RESEARCH

Open Access

Second-order initial value problems with singularities

Petio Kelevedjiev^{1*} and Nedyu Popivanov²

Dedicated to Professor Ivan Kiguradze.

*Correspondence: keleved@mailcity.com ¹Department of Mathematics, Technical University of Sofia, Branch Sliven, Sliven, Bulgaria Full list of author information is available at the end of the article

Abstract

Using barrier strip arguments, we investigate the existence of $C[0,T] \cap C^2(0,T]$ -solutions to the initial value problem x'' = f(t,x,x'), x(0) = A, $\lim_{t\to 0^+} x'(t) = B$, which may be singular at x = A and x' = B. **MSC:** 34B15; 34B16; 34B18

Keywords: initial value problem; singularities; existence; monotone and positive solutions; barrier strips

1 Introduction

In this paper we study the solvability of initial value problems (IVPs) of the form

$$x'' = f(t, x, x'),$$
 (1.1)

$$x(0) = A, \qquad \lim_{t \to 0^+} x'(t) = B, \quad B > 0.$$
 (1.2)

Here the scalar function f(t, x, p) is defined on a set of the form $(D_t \times D_x \times D_p) \setminus (S_A \cup S_B)$, where $D_t, D_x, D_p \subseteq \mathbb{R}$, $S_A = \mathcal{T}_1 \times \{A\} \times \mathcal{P}$, $S_B = \mathcal{T}_2 \times \mathcal{X} \times \{B\}$, $\mathcal{T}_i \subseteq D_t$, $i = 1, 2, \mathcal{X} \subseteq D_x$, $\mathcal{P} \subseteq D_p$, and so it may be singular at x = A and p = B.

IVPs of the form

$$(\varphi(t)x'(t))' = \varphi(t)f(x(t)),$$

$$x(0) = A, \qquad x'(0) = 0,$$

have been investigated by Rachůnková and Tomeček [1–3]. For example in [1], the authors have discussed the set of all solutions to this problem with a singularity at t = 0. Here A < 0, $\varphi \in C[0, \infty) \cap C^1(0, \infty)$ with $\varphi(0) = 0$, $\varphi'(t) > 0$ for $t \in (0, \infty)$ and $\lim_{t\to\infty} \frac{\varphi'(t)}{\varphi(t)} = 0$, f is locally Lipschitz on $(-\infty, L]$ with the properties f(L) = 0 and xf(x) < 0 for $x \in (-\infty, 0) \cup (0, L)$, where L > 0 is a suitable constant.

Agarwal and O'Regan [4] have studied the problem

$$x'' = \varphi(t)f(t, x, x'), \quad t \in (0, T],$$

 $x(0) = x'(0) = 0,$

Springer

© 2014 Kelevedjiev and Popivanov; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

where f(t, x, p) may be singular at x = 0 and/or p = 0. The obtained results give a positive $C^1[0, T] \cap C^2(0, T]$ -solution under the assumptions that $\varphi \in C[0, T], \varphi(t) > 0$ for $t \in (0, T], f : [0, T] \times (0, \infty)^2 \to (0, \infty)$ is continuous and

$$f(t, x, p) \le [g(x) + h(x)][r(p) + w(p)]$$
 for $(t, x, p) \in [0, T] \times (0, \infty)^2$,

where *g*, *h*, *r*, and *w* are suitable functions.

IVPs of the form

$$x''(t) = f(t, x(t), x'(t)), \quad 0 < t < 1,$$

 $x(0) = x'(0) = 0,$

where $f(t, x, p) \in C((0, 1) \times (0, \infty)^2)$, maybe singular at t = 0, t = 1, x = 0 or p = 0, have been studied by Yang [5, 6]. The solvability in $C^1[0, 1]$ and $C[0, 1] \cap C^2(0, 1)$ is established in these works, respectively, under the assumption that

$$0 < f(t, x, p) \le k(t)F(x)G(y)$$
 for $(t, x, p) \in (0, 1) \times (0, \infty)^2$,

where *k*, *F*, and *G* are suitable functions.

The solvability of various IVPs has been studied also by Bobisud and O'Regan [7], Bobisud and Lee [8], Cabada and Heikkilä [9], Cabada *et al.* [10, 11], Cid [12], Maagli and Masmoudi [13], and Zhao [14]. Existence results for problem (1.1), (1.2) with a singularity at the initial value of x' have been reported in Kelevedjiev-Popivanov [15].

Here, as usual, we use regularization and sequential techniques. Namely, we proceed as follows. First, by means of the topological transversality theorem [16], we prove an existence result guaranteeing $C^2[a, T]$ -solutions to the nonsingular IVP for equations of the form (1.1) with boundary conditions

$$x(a) = A, \qquad x'(a) = B.$$

Moreover, we establish the needed *a priori* bounds by the barrier strips technique. Further, the obtained existence theorem assures $C^2[0, T]$ -solutions for each nonsingular IVP included in the family

$$x'' = f(t, x, x'),$$

$$x(0) = A + n^{-1}, \qquad x'(0) = B - n^{-1},$$
(1.3)

where $n \in \mathbb{N}$ is suitable. Finally, we apply the Arzela-Ascoli theorem on the sequence $\{x_n\}$ of $C^2[0, T]$ -solutions thus constructed to (1.3) to extract a uniformly convergent subsequence and show that its limit is a $C[0, T] \cap C^2(0, T]$ -solution to singular problem (1.1), (1.2). In the case $A \ge 0$, $B \ge 0$ we establish $C[0, T] \cap C^2(0, T]$ -solutions with important properties - monotony and positivity.

We have used variants of the approach described above for various boundary value problems (BVPs); see Grammatikopoulos *et al.* [17], Kelevedjiev and Popivanov [18] and Palamides *et al.* [19]. For example in [17], we have established the existence of positive

solutions to the BVP

$$g(t, x, x', x'') = 0, \quad t \in (0, 1),$$

 $x(0) = 0, \quad x'(1) = B, \quad B > 0,$

which may be singular at x = 0. Note that despite the more general equation of this problem, the conditions imposed here as well as the results obtained are not consequences of those in [17].

2 Topological transversality theorem

In this short section we state our main tools - the topological transversality theorem and a theorem giving an important property of the constant maps.

So, let *X* be a metric space and *Y* be a convex subset of a Banach space *E*. Let $U \subset Y$ be open in *Y*. The compact map $F : \overline{U} \to Y$ is called *admissible* if it is fixed point free on ∂U . We denote the set of all such maps by $\mathbf{L}_{\partial u}(\overline{U}, Y)$.

A map *F* in $\mathbf{L}_{\partial u}(\overline{U}, Y)$ is *essential* if every map *G* in $\mathbf{L}_{\partial u}(\overline{U}, Y)$ such that $G|\partial U = F|\partial U$ has a fixed point in *U*. It is clear, in particular, every essential map has a fixed point in *U*.

Theorem 2.1 ([16, Chapter I, Theorem 2.2]) Let $p \in U$ be fixed and $F \in \mathbf{L}_{\partial u}(\overline{U}, Y)$ be the constant map F(x) = p for $x \in \overline{U}$. Then F is essential.

We say that the homotopy $\{H_{\lambda} : X \to Y\}, 0 \le \lambda \le 1$, is compact if the map $H(x, \lambda) : X \times [0,1] \to Y$ given by $H(x, \lambda) \equiv H_{\lambda}(x)$ for $(x, \lambda) \in X \times [0,1]$ is compact.

Theorem 2.2 ([16, Chapter I, Theorem 2.6]) Let Y be a convex subset of a Banach space E and $U \subset Y$ be open. Suppose:

- (i) $F, G: \overline{U} \to Y$ are compact maps.
- (ii) $G \in \mathbf{L}_{\partial U}(\overline{U}, Y)$ is essential.
- (iii) $H(x, \lambda), \lambda \in [0, 1]$, is a compact homotopy joining *F* and *G*, i.e.

$$H(x, 1) = F(x)$$
 and $H(x, 0) = G(x)$.

(iv) $H(x, \lambda), \lambda \in [0, 1]$, is fixed point free on ∂U .

Then $H(x,\lambda)$, $\lambda \in [0,1]$, has at least one fixed point in U and in particular there is a $x_0 \in U$ such that $x_0 = F(x_0)$.

3 Nonsingular problem

Consider the IVP

$$\begin{cases} x'' = f(t, x, x'), \\ x(a) = A, \qquad x'(a) = B, \quad B \ge 0, \end{cases}$$
(3.1)

where $f: D_t \times D_x \times D_p \to \mathbb{R}$, $D_t, D_x, D_p \subseteq \mathbb{R}$.

We include this problem into the following family of regular IVPs constructed for $\lambda \in [0,1]$

$$\begin{cases} x'' = \lambda f(t, x, x'), \\ x(a) = A, \qquad x'(a) = B, \end{cases}$$
(3.2)

and suppose the following.

(R) There exist constants T > a, m_1 , $\overline{m_1}$, M_1 , $\overline{M_1}$, and a sufficiently small $\tau > 0$ such that

$$m_1 \ge 0, \qquad \overline{M}_1 - \tau \ge M_1 \ge B \ge m_1 \ge \overline{m}_1 + \tau,$$

$$[a, T] \subseteq D_t, \qquad [A - \tau, M_0 + \tau] \subseteq D_x, \qquad [\overline{m}_1, \overline{M}_1] \subseteq D_p,$$

where $M_0 = A + M_1(T - a)$,

$$f(t,x,p) \in C([a,T] \times [A - \tau, M_0 + \tau] \times [m_1 - \tau, M_1 + \tau]),$$

$$f(t,x,p) \leq 0 \quad \text{for } (t,x,p) \in [a,T] \times D_x \times [M_1, \overline{M}_1],$$

$$f(t,x,p) \geq 0 \quad \text{for } (t,x,p) \in [a,T] \times D_{M_0} \times [\overline{m}_1, m_1],$$
(3.3)

where $D_{M_0} = D_x \cap (-\infty, M_0]$.

Our first result ensures bounds for the eventual C^2 -solutions to (3.2). We need them to prepare the application of the topological transversality theorem.

Lemma 3.1 Let (R) hold. Then each solution $x \in C^2[a, T]$ to the family $(3.2)_{\lambda}$, $\lambda \in [0, 1]$, satisfies the bounds

 $A \le x(t) \le M_0$, $m_1 \le x'(t) \le M_1$, $m_2 \le x''(t) \le M_2$ for $t \in [a, T]$,

where

$$m_{2} = \min\{f(t, x, p) : (t, x, p) \in [a, T] \times [A, M_{0}] \times [m_{1}, M_{1}]\},\$$
$$M_{2} = \max\{f(t, x, p) : (t, x, p) \in [a, T] \times [A, M_{0}] \times [m_{1}, M_{1}]\}.$$

Proof Suppose that the set

$$S_{-} = \left\{ t \in [a, T] : M_1 < x'(t) \le \overline{M}_1 \right\}$$

is not empty. Then

$$x'(a) = B \le M_1$$
 and $x' \in C[a, T]$

imply that there exists an interval $[\alpha, \beta] \subset S_{-}$ such that

$$x'(\alpha) < x'(\beta).$$

This inequality and the continuity of x'(t) guarantee the existence of some $\gamma \in [\alpha, \beta]$ for which

$$x''(\gamma) > 0.$$

Since x(t), $t \in [a, T]$, is a solution of the differential equation, we have $(t, x(t), x'(t)) \in [a, T] \times D_x \times D_p$. In particular for γ we have

$$(\gamma, x(\gamma), x'(\gamma)) \in S_- \times D_x \times (M_1, \overline{M}_1].$$

Thus, we apply (R) to conclude that

$$x''(\gamma) = \lambda f(\gamma, x(\gamma), x'(\gamma)) \leq 0,$$

which contradicts the inequality $x''(\gamma) > 0$. This has been established above. Thus, S_{-} is empty and as a result

$$x'(t) \leq M_1$$
 for $t \in [a, T]$.

Now, by the mean value theorem for each $t \in (a, T]$ there exists a $\xi \in (a, t)$ such that

$$x(t) - x(a) = x'(\xi)(t-a),$$

which yields

$$x(t) \leq M_0$$
 for $t \in [a, T]$.

This allows us to use (3.3) to show similarly to above that the set

$$S_+ = \left\{ t \in [a, T] : \overline{m}_1 \le x'(t) < m_1 \right\}$$

is empty. Hence,

$$0 \le m_1 \le x'(t)$$
 for $t \in [a, T]$

and so

$$A \leq x(t)$$
 for $t \in [a, T]$.

To estimate x''(t), we observe firstly that (R) implies in particular

$$f(t, x, M_1) \le 0 \quad \text{for } (t, x) \in [a, T] \times [A, M_0]$$

and

$$f(t, x, m_1) \ge 0$$
 for $(t, x) \in [a, T] \times [A, M_0]$,

which yield $m_2 \le 0$ and $M_2 \ge 0$. Multiplying both sides of the inequality $\lambda \le 1$ by m_2 and M_2 , we get, respectively, $m_2 \le \lambda m_2$ and $\lambda M_2 \le M_2$. On the other hand, we have established

$$x(t) \in [A, M_0]$$
 and $x'(t) \in [m_1, M_1]$ for $t \in [a, T]$.

Thus,

$$m_2 \le \lambda m_2 \le \lambda f(t, x(t), x'(t)) \le \lambda M_2 \le M_2 \quad \text{for } t \in [a, T]$$

and each $\lambda \in [0, 1]$ and so

$$x''(t) \in [m_2, M_2]$$
 for $t \in [a, T]$.

Let us mention that some analogous results have been obtained in Kelevedjiev [20]. For completeness of our explanations, we present the full proofs here.

Now we prove an existence result guaranteeing the solvability of IVP (3.1).

Theorem 3.2 Let (R) hold. Then nonsingular problem (3.1) has at least one non-decreasing solution in $C^{2}[a, T]$.

Proof Preparing the application of Theorem 2.2, we define first the set

$$U = \left\{ x \in C_{I}^{2}[a, T] : A - \tau < x < M_{0} + \tau, m_{1} - \tau < x' < M_{1} + \tau, m_{2} - \tau < x'' < M_{2} + \tau \right\},\$$

where $C_I^2[a, T] = \{x \in C^2[a, T] : x(a) = A, x'(a) = B\}$. It is important to notice that according to Lemma 3.1 all $C^2[a, T]$ -solutions to family (3.2) are interior points of *U*. Further, we introduce the continuous maps

$$j: C_I^2[a, T] \to C^1[a, T] \quad \text{by } jx = x,$$
$$V: C_I^2[a, T] \to C[a, T] \quad \text{by } Vx = x'',$$

and for $t \in [a, T]$ and $x(t) \in j(\overline{U})$ the map

$$\Phi: C^1[a,T] \to C[a,T] \quad \text{by } (\Phi x)(t) = f(t,x(t),x'(t)).$$

Clearly, the map Φ is also continuous since, by assumption, the function f(t, x(t), x'(t)) is continuous on [a, T] if

$$x(t) \in [m_0 - \tau, M_0 + \tau]$$
 and $x'(t) \in [m_1 - \tau, M_1 + \tau]$ for $t \in [a, T]$.

In addition we verify that V^{-1} exists and is also continuous. To this aim we introduce the linear map

 $W: C^2_{I_0}[a,T] \to C[a,T],$

defined by Wx = x'', where $C_{I_0}^2[a, T] = \{x \in C^2[a, T] : x(a) = 0, x'(a) = 0\}$. It is one-to-one because each function $x \in C_{I_0}^2[a, T]$ has a unique image, and each function $y \in C[a, T]$ has a unique inverse image which is the unique solution to the IVP

$$x'' = y$$
, $x(a) = 0$, $x'(a) = 0$.

It is not hard to see that W is bounded and so, by the bounded inverse theorem, the map W^{-1} exists and is linear and bounded. Thus, it is continuous. Now, using W^{-1} , we define

$$V^{-1}: C[a,T] \to C_I^2[a,T] \text{ by } (V^{-1}y)(t) = \ell(t) + (W^{-1}y)(t),$$

where $\ell(t) = B(t - a) + A$ is the unique solution of the problem

$$x'' = 0,$$
 $x(a) = A,$ $x'(a) = B.$

Clearly, V^{-1} is continuous since W^{-1} is continuous. We already can introduce a homotopy

$$\mathrm{H}: \overline{U} \times [0,1] \to C_I^2[a,T],$$

defined by

$$H(x,\lambda) \equiv H_{\lambda}(x) \equiv \lambda V^{-1} \Phi j(x) + (1-\lambda)\ell.$$

It is well known that *j* is completely continuous, that is, *j* maps each bounded subset of $C_i^2[a, T]$ into a compact subset of $C^1[a, T]$. Thus, the image $j(\overline{U})$ of the bounded set *U* is compact. Now, from the continuity of Φ and V^{-1} it follows that the sets $\Phi(j(\overline{U}))$ and $V^{-1}(\Phi(j(\overline{U})))$ are also compact. In summary, we have established that the homotopy is compact. On the other hand, for its fixed points we have

$$\lambda V^{-1} \Phi j(x) + (1 - \lambda)\ell = x$$

and

$$Vx = \lambda \Phi j(x),$$

which is the operator form of family (3.2). So, each fixed point of H_{λ} is a solution to (3.2), which, according to Lemma 3.1, lies in *U*. Consequently, the homotopy is fixed point free on ∂U .

Finally, $H_0(x)$ is a constant map mapping each function $x \in \overline{U}$ to $\ell(t)$. Thus, according to Theorem 2.1, $H_0(x) = \ell$ is essential.

So, all assumptions of Theorem 2.2 are fulfilled. Hence $H_1(x)$ has a fixed point in U which means that the IVP of (3.2) obtained for $\lambda = 1$ (*i.e.* (3.1)) has at least one solution x(t) in $C^2[a, T]$. From Lemma 3.1 we know that

 $x'(t) \ge m_1 \ge 0$ for $t \in [a, T]$,

from which its monotony follows.

The validity of the following results follows similarly.

Theorem 3.3 Let B > 0 and let (R) hold for $m_1 > 0$. Then problem (3.1) has at least one strictly increasing solution in $C^2[a, T]$.

Theorem 3.4 Let A > 0 (A = 0) and let (R) hold for $m_1 = 0$. Then problem (3.1) has at least one positive (nonnegative) non-decreasing solution in $C^2[a, T]$.

Theorem 3.5 Let $A \ge 0$, B > 0 and let (R) hold for $m_1 > 0$. Then problem (3.1) has at least one strictly increasing solution in $C^2[a, T]$ with positive values for $t \in (a, T]$.

4 A problem singular at x and x'

In this section we study the solvability of singular IVP (1.1), (1.2) under the following assumptions.

(S₁) There are constants T > 0, m_1 , \overline{m}_1 and a sufficiently small $\nu > 0$ such that

$$\begin{split} m_1 > 0, & B > m_1 \ge \overline{m}_1 + \nu, \\ [0,T] \subseteq D_t, & (A, \tilde{M}_0 + \nu] \subseteq D_x, & [\overline{m}_1, B) \subseteq D_p, \end{split}$$

where $\tilde{M}_0 = A + BT + 1$,

$$f(t, x, p) \in C([0, T] \times (A, \tilde{M}_0 + \nu] \times [m_1 - \nu, B)),$$
(4.1)

$$f(t,x,p) \le 0 \quad \text{for } (t,x,p) \in ([0,T] \times D_x \times [m_1,B)) \setminus S_A$$

$$(4.2)$$

and

$$f(t, x, p) \ge 0$$
 for $(t, x, p) \in ([0, T] \times D_{\tilde{M}_0} \times [\overline{m}_1, m_1]) \setminus S_A$,

where $D_{\tilde{M}_0} = (-\infty, \tilde{M}_0] \cap D_x$.

(S₂) For some $\alpha \in (0, T]$ and $\mu \in (m_1, B)$ there exists a constant k < 0 such that $k\alpha + B > \mu$ and

$$f(t, x, p) \le k < 0 \quad \text{for } (t, x, p) \in [0, \alpha] \times (A, \tilde{M}_0] \times [\mu, B),$$

where *T*, m_1 and \tilde{M}_0 are as in (S₁).

Now, for $n \ge n_{\alpha,\mu}$, where $n_{\alpha,\mu} > \max\{\alpha^{-1}, (B + k\alpha - \mu)^{-1}\}$, and α , μ , and k are as in (S₂), we construct the following family of regular IVPs:

$$\begin{cases} x'' = f(t, x, x'), \\ x(0) = A + n^{-1}, \qquad x'(0) = B - n^{-1}. \end{cases}$$
(4.3)

Notice, for $n \ge n_{\alpha,\mu}$, that we have $B - n^{-1} > \mu - k\alpha > \mu > m_1 > 0$.

Lemma 4.1 Let (S_1) and (S_2) hold and let $x_n \in C^2[0, T]$, $n \ge n_{\alpha,\mu}$, be a solution to (4.3) such that

$$A < x_n(t) \le \tilde{M}_0$$
 and $m_1 \le x'_n(t) < B$ for $t \in [0, T]$.

Then the following bound is satisfied for each $n \ge n_{\alpha,\mu}$ *:*

$$x'_n(t) < \phi_\alpha(t) < B \quad for \ t \in (0, T],$$

where $\phi_{\alpha}(t) = \begin{cases} kt + B, & t \in [0, \alpha], \\ k\alpha + B, & t \in (\alpha, T]. \end{cases}$

Proof Since for each $n \ge n_{\alpha,\mu}$ we have

$$x'_{n}(0) = B - n^{-1} > \mu - k\alpha > \mu,$$

we will consider the proof for an arbitrary fixed $n \ge n_{\alpha,\mu}$, considering two cases. Namely, $x'_n(t) > \mu$ for $t \in [0, \alpha]$ is the first case and the second one is $x'_n(t) > \mu$ for $t \in [0, \beta)$ with $x'_n(\beta) = \mu$ for some $\beta \in (0, \alpha]$.

Case 1. From $\mu < x'_n(t) \le B$, $t \in [0, \alpha]$, and (S_2) we have

$$x_n''(t) = f(t, x_n(t), x_n'(t)) \le k \quad \text{for } t \in [0, \alpha],$$

i.e. $x_n''(t) \le k$ for $t \in [0, \alpha]$. Integrating the last inequality from 0 to t we get

$$x'_{n}(t) - x'_{n}(0) \le kt, \quad t \in [0, \alpha],$$

which yields

$$x'_{n}(t) \le kt + B - n^{-1}$$
 for $t \in [0, \alpha]$.

Now $m_1 \le x'_n(t) < B, t \in [0, T]$, and (4.2) imply

$$x''_n(t) = f(t, x_n(t), x'_n(t)) \le 0 \text{ for } t \in [0, T].$$

In particular $x''_n(t) \le 0$ for $t \in [\alpha, T]$, thus

$$x'_n(t) \le x'_n(\alpha) \le k\alpha + B - n^{-1}$$
 for $t \in (\alpha, T]$.

Case 2. As in the first case, we derive

$$x'_{n}(t) \le kt + B - n^{-1}$$
 for $t \in [0, \beta]$.

On the other hand, since $m_1 \le x'_n(t) < B$ for $t \in [\beta, T]$, again from (4.2) it follows that

$$x''_{n}(t) = f(t, x_{n}(t), x'_{n}(t)) \leq 0 \text{ for } t \in [\beta, T],$$

which yields

$$x'_n(t) \le x'_n(\beta) = \mu < k\alpha + B - n^{-1} \le kt + B - n^{-1} \quad \text{for } t \in [\beta, \alpha]$$

and

$$x'_n(t) < k\alpha + B - n^{-1}$$
 for $t \in (\alpha, T]$.

.

So, as a result of the considered cases we get

$$x'_n(t) \le \begin{cases} kt + B - n^{-1}, & t \in [0, \alpha], \\ k\alpha + B - n^{-1}, & t \in (\alpha, T] \end{cases} < \phi_\alpha(t) \quad \text{for } t \in [0, T] \text{ and } n \ge n_{\alpha, \mu},$$

from which the assertion follows immediately.

Having this lemma, we prove the basic result of this section.

Theorem 4.2 Let (S_1) and (S_2) hold. Then singular IVP (1.1), (1.2) has at least one strictly increasing solution in $C[0,T] \cap C^2(0,T]$ such that

$$m_1 t + A \le x(t) \le Bt + A$$
 for $t \in [0, T]$, $m_1 \le x'(t) < B$ for $t \in (0, T]$.

Proof For each fixed $n \ge n_{\alpha,\mu}$ introduce $\tau = \min\{(2n)^{-1}, \nu\}$,

$$M_1 = B - n^{-1}$$
, $\overline{M}_1 = B - (2n)^{-1}$ and $M_0 = (B - n^{-1})T + A + 1 < \tilde{M}_0$

having the properties

$$\overline{M}_1 - \tau > M_1 = B - n^{-1} > \mu - k\alpha > \mu > m_1 \ge \overline{m}_1 + \tau,$$

$$[0, T] \subseteq D_t, \qquad \left[A + n^{-1} - \tau, M_0 + \tau\right] \subseteq (A, \tilde{M}_0 + \tau] \subseteq D_x$$

and $[\overline{m}_1, \overline{M}_1] \subseteq D_p$ since $\overline{M}_1 = B - (2n)^{-1} < B$. Besides,

$$f(t,x,p) \le 0 \quad \text{for } (t,x,p) \in \left([0,T] \times D_x \times [M_1,\overline{M}_1]\right) \setminus S_A,$$

$$f(t,x,p) \ge 0 \quad \text{for } (t,x,p) \in \left([0,T] \times \left(D_x \times (-\infty,M_0]\right) \times [\overline{m}_1,m_1]\right) \setminus S_A$$

and, in view of (4.1),

$$f(t,x,p) \in C([0,T] \times \left[A + n^{-1} - \tau, M_0 + \nu\right] \times \left[m_1 - \tau, M_1 + \tau\right]).$$

All this implies that for each $n \ge n_{\alpha,\mu}$ the corresponding IVP of family (4.3) satisfies (R). Thus, we apply Theorem 3.2 to conclude that (4.3) has a solution $x_n \in C^2[0, T]$ for each $n \ge n_{\alpha,\mu}$. We can use also Lemma 3.1 to conclude that for each $n \ge n_{\alpha,\mu}$ and $t \in [0, T]$ we have

$$A < A + n^{-1} \le x_n(t) \le M_0 < \tilde{M}_0$$
(4.4)

and

$$m_1 \le x'_n(t) \le B - n^{-1} < B.$$

Now, these bounds allow the application of Lemma 4.1 from which one infers that for each $n \ge n_{\alpha,\mu}$ and $t \in [0, T]$ the bounds

$$m_1 \le x'_n(t) < \phi_\alpha(t) \le B \tag{4.5}$$

hold. For later use, integrating the least inequality from 0 to $t, t \in (0, T]$, we get

$$m_1 t + A + n^{-1} \le x_n(t) < Bt + A + n^{-1} \quad \text{for } t \in [0, T]$$

$$(4.6)$$

and $n \ge n_{\alpha,\mu}$.

We consider firstly the sequence $\{x_n\}$ of $C^2[0, T]$ -solutions of (4.3) only for each $n \ge n_{\alpha,\mu}$. Clearly, for each $n \ge n_{\alpha,\mu}$ we have in particular

$$x'_n(t) \ge m_1 > 0$$
 for $t \in [\alpha, T]$,

which together with (4.6) gives

$$x_n(t) \ge x_n(\alpha) \ge m_1 \alpha + A + n^{-1} > A_1 > A \quad \text{for } t \in [\alpha, T],$$

where $A_1 = m_1 \alpha + A$. On combining the last inequality and (4.4) we obtain

$$A_1 < x_n(t) < M_0 \quad \text{for } t \in [\alpha, T], n \ge n_{\alpha, \mu}.$$
 (4.7)

From (4.5) we have in addition

$$m_1 \le x'_n(t) < \phi_\alpha(\alpha) = B + k\alpha \quad \text{for } t \in [\alpha, T], n \ge n_{\alpha,\mu}.$$
(4.8)

Now, using the fact that (4.1) implies continuity of f(t, x, p) on the compact set $[\alpha, T] \times [A_1, \tilde{M}_0] \times [m_1, \phi_\alpha(\alpha)]$ and keeping in mind that for each $n \ge n_{\alpha,\mu}$

 $x_n''(t) = f(t, x_n(t), x_n'(t)) \quad \text{for } t \in [\alpha, T],$

we conclude that there is a constant M_2 , independent of n, such that

$$|x_n''(t)| \leq M_2$$
 for $t \in [\alpha, T]$ and $n \geq n_{\alpha,\mu}$.

Using the obtained *a priori* bounds for $x_n(t)$, $x'_n(t)$ and $x''_n(t)$ on the interval $[\alpha, T]$, we apply the Arzela-Ascoli theorem to conclude that there exists a subsequence $\{x_{n_k}\}, k \in \mathbb{N}$, $n_k \ge n_{\alpha,\mu}$, of $\{x_n\}$ and a function $x_\alpha \in C^1[\alpha, T]$ such that

$$||x_{n_k} - x_{\alpha}||_1 \to 0$$
 on the interval $[\alpha, T]$,

i.e., the sequences $\{x_{n_k}\}$ and $\{x'_{n_k}\}$ converge uniformly on the interval $[\alpha, T]$ to x_{α} and x'_{α} , respectively. Obviously, (4.7) and (4.8) are valid in particular for the elements of $\{x_{n_k}\}$ and $\{x'_{n_k}\}$, respectively, from which, letting $k \to \infty$, one finds

$$egin{aligned} &A_1 \leq x_lpha(t) \leq ilde{M}_0 \quad ext{ for } t \in [lpha, T], \ &m_1 \leq x_lpha'(t) \leq \phi_lpha(lpha) < B \quad ext{ for } t \in [lpha, T] \end{aligned}$$

Clearly, the functions $x_{n_k}(t)$, $k \in \mathbb{N}$, $n_k \ge n_{\alpha,\mu}$, satisfy integral equations of the form

.

$$x_{n_k}'(t) = x_{n_k}'(\alpha) + \int_{\alpha}^{t} f\left(s, x_{n_k}(s), x_{n_k}'(s)\right) ds, \quad t \in (\alpha, T].$$

Now, since f(t, x, p) is uniformly continuous on the compact set $[\alpha, T] \times [A_1, \tilde{M}_0] \times [m_1, \phi_\alpha(\alpha)]$, from the uniform convergence of $\{x_{n_k}\}$ it follows that the sequence $\{f(s, x_{n_k}(s), x'_{n_k}(s))\}$, $n_k \ge n_{\alpha,\mu}$ is uniformly convergent on $[\alpha, T]$ to the function $f(s, x_\alpha(s), x'_\alpha(s))$, which means

$$\lim_{k\to\infty}\int_{\alpha}^{t}f(s,x_{n_{k}}(s),x_{n_{k}}'(s))\,ds=\int_{\alpha}^{t}f(s,x_{\alpha}(s),x_{\alpha}'(s))\,ds$$

for each $t \in (\alpha, T]$. Returning to the integral equation and letting $k \to \infty$ yield

$$x'_{\alpha}(t) = x'_{\alpha}(\alpha) + \int_{\alpha}^{t} f(s, x_{\alpha}(s), x'_{\alpha}(s)) ds, \quad t \in (\alpha, T],$$

which implies that $x_{\alpha}(t)$ is a $C^{2}(\alpha, T]$ -solution to the differential equation x'' = f(t, x, x') on $(\alpha, T]$. Besides, (4.6) implies

$$m_1t + A \leq x_{\alpha}(t) \leq Bt + A$$
 for $t \in [\alpha, T]$.

Further, we observe that if the condition (S_2) holds for some $\alpha > 0$, then it is true also for an arbitrary $\alpha_0 \in (0, \alpha)$. We will use this fact considering a sequence $\{\alpha_i\} \subset (0, \alpha), i \in \mathbb{N}$, with the properties

$$\alpha_{i+1} < \alpha_i \quad \text{for } i \in \mathbb{N} \text{ and } \lim_{i \to \infty} \alpha_i = 0.$$

For each $i \in \mathbb{N}$ we consider sequences

$$\{x_{i,n_k}\}, \quad n_k \ge n_{i+1,\mu}, k \in \mathbb{N}, n_{i+1,\mu} > \max\left\{\alpha_{i+1}^{-1}, (B + k\alpha_{i+1} - \mu)^{-1}\right\},\$$

on the interval $[\alpha_{i+1}, T]$. Thus, we establish that each sequence $\{x_{i,n_k}\}$ has a subsequence $\{x_{i+1,n_k}\}, k \in \mathbb{N}, n_k \ge n_{i+1,\mu}$, converging uniformly on the interval $[\alpha_{i+1}, T]$ to any function $x_{\alpha_{i+1}}(t), t \in [\alpha_{i+1}, T]$, that is,

$$\|x_{i+1,n_k} - x_{\alpha_{i+1}}\|_1 \to 0 \quad \text{on } [\alpha_{i+1}, T],$$
(4.9)

which is a $C^2(\alpha_{i+1}, T]$ -solution to the differential equation x''(t) = f(t, x(t), x'(t)) on $(\alpha_{i+1}, T]$ and

$$m_1t + A \le x_{\alpha_{i+1}}(t) \le Bt + A \quad \text{for } t \in [\alpha_{i+1}, T],$$

$$m_1 \le x'_{\alpha_{i+1}}(t) \le \phi_{\alpha}(\alpha_{i+1}) < B \quad \text{for } t \in [\alpha_{i+1}, T],$$

$$x_{\alpha_{i+1}}(t) = x_{\alpha_i}(t) \quad \text{and} \quad x'_{\alpha_{i+1}}(t) = x'_{\alpha_i}(t) \quad \text{for } t \in [\alpha_i, T].$$

The properties of the functions from $\{x_{\alpha_i}\}$, $i \in \mathbb{N}$, imply that there exists a function $x_0(t)$ which is a $C^2(0, T]$ -solution to the equation x'' = f(t, x, x') on the interval (0, T] and is such that

$$m_1 t + A \le x_0(t) \le Bt + A$$
 for $t \in (0, T]$,

hence $\lim_{t\to 0^+} x_0(t) = A$,

$$m_{1} \leq x_{0}'(t) \leq \phi_{\alpha}(t) < B \quad \text{for } t \in (0, T],$$

$$x_{0}(t) = x_{\alpha_{i}}(t) \quad \text{for } t \in [\alpha_{i}, T] \text{ and } i \in \mathbb{N},$$

$$x_{0}'(t) = x_{\alpha_{i}}'(t) \quad \text{for } t \in [\alpha_{i}, T] \text{ and } i \in \mathbb{N}.$$
(4.10)

We have to show also that

$$\lim_{t \to 0^+} x'_0(t) = B. \tag{4.11}$$

Reasoning by contradiction, assume that there exists a sufficiently small $\varepsilon > 0$ such that for every $\delta > 0$ there is a $t \in (0, \delta)$ such that

$$x'_0(t) < B - \varepsilon.$$

In other words, assume that for every sequence $\{\delta_j\} \subset (0, T], j \in \mathbb{N}$, with $\lim_{j\to\infty} \delta_j = 0$, there exists a sequence $\{t_i\}$ having the properties $t_j \in (0, \delta_j)$, $\lim_{j\to\infty} t_j = 0$ and

$$x_0'(t_j) < B - \varepsilon. \tag{4.12}$$

It is clear that every interval $(0, \delta_j), j \in \mathbb{N}$, contains a subsequence of $\{t_j\}$ converging to 0. Besides, from (4.9) and (4.10) it follows that for every $j \in \mathbb{N}$ there are $i_j, n_j \in \mathbb{N}$ such that $\alpha_{i_i} < \delta_j$ and

$$\|x'_{i,n_{k}} - x'_{0}\| \to 0 \quad \text{on} \ [\alpha_{i}, \delta_{j}) \tag{4.13}$$

for all $i > i_j$ and all $n_k \ge \max\{n_{i,\mu}, n_j\}$. Moreover, since the accumulation point of $\{t_j\}$ is 0, for each sufficiently large $j \in \mathbb{N}$ there is a $t_j \in [\alpha_i, \delta_j)$ where $i > i_j$. In summary, for every sufficiently large $j \in \mathbb{N}$, that is, for every sufficiently small $\delta_j > 0$, there are $i_j, n_j \in \mathbb{N}$ such that for all $i > i_j$ and $n_k \ge \max\{n_{i,\mu}, n_j\}$ from (4.12) and (4.13) we have

$$x'_{i,n_k}(t_j) < B - \varepsilon$$
,

which contradicts to the fact that $x'_{i,n_k}(0) = B - n_k^{-1}$ and $x'_{i,n_k} \in C[0, T]$. This contradiction proves that (4.11) is true.

Now, it is easy to verify that the function

$$x(t) = \begin{cases} A, & t = 0, \\ x_0(t), & t \in (0, T], \end{cases}$$

is a $C[0, T] \cap C^2(0, T]$ -solution to (1.1), (1.2). This function is strictly increasing because $x'(t) = x'_0(t) \ge m_1 > 0$ for $t \in (0, T]$, and the bounds for x(t) and x'(t) follows immediately from the corresponding bounds for $x_0(t)$ and $x'_0(t)$.

The following results provide information about the presence of other useful properties of the assured solutions. Their correctness follows directly from Theorem 4.2.

Theorem 4.3 Let $A \ge 0$ and let (S_1) and (S_2) hold. Then the singular IVP (1.1), (1.2) has at least one strictly increasing solution in $C[0, T] \cap C^2(0, T]$ with positive values for $t \in (0, T]$.

5 Examples

Example 5.1 Consider the IVP

$$x'' = \frac{\sqrt{b^2 - x^2}}{\sqrt{c^2 - t^2}} P_k(x'),$$

$$x(0) = 0,$$
 $x'(0) = B,$ $B > 0,$

where $b, c \in (0, \infty)$, and the polynomial $P_k(p), k \ge 2$, has simple zeroes p_1 and p_2 such that

 $0 < p_1 < B < p_2.$

Let us note that here $D_t = (-c, c)$, $D_x = [-b, b]$ and $D_p = \mathbb{R}$. Clearly, there is a sufficiently small $\theta > 0$ such that

$$0 < p_1 - \theta$$
, $p_1 + \theta \le B \le p_2 - \theta$

and $P_k(p) \neq 0$ for $p \in [p_1 - \theta, p_1) \cup (p_1, p_1 + \theta] \cup [p_2 - \theta, p_2) \cup (p_2, p_2 + \theta]$.

We will show that all assumptions of Theorem 3.2 are fulfilled in the case

 $P_k(p) > 0$ for $p \in [p_1 - \theta, p_1)$ and $P_k(p) < 0$ for $p \in (p_2, p_2 + \theta]$;

the other cases as regards the sign of $P_k(p)$ around p_1 and p_2 may be treated similarly. For this case choose $\tau = \theta/2$, $m_1 = p_1 > 0$ and $M_1 = p_2$. Next, using the requirement $[A - \tau, M_0 + \tau] \subseteq [-b, b]$, *i.e.* $[-\theta/2, p_2T_0 + \theta/2] \subseteq [-b, b]$, we get the following conditions for θ and T:

 $-\theta/2 \ge -b$ and $p_2T_0 + \theta/2 \le b$,

which yield $\theta \in (0, 2b]$ and $T \leq \frac{2b-\theta}{2p_2}$. Besides, $[0, T] \subseteq (-c, c)$ yields T < C. Thus, $0 < T < \min\{c, \frac{2b-\theta}{2p_2}\}$. Now, choosing

$$\overline{m}_1 = p_1 - \theta$$
 and $\overline{M}_1 = p_2 + \theta$,

we really can apply Theorem 3.2 to conclude that the considered problem has a strictly increasing solution $x \in C^2[0, T]$ with x(t) > 0 on $t \in (0, T]$ for each $T < \min\{c, \frac{2b-\theta}{2p_2}\}$.

Example 5.2 Consider the IVP

$$\begin{aligned} x'' &= \frac{(x'-5)(15-x')}{(x-2)^2(x'-10)},\\ x(0) &= 2, \qquad \lim_{t \to 0^+} x'(t) = 10. \end{aligned}$$

Notice that here

$$S_A = \mathbb{R} \times \{2\} \times ((-\infty, 10) \cup (10, \infty)), \qquad S_B = \mathbb{R} \times ((-\infty, 2) \cup (2, \infty)) \times \{10\}.$$

It is easy to check that (S₁) holds, for example, for $\overline{m}_1 = 4$, $m_1 = 5$, $\nu = 0.1$, and an arbitrary fixed T > 0, moreover, $\tilde{M}_0 = 10T + 3$. Besides, for $k = -24/(10T + 1)^2$, $\alpha = T/100$ and $\mu = 9$, for example, we have

$$k\alpha + B = -24T/100(10T + 1)^2 + 10 > 9 = \mu$$

and $f(t, x, p) \le -24/(10T + 1)^2$ on $[0, T/100] \times (2, 10T + 3] \times [9, 10)$, which means that (S₂) also holds. By Theorem 4.3, the considered IVP has at least one positive strictly increasing solution in $C[0, T] \cap C^2(0, T]$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

¹ Department of Mathematics, Technical University of Sofia, Branch Sliven, Sliven, Bulgaria. ²Faculty of Mathematics, 'St. Kl. Ohridski' University of Sofia, Sofia, Bulgaria.

Acknowledgements

The work is partially supported by the Sofia University Grant 158/2013 and by the Bulgarian NSF under Grant DCVP - 02/1/2009.

Received: 30 January 2014 Accepted: 13 June 2014 Published online: 26 September 2014

References

- 1. Rachůnková, I, Tomeček, J: Bubble-type solutions of non-linear singular problem. Math. Comput. Model. 51, 658-669 (2010)
- 2. Rachůnková, I, Tomeček, J: Homoclinic solutions of singular nonautonomous second-order differential equations. Bound. Value Probl. 2009, Article ID 959636 (2009)
- Rachůnková, I, Tomeček, J: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Anal. 72, 2114-2118 (2010)
- 4. Agarwal, RP, O'Regan, D: Second-order initial value problems of singular type. J. Math. Anal. Appl. 229, 441-451 (1999)
- 5. Yang, G: Minimal positive solutions to some singular second-order differential equations. J. Math. Anal. Appl. 266, 479-491 (2002)
- Yang, G: Positive solutions of some second-order nonlinear singular differential equations. Comput. Math. Appl. 45, 605-614 (2003)
- Bobisud, LE, O'Regan, D: Existence of solutions to some singular initial value problems. J. Math. Anal. Appl. 133, 215-230 (1988)
- 8. Bobisud, LE, Lee, YS: Existence of monotone or positive solutions of singular second-order sublinear differential equations. J. Math. Anal. Appl. **159**, 449-468 (1991)
- 9. Cabada, A, Heikkilä, S: Extremality results for discontinuous explicit and implicit diffusion problems. J. Comput. Appl. Math. 143, 69-80 (2002)
- Cabada, A, Cid, JA, Pouso, RL: Positive solutions for a class of singular differential equations arising in diffusion processes. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 12, 329-342 (2005)
- 11. Cabada, A, Nieto, JJ, Pouso, RL: Approximate solutions to a new class of nonlinear diffusion problems. J. Comput. Appl. Math. **108**, 219-231 (1999)
- Cid, JA: Extremal positive solutions for a class of singular and discontinuous second order problems. Nonlinear Anal. 51, 1055-1072 (2002)
- Maagli, H, Masmoudi, S: Existence theorem of nonlinear singular boundary value problem. Nonlinear Anal. 46, 465-473 (2001)
- 14. Zhao, Z: Positive solutions of nonlinear second order ordinary differential equations. Proc. Am. Math. Soc. 121, 465-469 (1994)
- Kelevedjiev, P, Popivanov, N: On the solvability of a second-order initial value problem. Paper presented at the 40th international conference on the applications of mathematics in engineering and economics, Technical University of Sofia, Sozopol, 8-13 June 2014
- Granas, A, Guenther, RB, Lee, JW: Nonlinear boundary value problems for ordinary differential equations. Diss. Math. 244, 1-128 (1985)
- Grammatikopoulos, MK, Kelevedjiev, PS, Popivanov, N: On the solvability of a singular boundary-value problem for the equation f(t, x, x', x') = 0. J. Math. Sci. 149, 1504-1516 (2008)
- Kelevedjiev, P, Popivanov, N: Second order boundary value problems with nonlinear two-point boundary conditions. Georgian Math. J. 7, 677-688 (2000)
- Palamides, P, Kelevedjiev, P, Popivanov, N: On the solvability of a Neumann boundary value problem for the differential equation f(t, x, x', x") = 0. Bound. Value Probl. 2012, 77 (2012). doi:10.1186/1687-2770-2012-77
- 20. Kelevedjiev, P: Positive solutions of nonsingular and singular second order initial value problems. Int. Electron. J. Pure Appl. Math. 2, 117-127 (2010)

doi:10.1186/s13661-014-0161-z

Cite this article as: Kelevedjiev and Popivanov: Second-order initial value problems with singularities. Boundary Value Problems 2014 2014:161.