X
α
(∣
∣f (x)

∣
∣
)
dμ

)

, α(x) := xp.

Even though the positive real-variable function α(x) := xp has very beautiful and conve-
nient algebraic and geometric properties, it also has some practical limitations for the the-
ory of differential equations, as pointed out above. The new space is devised to overcome
these limitations without hurting the beauty of Lp-norm too much.
There are two different attempts to generalize the classical Lebesgue spaces - Orlicz

spaces LA(X) and Lorentz spaces Lp,r(X,μ). The theory of Orlicz spaces has been well de-
veloped which is similar to our new spaces. The Orlicz space LA(X) requires the convexity
of theN-functionA for the triangle inequality of the norm, whereas the norm for the space
Lα(X) does not require the convexity of the Hölder function and it has indeed inherited
the beautiful and convenient properties from the classical Lebesgue norm.
Based on the new function spaces Lα(X), we present twomain results. One of them is the

trace theorem in the space Lα(X). The trace theorem is one of the basic requirements to
deal with the boundary value problems.We state and prove it in Section .We also discuss
the non-existence of non-trivial solutions for the problem () if the given function f is of
fast growth. To be more precise, we prove that the boundary value problem () possesses
only a trivial solution if f obeys the following slope condition:

α′(x) >
n
n – 

α(x)
x

,

where α is the anti-derivative of f with α() =  and n >  (see Section  for details).
Throughout this paper, � represents an open subset of Rn and (X,M,μ) is an abstract

measure space (Section ). Also, C denotes various real positive constants.

2 The space Lα(X)
We introduce some terminologies to define the Lebesgue type function spaces Lα(X)
which improve the original version introduced in []. In this section, R̄+ = {x ∈R : x≥ }.
A pre-Hölder function α : R̄+ → R̄+ is an absolutely continuous bijective function satis-

fying α() = . If there exists a pre-Hölder function β satisfying

α–(x)β–(x) = x ()

for all x ∈ R̄+, then β is called the conjugate (pre-Hölder) function of α. In the relation (),
the notations α–, β– aremeant to be the inverse functions of α, β , respectively. Examples
of pre-Hölder pairs are (α(x),β(x)) = (xp,xq) for p > , 

p +

q =  and (α(x),β(x)) = (xβ̄– ◦

ᾱ(x),xᾱ– ◦ β̄(x)) for ᾱ(x) = ex –x–, β̄(x) = (+x) log(+x)–x. In fact, for any Orlicz
N-function A together with complementary N-function Ã, (λ ◦ A,λ ◦ Ã) is a pre-Hölder
pair with λ(x) = A–(x)Ã–(x).
Some basic identities for a pre-Hölder pair (α,β) are listed:

x = β

(
x

α–(x)

)

or α(x) = β

(
α(x)
x

)

, ()

x =
α(x)

β–(α(x))
or

α(x)
x

= β– ◦ α(x), ()
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β–(x)
α′(α–(x))

+
α–(x)

β ′(β–(x))
= , ()

y
α′(x)

+
x

β ′(y)
=  for y :=

α(x)
x

, ()

α′(x) =
α(x)
x

+
α(x)

β ′( α(x)
x ) – x

. ()

In the following discussion, a function � represents the two-variable function on R̄+ ×
R̄+ defined by

�(x, y) := α–(x)β–(y),

provided that a pre-Hölder pair (α,β) exists.

Definition . Let � > . A pre-Hölder function α with the conjugate function β is said
to be a Hölder function if for any positive constants a,b > , there exist constants θ, θ
(depending on a, b) such that

θ + θ ≤ �

and that a comparable condition

�(x, y)≤ θ
ab

α(a)
x + θ

ab
β(b)

y ()

holds for all (x, y) ∈ R̄+ × R̄+.

The following proposition and the proof may illustrate that the comparable condition
() is not far-fetched.

Proposition . Let α be a convex pre-Hölder function together with the convex conjugate
function β . Suppose that for any a,b≥ , there are constants p, p, q, q (depending on a,
b) with 

p
+ 

p
≤ � and 

q
+ 

q
≥  satisfying the slope conditions;

p
α(a)
a

≤ α′(a)≤ q
α(a)
a

, ()

p
β(b)
b

≤ β ′(b)≤ q
β(b)
b

. ()

Then α is a Hölder function. (So is β .)

Proof The equation of the tangent plane of the graph of � at (ā, b̄) reads

z = �x(ā, b̄)(x – ā) +�y(ā, b̄)(y – b̄) +�(ā, b̄)

=
β–(b̄)

α′(α–(ā))
(x – ā) +

α–(ā)
β ′(β–(b̄))

(y – b̄) + α–(ā)β–(b̄)

≡ Tā,b̄(x, y).
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Then for α–(ā) := a and β–(b̄) := b, Tā,b̄(x, y) can be rewritten as

Tā,b̄(x, y) =
b

α′(a)
x +

a
β ′(b)

y + ab –
bα(a)
α′(a)

–
aβ(b)
β ′(b)

. ()

From the slope conditions (), () together with the observation that

bα(a)
α′(a)

+
aβ(b)
β ′(b)

≥ 
q
ab +


q

ab≥ ab,

we have

Tā,b̄(x, y)≤

p

ab
α(a)

x +

p

ab
β(b)

y. ()

On the other hand, we observe that every point on the surface z = �(x, y) is an elliptic
point since the Gaussian curvature of a point on the surface z = �(x, y) is positive from
the convexity hypotheses on α and β (we refer to p. in []). Hence the tangent planes
z = Tā,b̄(x, y) touch the graph at (ā, b̄) and nowhere lie below the graph z = �(x, y), that is,
for any ā, b̄,

�(x, y)≤ Tā,b̄(x, y). ()

In fact, since the restriction z = Tā,b̄(x, b̄) of the tangent plane z = Tā,b̄(x, y) is a tangent line
to the graph�(x, b̄) = bα–(x) (β–(b̄) = b) in the x-z plane and α– is concave up on R̄+, we
get �(x, b̄) ≤ Tā,b̄(x, b̄). Furthermore, since (ā, b̄) is an elliptic point, a local neighborhood
of (ā, b̄) in the surface z = �(x, y) belongs to the same side of z = Tā,b̄(x, y) (p. in []).
So on a local neighborhood of (ā, b̄), the graph z = �(x, y) lies below the tangent plane
z = Tā,b̄(x, y). This holds for all (ā, b̄). Hence �(x, y) is concave up on R̄+ × R̄+, which, in
turn, illustrates (). Combining () and (), we conclude that

�(x, y)≤ θ
ab

α(a)
x + θ

ab
β(b)

y,

where we set θ := 
p

and θ := 
p
. �

We now define the Lebesgue-Orlicz type function spaces Lα(X): for a Hölder function α,

Lα(X) :=
{
f | f is a measurable function on X satisfying ‖f ‖Lα <∞}

,

where we set

‖f ‖Lα := α–
(∫

X
α
(∣
∣f (x)

∣
∣
)
dμ

)

. ()

A Hölder type inequality and a Minkowski inequality on the new space Lα(X) are pre-
sented as follows:
Let α be aHölder function and β be the correspondingHölder conjugate function. Then

for any f ∈ Lα(X) and g ∈ Lβ (X), we have

∣
∣
∣
∣

∫

X
f (x)g(x)dμ

∣
∣
∣
∣ ≤ �‖f ‖Lα‖g‖Lβ

. ()
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The name of Hölder functions originates from the Hölder inequality (). So we briefly
sketch the idea. Let a := ‖g‖Lβ

( �= ), b := ‖f ‖Lα ( �= ), and then there exist θ, θ such that
θ + θ ≤ � and

∣
∣f (x)g(x)

∣
∣ = α–(α

(∣
∣f (x)

∣
∣
))

β–(β
(∣
∣g(x)

∣
∣
))

≤ θ
ab

α(b)
α
(∣
∣f (x)

∣
∣
)
+ θ

ab
β(a)

β
(∣
∣g(x)

∣
∣
)
.

Integration of both sides yields

∫

X

∣
∣f (x)g(x)

∣
∣dμ ≤ θ

ab
α(b)

∫

X
α
(∣
∣f (x)

∣
∣
)
dμ + θ

ab
β(a)

∫

X
β
(∣
∣g(x)

∣
∣
)
dμ

≤ �‖f ‖Lα‖g‖Lβ
.

As an important application of a Hölder inequality, we have the Minkowski inequality
on Lα(X). We omit the proof.

Remark . (Generalized Minkowski inequality) Let (
,M,ν) be a σ -finite measure
space. Suppose that α is a Hölder function and f is a nonnegative measurable function
on X × 
 satisfying f (·, y) ∈ Lα(X) for almost every y ∈ 
. Then

∥
∥
∥
∥

∫




f (·, y)dν(y)
∥
∥
∥
∥
Lα (X)

≤ �

∫




∥
∥f (·, y)∥∥Lα (X)

dν(y).

In particular, for any f, f ∈ Lα(X), we have

‖f + f‖Lα ≤ �
{‖f‖Lα + ‖f‖Lα

}
.

We can also show that the metric space Lα(X) is complete with respect to the metric:

d(f , g) := ‖f – g‖Lα for f , g ∈ Lα(X).

We now present some remarks on the dual space of Lα(X). To each g ∈ Lβ (X) is associ-
ated a bounded linear functional Fg on Lα(X) by

Fg(f ) :=
∫

X
f (x)g(x)dμ,

and the operator (inhomogeneous) norm of Fg is at most ‖g‖Lβ
:

‖Fg‖L′
α
:= sup

{ | ∫X fg dμ|
‖f ‖Lα

: f ∈ Lα(X), f �= 
}

≤ �‖g‖Lβ
. ()

For  �= g ∈ Lβ (X), if we put f (x) := β(|g(x)|) sgn(g(x))
|g(x)| , we have f ∈ Lα(X) and

‖Fg‖L′
α
= sup

{ | ∫X fg dμ|
‖f ‖Lα

: f ∈ Lα(X), f �= 
}

≥ | ∫X fg dμ|
‖f ‖Lα

= ‖g‖Lβ
. ()
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This implies that themapping g �→Fg is isomorphic from Lβ (X) into the space of continu-
ous linear functionals Lα(X)′. Furthermore, it can be shown that the linear transformation
F : Lβ (X) → Lα(X)′ is onto.

Remark . (Dual space of Lα(X)) Let β be the conjugate Hölder function of a Hölder
function α. Then the dual space Lα(X)′ is isomorphic to Lβ (X).

The proof is quite parallel to the classical Riesz representation theorem, so we omit the
proof.
The two inequalities () and () explain the quasi-homogeneity of ‖ · ‖Lα . That is, we

have the following.

Proposition . For all k ≥  and f ∈ Lα(X),

k
�
‖f ‖Lα ≤ ‖kf ‖Lα ≤ k�‖f ‖Lα .

In particular, when � = , we have homogeneity:

‖kf ‖Lα = k‖f ‖Lα .

The metric space Lα(X) and the classical Orlicz space LA(X) differ by the choice of the
conjugate function. In fact, for the Orlicz space LA(X), the complementary N-function Ã
of A is designed to satisfy the relation

Ã′ =
(
A′)–,

which implies, in turn,

cx ≤ A–(x)Ã–(x)≤ cx

for some constants c, c > . Also, the Luxemburg norm

‖u‖A = inf

{

k >  :
∫

�

A
( |u(x)|

k

)

dx≤ 
}

for the Orlicz space LA(X) requires the convexity of the N-function A for the triangle in-
equality of the norm. On the other hand, the (inhomogeneous) norm for the space Lα(X)
does not require the convexity of theHölder function and it has indeed inherited the beau-
tiful and convenient properties from the classical Lebesgue norm.

3 Trace operator on Sobolev type spaceW1
α

Let � be an open subset of Rn. The Sobolev type spaceW 
α(�) is employed in

W 
α(�) :=

{
u ∈ Lα(�) | ∂xju ∈ Lα(�), j = , , . . . ,n

}

together with the norm

‖u‖W 
α
:= ‖u‖Lα +

n∑

j=

‖∂xju‖Lα ,

http://www.boundaryvalueproblems.com/content/2014/1/153
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where ∂xj :=
∂

∂xj
. Then it can be shown that the function space W 

α(�) is a separable com-
plete metric space, and that C∞(�)∩W 

α(�) is dense inW 
α(�).

The completion of the space C∞
c (�) with respect to the norm ‖ · ‖W 

α
is denoted by

W 
α,(�), where C∞

c (�) is the space of smooth functions on � with compact support.
We introduce the trace operator onW 

α(�), which is important by itself and also useful in
Section .Wewant to point out that the trace operator we present here is an improvement
and a completion of the one briefly introduced in [].
We say that a pre-Hölder function β satisfies a slope condition if there exists a positive

constant c >  for which

β ′(x)≥ c
β(x)
x

()

holds for almost every x > . The slope condition (), in fact, corresponds to the �-con-
dition for Orlicz spaces.
We prove that the boundary trace on C∞(�̄) ∩ W 

α(�) can be extended to the space
W 

α(�) as follows.

Theorem . (Trace map on W 
α) Let (α,β) be a Hölder pair obeying the slope condi-

tion () and � be a bounded open subset of Rn with smooth boundary. Then the trace
operator � :W 

α(�) → Lα(∂�) is continuous and uniquely determined by �(u) = u|∂� for
u ∈ C∞(�̄)∩W 

α(�).

Proof We first prove the theorem for the special case of flat boundary, and by using it, we
take care of the general cases.
A special case - � = R

n
+. For the case � = R

n
+ := {(x′,xn) | x′ ∈ R

n–,xn > } and for a
smooth function f ∈ C∞(Rn

+)∩W 
α(Rn

+), we observe that

α
(∣
∣f

(
x′, 

)∣
∣
)
= –

∫ ∞


∂xnα

(∣
∣f

(
x′,xn

)∣
∣
)
dxn

≤
∫ ∞


α′(∣∣f

(
x′,xn

)∣
∣
)∣
∣∂xn f

(
x′,xn

)∣
∣dxn

≤ �
∥
∥∂xn f

(
x′, ·)∥∥Lα (,∞)

∥
∥α′(∣∣f

(
x′, ·)∣∣)∥∥Lβ (,∞). ()

Owing to the identity (), we have

α′(t) = s + t
α′(t)
β ′(s)

, s =
α(t)
t

. ()

On the other hand, using the identity (), we can notice that the slope condition () is
equivalent to

β ′
(

α(t)
t

)

≥ ct. ()

Reflecting () to the identity (), we have

α′(∣∣f (x)
∣
∣
) ≤ c

c – 
α(|f (x)|)
|f (x)| , x =

(
x′,xn

)
.

http://www.boundaryvalueproblems.com/content/2014/1/153
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Therefore we have

β–
(∫ ∞


β
(
α′(∣∣f

(
x′,xn

)∣
∣
))
dxn

)

≤ β–
(∫ ∞


β

(
c

c – 
α(|f (x′,xn)|)
|f (x′,xn)|

)

dxn
)

≤ �

(
c

c – 

)

β–
(∫ ∞


β

(
α(|f (x′,xn)|)
|f (x′,xn)|

)

dxn
)

= �

(
c

c – 

)

β–
(∫ ∞


α
(∣
∣f

(
x′,xn

)∣
∣
)
dxn

)

.

Inserting this into the right side of (), we obtain

α
(∣
∣f

(
x′, 

)∣
∣
) ≤ C

∥
∥∂xn f

(
x′, ·)∥∥Lα (,∞)β

– ◦ α
(∥
∥f

(
x′, ·)∥∥Lα (,∞)

)

≤ C
[
α
(∥
∥∂xn f

(
x′, ·)∥∥Lα (,∞)

)
+ α

(∥
∥f

(
x′, ·)∥∥Lα (,∞)

)]

for some positive constants C (two C’s may be different). The comparable condition ()
has been used in the second inequality. Taking integrations on both sides over Rn–, we
obtain

α
(‖f ‖Lα (Rn–)

) ≤ C
[
α
(‖∂xn f ‖Lα (Rn

+)
)
+ α

(‖f ‖Lα (Rn
+)

)]
. ()

This inequality says that the trace on C∞(Rn
+) ∩W 

α(Rn
+) can be uniquely extended to the

spaceW 
α(Rn

+).
The general case - � being bounded open in R

n. In this section we restrict our attention
to the case of � being a bounded open subset. However, � can be more general, such as
unbounded domains satisfying the uniform Cm-regularity condition (p. in []).
Assume that ∂� is an n –  dimensional Cm-manifold. Letting

Q :=
{
y ∈ R

n | |yi| ≤ 
}
,

Q := {y ∈Q | yn = },
Q+ := {y ∈Q | yn > },

the last condition can be stated as follows. There is a finite collection of open bounded
sets in R

n; �,�, . . . ,�N with
⋃{�j |  ≤ i ≤ N} ⊃ ∂� and corresponding ıj ∈ Cm(Q;�j)

which are bijections satisfying Q, Q+, and Q mapping onto �j, �j ∩ �, and �j ∩ ∂�,
respectively, and each Jacobian J(ıj) is positive. Each pair (ıj,�i) is a coordinate patch.
Let � :=�. We can construct ℘j ∈ C∞

 (�j),  ≤ j ≤ N , with ℘j(x)≥ , and

N∑

j=

℘j(x) =  for x ∈ �̄.

Thus, {℘j |  ≤ j ≤ N} is a partition-of -unity subordinate to the open cover {�j |  ≤ j ≤ N}
of ∂�, and {℘j |  ≤ j ≤ N} is a partition-of-unity subordinate to the open cover {�j |  ≤
j ≤ N} of �̄.
If f is a function defined on ∂�, then we have

∫

∂�

f dS ≡
N∑

j=

∫

∂�∩�j

℘jf dS =
n∑

j=

∫

Q

(℘jf ) ◦ ıj
(
y′, 

)
Jj
(
y′)dy′, ()

http://www.boundaryvalueproblems.com/content/2014/1/153
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where s = (s, s, . . . , sn) = ıj(y′, ) and Jj(y′) is the magnitude of the vector

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e e · · · en
(s)y (s)y · · · (sn)y
(s)y (s)y · · · (sn)y

. . .
(s)yn– (s)yn– · · · (sn)yn–

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

()

at yn = . Here {e,e, . . . ,en} represents the standard basis for Rn. From the fact that

() =
∂(s, . . . , sn)

∂(y, . . . , yn–)
e +

∂(s, s, . . . , sn)
∂(y, . . . , yn–)

e + · · · + ∂(s, . . . , sn–)
∂(y, . . . , yn–)

en

=
(

∂(s, . . . , sn)
∂(y, . . . , yn–)

, . . . ,
∂(s, . . . , sn–)
∂(y, . . . , yn–)

)

,

we notice that

Jj
(
y′) =

{ N∑

k=

(
∂(s, . . . , ŝk , . . . , sn)

∂(y, . . . , yn–)

)∣∣
∣
∣
yn=

}/

.

Then by the smoothness property,

∣
∣Jj

(
y′)∣∣ ≤ K ,  ≤ j ≤ N , y′ ∈Q,

sincem≥ . Finally, we construct the trace on ∂� as indicated. First, we represent

W 
α(�)→W 

α,(�)×W 
α(Q+)N ,

u =
N∑

j=

℘ju �→ (
℘u, (℘u) ◦ ı, . . . , (℘Nu) ◦ ıN

)
.

We take the trace operator on each component except for the first component ℘u, to say
�j,  ≤ j ≤ N :

W 
α,(�)×W 

α(Q+)N → Lα(Q)N ,
(
℘u, (℘u) ◦ ı, . . . , (℘Nu) ◦ ın

) �→ (�(℘u ◦ ı), . . . ,�N (℘Nu ◦ ıN )
)
.

We note that �j(℘ju ◦ ıj) = (℘j�j(u)) ◦ ıj,  ≤ j ≤ N . Finally, summing up all components,
we obtain

Lα(Q)N → Lα(∂�),

((
℘�(u)

) ◦ ı, . . . ,
(
℘N�N (u)

) ◦ ıN
) �→ �(u) ≡

N∑

j=

℘j�ju.
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The fact �(u) ∈ Lα(∂�) follows from the estimates

∫

∂�

α
(∣
∣�(u)∣∣)dS ≤

N∑

j=

∫

∂�∩�j

α
(|�ju|)dS ≤ K

N∑

j=

∫

Q

α
(∣
∣�j(u) ◦ ıj

∣
∣
)
dy′

≤ KCα

N∑

j=

α
(‖u ◦ ıj‖W 

α (Q+)
)

≤ KCα

N∑

j=

α
(
kı‖u‖W 

α (�∩�j)
)

≤ KCαNα
(
kı‖u‖W 

α (�)
)
,

where K is the maximum of all Jacobians, Cα is the norm of the trace from half-space as in
(), and kı is the largest norm in W 

α under a change of variables ıj :W 
α(Q+) → W 

α(� ∩
�j). Clearly, if u ∈ C∞(�̄)∩W 

α(�) then �(u) = u|∂�. The proof is now completed. �

4 Ill-posedness of boundary value problems
In this section we investigate a nonlinear elliptic partial differential equation, namely the
nonlinear boundary value problem:

⎧
⎨

⎩

–�u = f (|u|) sgnu in �,

u =  on ∂�.
()

Here we assume that f is the derivative of a Hölder function α satisfying a slope condition;
f := α′. Hence there exists a positive constant c >  for which

α′(x)≥ c
α(x)
x

()

holds for almost every x > . Our goal is to demonstrate that the slope condition ()
with large constant c implies that u ≡  is the only strong solution of () under a certain
geometric condition on �. We are going to find such a constant c explicitly. n

n– turns out
to be exact for n > .
In the following discussion,� is assumed to be a bounded open set with smooth bound-

ary. We multiply the PDE () by u and integrate over � to find

∫

�

–�uudx =
∫

�

f
(|u|)udx =

∫

�

α′(|u|)|u|dx.

The left side can be rewritten as
∫

�

–�uudx = –
∫

�

div(∇u)udx

= –
∫

∂�

(∇u)u · �ndS +
∫

�

∇u · ∇udx

=
∫

�

∇u · ∇udx,

http://www.boundaryvalueproblems.com/content/2014/1/153
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since u =  on ∂�. In the above, �n represents the unit outward normal vector. Therefore
we get

∫

�

|∇u| dx =
∫

�

α′(|u|)|u|dx ≥ c
∫

�

α
(|u|)dx. ()

On the other hand, multiplying the PDE () by x · ∇u and integrating over �, we get

∫

�

(–�u)(x · ∇u) =
∫

�

α′(|u|)(x · ∇|u|)dx. ()

We take a close look at the left side:

–
∫

�

div(∇u)(x · ∇u)dx = –
∫

∂�

(∇u)(x · ∇u) · d�S +
∫

�

(∇u) · ∇(x · ∇u)dx,

and we consider I and II separately which are defined as

I = –
∫

∂�

(∇u)(x · ∇u) · d�S and II =
∫

�

(∇u) · ∇(x · ∇u)dx.

We first take care of the second term II . For it, we observe that

(∇u) · ∇(x · ∇u) = (∇u) · (∇u) + (∇u) · (x(∇u
))
, ()

and the second term on the right side of () becomes

(∇u) · (x(∇u
))

= x · (∇u
) · (∇u) = x · 


∇(

(∇u) · (∇u)
)
= x · 


∇(|∇u|).

This says that II can be rewritten as

II =
∫

�

|∇u| dx + 


∫

�

x · ∇(|∇u|)dx. ()

The second term of () is, in turn,




∫

�

x · ∇(|∇u|)dx = 


∫

∂�

|∇u|(x · �n)dS – 


∫

�

(div �x)|∇u| dx

=



∫

∂�

|∇u|(x · �n)dS – n


∫

�

|∇u| dx.

Therefore we obtain

II =
(

 –
n


)∫

�

|∇u| dx + 


∫

∂�

|∇u|(x · �n)dS.

We now take care of I . We rewrite it as

I = –
∫

∂�

[∇u · �n](x · ∇u)dS.

http://www.boundaryvalueproblems.com/content/2014/1/153
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Since u =  on ∂�, ∇u(x) is parallel to the normal vector �n(x) at each point x ∈ ∂�. Thus
we get ∇u(x) = ±|∇u|�n. This identity makes it possible to rewrite I as

I = –
∫

∂�

[{±|∇u|�n} · �n][
x · {±|∇u|�n}]

dS

= –
∫

∂�

|∇u|(x · �n)dS,

where we count on the fact that |�n| = . In all, the left side of () becomes

–
∫

�

div(∇u)(x · ∇u)dx

= –
∫

∂�

|∇u|(x · �n)dS +
(

 –
n


)∫

�

|∇u| dx + 


∫

∂�

|∇u|(x · �n)dS

=
(

 –
n


)∫

�

|∇u| dx – 


∫

∂�

|∇u|(x · �n)dS. ()

Now we consider the right side of ():

∫

�

α′(∣∣u(x)
∣
∣
)(
x · ∇∣

∣u(x)
∣
∣
)
dx =

∫

�

∇(
α
(∣
∣u(x)

∣
∣
)) · xdx

=
∫

∂�

α
(∣
∣u(x)

∣
∣
)
(x · �n)dS – n

∫

�

α
(∣
∣u(x)

∣
∣
)
dx

= –n
∫

�

α
(∣
∣u(x)

∣
∣
)
dx. ()

The last equality follows from the fact that α(|u|) =  on ∂�. In view of () together with
() and (), we get

(
n – 


)∫

�

|∇u| dx + 


∫

∂�

|∇u|(x · �n)dS = n
∫

�

α
(∣
∣u(x)

∣
∣
)
dx

≤ n
c

∫

�

|∇u| dx,

which can be written as
(
n – 


–
n
c

)∫

�

|∇u| dx + 


∫

∂�

|∇u|(x · �n)dS ≤ . ()

Hence if we suppose that � is a connected convex domain containing the origin, for ex-
ample, an open ball � = {x : |x| < r}, then x · �n(x)≥  for all x ∈ ∂�. From this, we see that
() implies

(
n – 


–
n
c

)∫

�

|∇u| dx ≤ ,

which says, in turn, that the constant c should be less than or equal to n
n– . We summarize.

Theorem . Let α be a Hölder function with the slope condition () and f := α′ and let
� be a connected and bounded open convex subset of Rn (n > ) containing the origin with
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smooth boundary. Then the nonlinear boundary value problem:

⎧
⎨

⎩

–�u = f (|u|) sgnu in �,

u =  on ∂� (in the sense of a trace map),

has only a trivial solution in W 
α(�) if c > n

n– , where c is the constant appearing in ().

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HCP organized and wrote this paper. YJP contributed to all the steps of the proofs in this research. All authors read and
approved the final manuscript.

Author details
1Department of Mathematics, Dankook University, Anseo-Dong 29, Cheonan, Chungnam 330-714, Republic of Korea.
2Department of Mathematics, Hoseo University, Asan, Chungnam 336-795, Republic of Korea.

Acknowledgements
The first author was supported by the research fund of Dankook University in 2012.

Received: 1 February 2014 Accepted: 5 June 2014

References
1. Pak, H-C: Existence of solutions for a nonlinear elliptic equation with general flux term. Fixed Point Theory Appl. 2011,

Article ID 496417 (2011)
2. do Carmo, M: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs (1976)
3. Adams, R: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)

doi:10.1186/s13661-014-0153-z
Cite this article as: Pak and Park: Trace operator and a nonlinear boundary value problem in a new space. Boundary
Value Problems 2014 2014:153.

http://www.boundaryvalueproblems.com/content/2014/1/153

	Trace operator and a nonlinear boundary value problem in a new space
	Abstract
	MSC
	Keywords

	Introduction
	The space Lalpha(X)
	Trace operator on Sobolev type space W1alpha
	Ill-posedness of boundary value problems
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


