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1 Introduction
In this paper we study the solvability of initial value problems (IVPs) of the form

x′′ = f
(
t,x,x′), (.)

x() = A, lim
t→+

x′(t) = B, B > . (.)

Here the scalar function f (t,x,p) is defined on a set of the form (Dt ×Dx ×Dp)\(SA ∪ SB),
where Dt ,Dx,Dp ⊆ R, SA = T × {A} × P , SB = T × X × {B}, Ti ⊆ Dt , i = , , X ⊆ Dx,
P ⊆Dp, and so it may be singular at x = A and p = B.
IVPs of the form

(
ϕ(t)x′(t)

)′ = ϕ(t)f
(
x(t)

)
,

x() = A, x′() = ,

have been investigated by Rachůnková and Tomeček [–]. For example in [], the authors
have discussed the set of all solutions to this problem with a singularity at t = . Here
A < , ϕ ∈ C[,∞)∩C(,∞) with ϕ() = , ϕ′(t) >  for t ∈ (,∞) and limt→∞ ϕ′(t)

ϕ(t) = , f
is locally Lipschitz on (–∞,L] with the properties f (L) =  and xf (x) <  for x ∈ (–∞, )∪
(,L), where L >  is a suitable constant.
Agarwal and O’Regan [] have studied the problem

x′′ = ϕ(t)f
(
t,x,x′), t ∈ (,T],

x() = x′() = ,
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where f (t,x,p) may be singular at x =  and/or p = . The obtained results give a positive
C[,T]∩C(,T]-solution under the assumptions that ϕ ∈ C[,T], ϕ(t) >  for t ∈ (,T],
f : [,T]× (,∞) → (,∞) is continuous and

f (t,x,p)≤ [
g(x) + h(x)

][
r(p) +w(p)

]
for (t,x,p) ∈ [,T]× (,∞),

where g , h, r, and w are suitable functions.
IVPs of the form

x′′(t) = f
(
t,x(t),x′(t)

)
,  < t < ,

x() = x′() = ,

where f (t,x,p) ∈ C((, ) × (,∞)), maybe singular at t = , t = , x =  or p = , have
been studied by Yang [, ]. The solvability in C[, ] and C[, ]∩C(, ) is established
in these works, respectively, under the assumption that

 < f (t,x,p) ≤ k(t)F(x)G(y) for (t,x,p) ∈ (, )× (,∞),

where k, F , and G are suitable functions.
The solvability of various IVPs has been studied also by Bobisud and O’Regan [],

Bobisud and Lee [], Cabada and Heikkilä [], Cabada et al. [, ], Cid [], Maagli and
Masmoudi [], and Zhao []. Existence results for problem (.), (.) with a singularity
at the initial value of x′ have been reported in Kelevedjiev-Popivanov [].
Here, as usual, we use regularization and sequential techniques. Namely, we proceed as

follows. First, by means of the topological transversality theorem [], we prove an exis-
tence result guaranteeing C[a,T]-solutions to the nonsingular IVP for equations of the
form (.) with boundary conditions

x(a) = A, x′(a) = B.

Moreover, we establish the needed a priori bounds by the barrier strips technique. Fur-
ther, the obtained existence theorem assures C[,T]-solutions for each nonsingular IVP
included in the family

x′′ = f
(
t,x,x′),

x() = A + n–, x′() = B – n–,
(.)

where n ∈N is suitable. Finally, we apply the Arzela-Ascoli theorem on the sequence {xn}
of C[,T]-solutions thus constructed to (.) to extract a uniformly convergent subse-
quence and show that its limit is a C[,T] ∩ C(,T]-solution to singular problem (.),
(.). In the case A ≥ , B ≥  we establish C[,T] ∩ C(,T]-solutions with important
properties - monotony and positivity.
We have used variants of the approach described above for various boundary value

problems (BVPs); see Grammatikopoulos et al. [], Kelevedjiev and Popivanov [] and
Palamides et al. []. For example in [], we have established the existence of positive

http://www.boundaryvalueproblems.com/content/2014/1/161


Kelevedjiev and Popivanov Boundary Value Problems 2014, 2014:161 Page 3 of 15
http://www.boundaryvalueproblems.com/content/2014/1/161

solutions to the BVP

g
(
t,x,x′,x′′) = , t ∈ (, ),

x() = , x′() = B, B > ,

which may be singular at x = . Note that despite the more general equation of this prob-
lem, the conditions imposed here as well as the results obtained are not consequences of
those in [].

2 Topological transversality theorem
In this short section we state our main tools - the topological transversality theorem and
a theorem giving an important property of the constant maps.
So, let X be a metric space and Y be a convex subset of a Banach space E. Let U ⊂ Y be

open in Y . The compact map F :U → Y is called admissible if it is fixed point free on ∂U .
We denote the set of all such maps by L∂u(U ,Y ).
A map F in L∂u(U ,Y ) is essential if every map G in L∂u(U ,Y ) such that G|∂U = F|∂U

has a fixed point in U . It is clear, in particular, every essential map has a fixed point in U .

Theorem . ([, Chapter I, Theorem .]) Let p ∈ U be fixed and F ∈ L∂u(U ,Y ) be the
constant map F(x) = p for x ∈U . Then F is essential.
We say that the homotopy {Hλ : X → Y },  ≤ λ ≤ , is compact if the map H(x,λ) : X ×

[, ] → Y given by H(x,λ)≡Hλ(x) for (x,λ) ∈ X × [, ] is compact.

Theorem . ([, Chapter I, Theorem .]) Let Y be a convex subset of a Banach space
E and U ⊂ Y be open. Suppose:

(i) F ,G :U → Y are compact maps.
(ii) G ∈ L∂U (U ,Y ) is essential.
(iii) H(x,λ), λ ∈ [, ], is a compact homotopy joining F and G, i.e.

H(x, ) = F(x) and H(x, ) =G(x).

(iv) H(x,λ), λ ∈ [, ], is fixed point free on ∂U .
Then H(x,λ), λ ∈ [, ], has at least one fixed point in U and in particular there is a

x ∈ U such that x = F(x).

3 Nonsingular problem
Consider the IVP

{
x′′ = f (t,x,x′),
x(a) = A, x′(a) = B, B≥ ,

(.)

where f :Dt ×Dx ×Dp →R, Dt ,Dx,Dp ⊆R.
We include this problem into the following family of regular IVPs constructed for λ ∈

[, ]
{
x′′ = λf (t,x,x′),
x(a) = A, x′(a) = B,

(.)

and suppose the following.

http://www.boundaryvalueproblems.com/content/2014/1/161
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(R) There exist constants T > a,m, m,M,M, and a sufficiently small τ >  such that

m ≥ , M – τ ≥ M ≥ B ≥ m ≥ m + τ ,

[a,T]⊆Dt , [A – τ ,M + τ ] ⊆Dx, [m,M]⊆Dp,

whereM = A +M(T – a),

f (t,x,p) ∈ C
(
[a,T]× [A – τ ,M + τ ]× [m – τ ,M + τ ]

)
,

f (t,x,p)≤  for (t,x,p) ∈ [a,T]×Dx × [M,M], (.)

f (t,x,p)≥  for (t,x,p) ∈ [a,T]×DM × [m,m],

where DM =Dx ∩ (–∞,M].
Our first result ensures bounds for the eventual C-solutions to (.). We need them to

prepare the application of the topological transversality theorem.

Lemma . Let (R) hold. Then each solution x ∈ C[a,T] to the family (.)λ, λ ∈ [, ],
satisfies the bounds

A≤ x(t)≤ M, m ≤ x′(t) ≤ M, m ≤ x′′(t)≤ M for t ∈ [a,T],

where

m = min
{
f (t,x,p) : (t,x,p) ∈ [a,T]× [A,M]× [m,M]

}
,

M = max
{
f (t,x,p) : (t,x,p) ∈ [a,T]× [A,M]× [m,M]

}
.

Proof Suppose that the set

S– =
{
t ∈ [a,T] :M < x′(t)≤ M

}

is not empty. Then

x′(a) = B ≤ M and x′ ∈ C[a,T]

imply that there exists an interval [α,β]⊂ S– such that

x′(α) < x′(β).

This inequality and the continuity of x′(t) guarantee the existence of some γ ∈ [α,β] for
which

x′′(γ ) > .

Since x(t), t ∈ [a,T], is a solution of the differential equation, we have (t,x(t),x′(t)) ∈
[a,T]×Dx ×Dp. In particular for γ we have

(
γ ,x(γ ),x′(γ )

) ∈ S– ×Dx × (M,M].

http://www.boundaryvalueproblems.com/content/2014/1/161
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Thus, we apply (R) to conclude that

x′′(γ ) = λf
(
γ ,x(γ ),x′(γ )

) ≤ ,

which contradicts the inequality x′′(γ ) > . This has been established above. Thus, S– is
empty and as a result

x′(t)≤ M for t ∈ [a,T].

Now, by the mean value theorem for each t ∈ (a,T] there exists a ξ ∈ (a, t) such that

x(t) – x(a) = x′(ξ )(t – a),

which yields

x(t)≤ M for t ∈ [a,T].

This allows us to use (.) to show similarly to above that the set

S+ =
{
t ∈ [a,T] :m ≤ x′(t) <m

}

is empty. Hence,

 ≤ m ≤ x′(t) for t ∈ [a,T]

and so

A≤ x(t) for t ∈ [a,T].

To estimate x′′(t), we observe firstly that (R) implies in particular

f (t,x,M) ≤  for (t,x) ∈ [a,T]× [A,M]

and

f (t,x,m)≥  for (t,x) ∈ [a,T]× [A,M],

which yield m ≤  and M ≥ . Multiplying both sides of the inequality λ ≤  by m and
M, we get, respectively, m ≤ λm and λM ≤ M. On the other hand, we have estab-
lished

x(t) ∈ [A,M] and x′(t) ∈ [m,M] for t ∈ [a,T].

Thus,

m ≤ λm ≤ λf
(
t,x(t),x′(t)

) ≤ λM ≤ M for t ∈ [a,T]

http://www.boundaryvalueproblems.com/content/2014/1/161
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and each λ ∈ [, ] and so

x′′(t) ∈ [m,M] for t ∈ [a,T]. �

Let us mention that some analogous results have been obtained in Kelevedjiev []. For
completeness of our explanations, we present the full proofs here.
Now we prove an existence result guaranteeing the solvability of IVP (.).

Theorem. Let (R) hold.Then nonsingular problem (.) has at least one non-decreasing
solution in C[a,T].

Proof Preparing the application of Theorem ., we define first the set

U =
{
x ∈ C

I [a,T] : A – τ < x <M + τ ,m – τ < x′ <M + τ ,m – τ < x′′ <M + τ
}
,

whereC
I [a,T] = {x ∈ C[a,T] : x(a) = A,x′(a) = B}. It is important to notice that according

to Lemma . all C[a,T]-solutions to family (.) are interior points of U . Further, we
introduce the continuous maps

j : C
I [a,T]→ C[a,T] by jx = x,

V : C
I [a,T]→ C[a,T] by Vx = x′′,

and for t ∈ [a,T] and x(t) ∈ j(U) the map


 : C[a,T]→ C[a,T] by (
x)(t) = f
(
t,x(t),x′(t)

)
.

Clearly, the map 
 is also continuous since, by assumption, the function f (t,x(t),x′(t)) is
continuous on [a,T] if

x(t) ∈ [m – τ ,M + τ ] and x′(t) ∈ [m – τ ,M + τ ] for t ∈ [a,T].

In addition we verify that V– exists and is also continuous. To this aim we introduce the
linear map

W : C
I [a,T]→ C[a,T],

defined by Wx = x′′, where C
I [a,T] = {x ∈ C[a,T] : x(a) = ,x′(a) = }. It is one-to-one

because each function x ∈ C
I [a,T] has a unique image, and each function y ∈ C[a,T] has

a unique inverse image which is the unique solution to the IVP

x′′ = y, x(a) = , x′(a) = .

It is not hard to see thatW is bounded and so, by the bounded inverse theorem, the map
W– exists and is linear and bounded. Thus, it is continuous. Now, usingW–, we define

V– : C[a,T] → C
I [a,T] by

(
V–y

)
(t) = �(t) +

(
W–y

)
(t),

http://www.boundaryvalueproblems.com/content/2014/1/161
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where �(t) = B(t – a) +A is the unique solution of the problem

x′′ = , x(a) = A, x′(a) = B.

Clearly, V– is continuous sinceW– is continuous.
We already can introduce a homotopy

H :U × [, ] → C
I [a,T],

defined by

H(x,λ)≡Hλ(x)≡ λV–
j(x) + ( – λ)�.

It is well known that j is completely continuous, that is, j maps each bounded subset
of C

I [a,T] into a compact subset of C[a,T]. Thus, the image j(U) of the bounded set U
is compact. Now, from the continuity of 
 and V– it follows that the sets 
(j(U)) and
V–(
(j(U))) are also compact. In summary, we have established that the homotopy is
compact. On the other hand, for its fixed points we have

λV–
j(x) + ( – λ)� = x

and

Vx = λ
j(x),

which is the operator form of family (.). So, each fixed point of Hλ is a solution to (.),
which, according to Lemma ., lies in U . Consequently, the homotopy is fixed point free
on ∂U .
Finally, H(x) is a constant map mapping each function x ∈ U to �(t). Thus, according

to Theorem ., H(x) = � is essential.
So, all assumptions of Theorem. are fulfilled.HenceH(x) has a fixed point inU which

means that the IVP of (.) obtained for λ =  (i.e. (.)) has at least one solution x(t) in
C[a,T]. From Lemma . we know that

x′(t)≥ m ≥  for t ∈ [a,T],

from which its monotony follows. �

The validity of the following results follows similarly.

Theorem . Let B >  and let (R) hold for m > . Then problem (.) has at least one
strictly increasing solution in C[a,T].

Theorem . Let A >  (A = ) and let (R) hold for m = . Then problem (.) has at least
one positive (nonnegative) non-decreasing solution in C[a,T].

Theorem . Let A ≥ , B >  and let (R) hold for m > . Then problem (.) has at least
one strictly increasing solution in C[a,T] with positive values for t ∈ (a,T].

http://www.boundaryvalueproblems.com/content/2014/1/161
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4 A problem singular at x and x′

In this section we study the solvability of singular IVP (.), (.) under the following as-
sumptions.

(S) There are constants T > ,m,m and a sufficiently small ν >  such that

m > , B >m ≥ m + ν,

[,T]⊆Dt , (A, M̃ + ν] ⊆Dx, [m,B) ⊆Dp,

where M̃ = A + BT + ,

f (t,x,p) ∈ C
(
[,T]× (A, M̃ + ν]× [m – ν,B)

)
, (.)

f (t,x,p)≤  for (t,x,p) ∈ (
[,T]×Dx × [m,B)

)\SA (.)

and

f (t,x,p)≥  for (t,x,p) ∈ (
[,T]×DM̃

× [m,m]
)\SA,

where DM̃
= (–∞, M̃]∩Dx.

(S) For some α ∈ (,T] and μ ∈ (m,B) there exists a constant k <  such that kα + B > μ

and

f (t,x,p)≤ k <  for (t,x,p) ∈ [,α]× (A, M̃]× [μ,B),

where T , m and M̃ are as in (S).

Now, for n ≥ nα,μ, where nα,μ > max{α–, (B + kα – μ)–}, and α, μ, and k are as in (S),
we construct the following family of regular IVPs:

{
x′′ = f (t,x,x′),
x() = A + n–, x′() = B – n–.

(.)

Notice, for n ≥ nα,μ, that we have B – n– > μ – kα > μ >m > .

Lemma . Let (S) and (S) hold and let xn ∈ C[,T], n ≥ nα,μ, be a solution to (.)
such that

A < xn(t) ≤ M̃ and m ≤ x′
n(t) < B for t ∈ [,T].

Then the following bound is satisfied for each n ≥ nα,μ:

x′
n(t) < φα(t) < B for t ∈ (,T],

where φα(t) =
{ kt + B, t ∈ [,α],
kα + B, t ∈ (α,T].

Proof Since for each n≥ nα,μ we have

x′
n() = B – n– > μ – kα > μ,

http://www.boundaryvalueproblems.com/content/2014/1/161
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we will consider the proof for an arbitrary fixed n ≥ nα,μ, considering two cases. Namely,
x′
n(t) > μ for t ∈ [,α] is the first case and the second one is x′

n(t) > μ for t ∈ [,β) with
x′
n(β) = μ for some β ∈ (,α].
Case . From μ < x′

n(t) ≤ B, t ∈ [,α], and (S) we have

x′′
n(t) = f

(
t,xn(t),x′

n(t)
) ≤ k for t ∈ [,α],

i.e. x′′
n(t)≤ k for t ∈ [,α]. Integrating the last inequality from  to t we get

x′
n(t) – x′

n()≤ kt, t ∈ [,α],

which yields

x′
n(t)≤ kt + B – n– for t ∈ [,α].

Nowm ≤ x′
n(t) < B, t ∈ [,T], and (.) imply

x′′
n(t) = f

(
t,xn(t),x′

n(t)
) ≤  for t ∈ [,T].

In particular x′′
n(t) ≤  for t ∈ [α,T], thus

x′
n(t)≤ x′

n(α)≤ kα + B – n– for t ∈ (α,T].

Case . As in the first case, we derive

x′
n(t)≤ kt + B – n– for t ∈ [,β].

On the other hand, since m ≤ x′
n(t) < B for t ∈ [β ,T], again from (.) it follows that

x′′
n(t) = f

(
t,xn(t),x′

n(t)
) ≤  for t ∈ [β ,T],

which yields

x′
n(t)≤ x′

n(β) = μ < kα + B – n– ≤ kt + B – n– for t ∈ [β ,α]

and

x′
n(t) < kα + B – n– for t ∈ (α,T].

So, as a result of the considered cases we get

x′
n(t)≤

{
kt + B – n–, t ∈ [,α],
kα + B – n–, t ∈ (α,T]

< φα(t) for t ∈ [,T] and n≥ nα,μ,

from which the assertion follows immediately. �

Having this lemma, we prove the basic result of this section.

http://www.boundaryvalueproblems.com/content/2014/1/161
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Theorem . Let (S) and (S) hold. Then singular IVP (.), (.) has at least one strictly
increasing solution in C[,T]∩C(,T] such that

mt +A ≤ x(t)≤ Bt +A for t ∈ [,T], m ≤ x′(t) < B for t ∈ (,T].

Proof For each fixed n≥ nα,μ introduce τ = min{(n)–,ν},

M = B – n–, M = B – (n)– and M =
(
B – n–

)
T +A +  < M̃

having the properties

M – τ >M = B – n– > μ – kα > μ >m ≥ m + τ ,

[,T] ⊆Dt ,
[
A + n– – τ ,M + τ

] ⊆ (A, M̃ + τ ] ⊆Dx

and [m,M] ⊆Dp sinceM = B – (n)– < B. Besides,

f (t,x,p)≤  for (t,x,p) ∈ (
[,T]×Dx × [M,M]

)\SA,
f (t,x,p)≥  for (t,x,p) ∈ (

[,T]× (
Dx × (–∞,M]

) × [m,m]
)\SA

and, in view of (.),

f (t,x,p) ∈ C
(
[,T]× [

A + n– – τ ,M + ν
] × [m – τ ,M + τ ]

)
.

All this implies that for each n ≥ nα,μ the corresponding IVP of family (.) satisfies (R).
Thus, we apply Theorem . to conclude that (.) has a solution xn ∈ C[,T] for each
n ≥ nα,μ. We can use also Lemma . to conclude that for each n ≥ nα,μ and t ∈ [,T] we
have

A < A + n– ≤ xn(t) ≤ M < M̃ (.)

and

m ≤ x′
n(t) ≤ B – n– < B.

Now, these bounds allow the application of Lemma . fromwhich one infers that for each
n≥ nα,μ and t ∈ [,T] the bounds

m ≤ x′
n(t) < φα(t)≤ B (.)

hold. For later use, integrating the least inequality from  to t, t ∈ (,T], we get

mt +A + n– ≤ xn(t) < Bt +A + n– for t ∈ [,T] (.)

and n≥ nα,μ.
We consider firstly the sequence {xn} ofC[,T]-solutions of (.) only for each n≥ nα,μ.

Clearly, for each n≥ nα,μ we have in particular

x′
n(t)≥ m >  for t ∈ [α,T],

http://www.boundaryvalueproblems.com/content/2014/1/161
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which together with (.) gives

xn(t)≥ xn(α)≥ mα +A + n– > A > A for t ∈ [α,T],

where A =mα +A. On combining the last inequality and (.) we obtain

A < xn(t) < M̃ for t ∈ [α,T],n≥ nα,μ. (.)

From (.) we have in addition

m ≤ x′
n(t) < φα(α) = B + kα for t ∈ [α,T],n≥ nα,μ. (.)

Now, using the fact that (.) implies continuity of f (t,x,p) on the compact set [α,T] ×
[A, M̃]× [m,φα(α)] and keeping in mind that for each n≥ nα,μ

x′′
n(t) = f

(
t,xn(t),x′

n(t)
)

for t ∈ [α,T],

we conclude that there is a constantM, independent of n, such that

∣
∣x′′

n(t)
∣
∣ ≤ M for t ∈ [α,T] and n≥ nα,μ.

Using the obtained a priori bounds for xn(t), x′
n(t) and x′′

n(t) on the interval [α,T], we
apply the Arzela-Ascoli theorem to conclude that there exists a subsequence {xnk }, k ∈N,
nk ≥ nα,μ, of {xn} and a function xα ∈ C[α,T] such that

‖xnk – xα‖ →  on the interval [α,T],

i.e., the sequences {xnk } and {x′
nk } converge uniformly on the interval [α,T] to xα and x′

α ,
respectively. Obviously, (.) and (.) are valid in particular for the elements of {xnk } and
{x′

nk }, respectively, from which, letting k → ∞, one finds

A ≤ xα(t) ≤ M̃ for t ∈ [α,T],

m ≤ x′
α(t)≤ φα(α) < B for t ∈ [α,T].

Clearly, the functions xnk (t), k ∈N, nk ≥ nα,μ, satisfy integral equations of the form

x′
nk (t) = x′

nk (α) +
∫ t

α

f
(
s,xnk (s),x

′
nk (s)

)
ds, t ∈ (α,T].

Now, since f (t,x,p) is uniformly continuous on the compact set [α,T] × [A, M̃] ×
[m,φα(α)], from the uniform convergence of {xnk } it follows that the sequence {f (s,xnk (s),
x′
nk (s))}, nk ≥ nα,μ is uniformly convergent on [α,T] to the function f (s,xα(s),x′

α(s)), which
means

lim
k→∞

∫ t

α

f
(
s,xnk (s),x

′
nk (s)

)
ds =

∫ t

α

f
(
s,xα(s),x′

α(s)
)
ds

http://www.boundaryvalueproblems.com/content/2014/1/161
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for each t ∈ (α,T]. Returning to the integral equation and letting k → ∞ yield

x′
α(t) = x′

α(α) +
∫ t

α

f
(
s,xα(s),x′

α(s)
)
ds, t ∈ (α,T],

which implies that xα(t) is a C(α,T]-solution to the differential equation x′′ = f (t,x,x′) on
(α,T]. Besides, (.) implies

mt +A ≤ xα(t)≤ Bt +A for t ∈ [α,T].

Further, we observe that if the condition (S) holds for some α > , then it is true also for
an arbitrary α ∈ (,α). We will use this fact considering a sequence {αi} ⊂ (,α), i ∈ N,
with the properties

αi+ < αi for i ∈N and lim
i→∞αi = .

For each i ∈N we consider sequences

{xi,nk }, nk ≥ ni+,μ,k ∈N,ni+,μ > max
{
α–
i+, (B + kαi+ –μ)–

}
,

on the interval [αi+,T]. Thus, we establish that each sequence {xi,nk } has a subsequence
{xi+,nk }, k ∈ N, nk ≥ ni+,μ, converging uniformly on the interval [αi+,T] to any function
xαi+ (t), t ∈ [αi+,T], that is,

‖xi+,nk – xαi+‖ →  on [αi+,T], (.)

which is aC(αi+,T]-solution to the differential equation x′′(t) = f (t,x(t),x′(t)) on (αi+,T]
and

mt +A ≤ xαi+ (t)≤ Bt +A for t ∈ [αi+,T],

m ≤ x′
αi+

(t)≤ φα(αi+) < B for t ∈ [αi+,T],

xαi+ (t) = xαi (t) and x′
αi+

(t) = x′
αi
(t) for t ∈ [αi,T].

The properties of the functions from {xαi}, i ∈ N, imply that there exists a function x(t)
which is a C(,T]-solution to the equation x′′ = f (t,x,x′) on the interval (,T] and is such
that

mt +A ≤ x(t) ≤ Bt +A for t ∈ (,T],

hence limt→+ x(t) = A,

m ≤ x′
(t)≤ φα(t) < B for t ∈ (,T],

x(t) = xαi (t) for t ∈ [αi,T] and i ∈N, (.)

x′
(t) = x′

αi
(t) for t ∈ [αi,T] and i ∈N.

http://www.boundaryvalueproblems.com/content/2014/1/161
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We have to show also that

lim
t→+

x′
(t) = B. (.)

Reasoning by contradiction, assume that there exists a sufficiently small ε >  such that
for every δ >  there is a t ∈ (, δ) such that

x′
(t) < B – ε.

In other words, assume that for every sequence {δj} ⊂ (,T], j ∈ N, with limj→∞ δj = ,
there exists a sequence {tj} having the properties tj ∈ (, δj), limj→∞ tj =  and

x′
(tj) < B – ε. (.)

It is clear that every interval (, δj), j ∈ N, contains a subsequence of {tj} converging to .
Besides, from (.) and (.) it follows that for every j ∈ N there are ij,nj ∈ N such that
αij < δj and

∥
∥x′

i,nk – x′

∥
∥ →  on [αi, δj) (.)

for all i > ij and all nk ≥ max{ni,μ,nj}. Moreover, since the accumulation point of {tj} is ,
for each sufficiently large j ∈ N there is a tj ∈ [αi, δj) where i > ij. In summary, for every
sufficiently large j ∈ N, that is, for every sufficiently small δj > , there are ij,nj ∈ N such
that for all i > ij and nk ≥ max{ni,μ,nj} from (.) and (.) we have

x′
i,nk (tj) < B – ε,

which contradicts to the fact that x′
i,nk () = B – n–k and x′

i,nk ∈ C[,T]. This contradiction
proves that (.) is true.
Now, it is easy to verify that the function

x(t) =

{
A, t = ,
x(t), t ∈ (,T],

is a C[,T] ∩ C(,T]-solution to (.), (.). This function is strictly increasing because
x′(t) = x′

(t) ≥ m >  for t ∈ (,T], and the bounds for x(t) and x′(t) follows immediately
from the corresponding bounds for x(t) and x′

(t). �

The following results provide information about the presence of other useful properties
of the assured solutions. Their correctness follows directly from Theorem ..

Theorem . Let A≥  and let (S) and (S) hold. Then the singular IVP (.), (.) has at
least one strictly increasing solution in C[,T]∩C(,T] with positive values for t ∈ (,T].

5 Examples
Example . Consider the IVP

x′′ =
√
b – x√
c – t

Pk
(
x′),

x() = , x′() = B, B > ,

http://www.boundaryvalueproblems.com/content/2014/1/161
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where b, c ∈ (,∞), and the polynomial Pk(p), k ≥ , has simple zeroes p and p such that

 < p < B < p.

Let us note that here Dt = (–c, c), Dx = [–b,b] and Dp =R.
Clearly, there is a sufficiently small θ >  such that

 < p – θ , p + θ ≤ B ≤ p – θ

and Pk(p) �=  for p ∈ [p – θ ,p)∪ (p,p + θ ]∪ [p – θ ,p)∪ (p,p + θ ].
We will show that all assumptions of Theorem . are fulfilled in the case

Pk(p) >  for p ∈ [p – θ ,p) and Pk(p) <  for p ∈ (p,p + θ ];

the other cases as regards the sign of Pk(p) around p and p may be treated similarly. For
this case choose τ = θ/,m = p >  andM = p. Next, using the requirement [A–τ ,M +
τ ] ⊆ [–b,b], i.e. [–θ/,pT + θ/] ⊆ [–b,b], we get the following conditions for θ and T :

–θ/ ≥ –b and pT + θ/ ≤ b,

which yield θ ∈ (, b] and T ≤ b–θ
p

. Besides, [,T] ⊆ (–c, c) yields T < C. Thus,  < T <
min{c, b–θ

p
}. Now, choosing

m = p – θ and M = p + θ ,

we really can apply Theorem . to conclude that the considered problem has a strictly
increasing solution x ∈ C[,T] with x(t) >  on t ∈ (,T] for each T < min{c, b–θ

p
}.

Example . Consider the IVP

x′′ =
(x′ – )( – x′)
(x – )(x′ – )

,

x() = , lim
t→+

x′(t) = .

Notice that here

SA =R× {} × (
(–∞, )∪ (,∞)

)
, SB =R× (

(–∞, )∪ (,∞)
) × {}.

It is easy to check that (S) holds, for example, form = ,m = , ν = ., and an arbitrary
fixed T > , moreover, M̃ = T +. Besides, for k = –/(T +), α = T/ and μ = ,
for example, we have

kα + B = –T/(T + ) +  >  = μ

and f (t,x,p) ≤ –/(T + ) on [,T/]× (, T +]× [, ), which means that (S)
also holds. By Theorem ., the considered IVP has at least one positive strictly increasing
solution in C[,T]∩C(,T].
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