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Abstract
The Perron method is used to establish the existence of viscosity multi-valued
solutions for a class of Hessian-type equations with prescribed behavior at infinity.
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1 Introduction
In [, ], themulti-valued solutions of the eikonal equation were studied. Later, in [, ] Jin
et al. provided a level set method for the computation of multi-valued geometric solutions
to general quasilinear partial differential equations and multi-valued physical observables
to the semiclassical limit of the Schrödinger equations. In [], Caffarelli and Li investigated
themulti-valued solutions of theMonge-Ampère equationwhere they first introduced the
geometric situation of the multi-valued solutions and obtained the existence, regularity
and the asymptotic behavior at infinity of themulti-valued viscosity solutions. In [] Ferrer
et al. used complex variable methods to study the multi-valued solutions for the Dirichlet
problems ofMonge-Ampère equations on exterior planar domains. Recently, Bao and Dai
discussed the multi-valued solutions of Hessian equations, see [, ]. Motivated by the
above works, in this paper we study the viscosity multi-valued solutions of the Hessian
equation

F
(
λ
(
Du

))
= σ > , (.)

where σ is a constant and λ(Du) = (λ,λ, . . . ,λn) are eigenvalues of the Hessian matrix
Du. F is assumed to be defined in the symmetric open convex cone �, with vertex at the
origin, containing

�+ =
{
λ ∈ Rn : each component of λ,λi > , i = , , . . . ,n

}
,

satisfies the fundamental structure conditions

Fi(λ) =
∂F
∂λi

>  in �,  ≤ i≤ n, (.)
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and F is a continuous concave function. In addition, F will be assumed to satisfy some
more technical assumptions such as

F >  in �, F =  on ∂�, (.)

and for any r ≥ , R > ,

F
(
R
(


rn–

, r, . . . , r
))

≥ F
(
R(, , . . . , )

)
. (.)

For every C >  and every compact set K in �, there is � = �(C,K) such that

F(�λ)≥ C for all λ ∈ K . (.)

There exists a number � sufficiently large such that at every point x ∈ ∂�, if x, . . . ,xn–
represent the principal curvatures of ∂�, then

(x, . . . ,xn–,�) ∈ �. (.)

Inequality (.) is satisfied by each kth root of an elementary symmetric function ( ≤
k ≤ n) and the (k – l)th root of each quotient of the kth elementary symmetric function
and the lth elementary symmetric function (≤ l < k ≤ n).

2 Preliminaries
The geometric situation of the multi-valued function is given in []. Let n≥ , D ⊂ Rn be
a bounded domain with smooth boundary ∂D, and let � ⊂ D be homeomorphic in Rn to
an n–  dimensional closed disc. ∂� is homeomorphic to an n– dimensional sphere for
n≥ .
Let Z be the set of integers andM = (D \ ∂�)×Z denote a covering of D \ ∂� with the

following standard parametrization: fixing x∗ ∈ D \ ∂� and connecting x∗ by a smooth
curve in D \ ∂� to a point x in D \ ∂�. If the curve goes through � m ≥  times in the
positive direction (fixing such a direction), then we arrive at (x,m) inM. If the curve goes
through � m ≥  times in the negative direction, then we arrive at (x, –m) inM.
For k = , , . . . , we introduce an equivalence relation ‘∼ k’ on M as follows: (x,m) and

(y, j) in M are ‘∼ k’ equivalent if x = y and m – j is an integer multiple of k. We let Mk =
M/ ∼ k denote the k-sheet cover of D \ ∂�, and let ∂ ′Mk =

⋃k
m=(∂D× {m}).

We define a distance inMk as follows: for any (x,m), (y, j) ∈ Mk , let l((x,m), (y, j)) denote
a smooth curve in Mk which connects (x,m) and (y, j), and let |l((x,m), (y, j))| denote its
length. Define

d
(
(x,m), (y, j)

)
= inf

l

∣∣l
(
(x,m), (y, j)

)∣∣,

where the infimum is taken over all smooth curves connecting (x,m) and (y, j). Then
d((x,m), (y, j)) is a distance.

Definition . We say that a function u is continuous at (x,m) inMk if

lim
d((x,m),(y,j))→

u(y, j) = u(x,m),

and u ∈ C(Mk) if for any (x,m), u is continuous at (x,m).
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Similarly, we can define u ∈ Cα(Mk), C,(Mk) and C(Mk).

Definition . A function u ∈ C(Mk) is called admissible if λ ∈ �, where λ = λ(Du(x,
m)) = (λ,λ, . . . ,λn) are the eigenvalues of the Hessian matrix Du(x,m).

Definition . A function u ∈ C(Mk) is called a viscosity subsolution (resp. supersolu-
tion) to (.) if for any (y,m) ∈Mk and ξ ∈ C(Mk) satisfying

u(x,m)≤ (resp. ≥) ξ (x,m), (x,m) ∈Mk and u(y,m) = ξ (y,m),

we have

F
(
λ
(
Dξ (y,m)

)) ≥ (resp.≤) σ .

Definition . A function u ∈ C(Mk) is called a viscosity solution to (.) if it is both a
viscosity subsolution and a viscosity supersolution to (.).

Definition . A function u ∈ C(Mk) is called admissible if for any (y,m) ∈ Mk and any
function ξ ∈ C(Mk) satisfying u(x,m) ≤ (≥) ξ (x,m), x ∈ Mk , u(y,m) = ξ (y,m), we have
λ(Dξ (y,m)) ∈ F .

Remark It is obvious that if u is a viscosity subsolution, then u is admissible.

Lemma . Let � be a bounded strictly convex domain in Rn, ∂� ∈ C, ϕ ∈ C(�). Then
there exists a constant C only dependent on n, ϕ and � such that for any ξ ∈ ∂�, there
exists x(ξ ) ∈ Rn such that

∣
∣x(ξ )

∣
∣ ≤ C, wξ (x) < ϕ(x) for x ∈ � \ {ξ},

where wξ (x) = ϕ(ξ ) + R
 (|x – x(ξ )| – |ξ – x(ξ )|) for x ∈ Rn and R is a constant satisfying

F(R,R, . . . ,R) = σ .

This is a modification of Lemma . in [].

Lemma . Let � be a domain in Rn and f ∈ C(Rn) be nonnegative. Assume that the
admissible functions v ∈ C(�), u ∈ C(Rn) satisfy, respectively,

F
(
λ
(
Dv

)) ≥ f (x), x ∈ �,

F
(
λ
(
Du

)) ≥ f (x), x ∈ Rn.

Moreover,

u≤ v, x ∈ �,

u = v, x ∈ ∂�.

Set

w(x) =

{
v(x), x ∈ �,
u(x), x ∈ Rn \ �.
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Then w ∈ C(Rn) is an admissible function and satisfies in the viscosity sense

F
(
λ
(
Dw(x)

)) ≥ f (x), x ∈ Rn.

Lemma . Let B be a ball in Rn and let f ∈ C,α(B) be positive. Suppose that u ∈ C(B)
satisfies in the viscosity sense

F
(
λ
(
Du

)) ≥ f (x), x ∈ B.

Then the Dirichlet problem

F
(
λ
(
Du

))
= f (x), x ∈ B,

u = u(x), x ∈ ∂B

admits a unique admissible viscosity solution u ∈ C(B).

We refer to [] for the proof of Lemmas . and ..

3 Existence of viscosity multi-valued solutions with asymptotic behavior
In this section, we establish the existence of viscosity multi-valued solutions with pre-
scribed asymptotic behavior at infinity of (.). Let� be a bounded strictly convex domain
with smooth boundary ∂�. Let �, diffeomorphic to an (n – )-disc, be the intersection of
� any hyperplane inRn. LetM = (Rn \∂�)×Z,Mk =M/ ∼ k be covering spaces ofRn \∂�

as in Section . � divides � into two open parts, denoted as �+ and �–. Fixing x∗ ∈ �–,
we use the convention that going through � from �– to �+ denotes the positive direction
through �. Our main result is the following theorem.

Theorem . Let k ≥ . Then, for any Cm ∈ R, there exists an admissible viscosity solution
u ∈ C(Mk) of

F
(
λ
(
Du

))
= σ , (x,m) ∈ Mk (.)

satisfying

lim sup
|x|→∞

|x|n–
∣∣
∣∣u(x,m) –

(
R


|x| +Cm

)∣∣
∣∣ < +∞, (.)

where R is a constant satisfying F(R,R, . . . ,R) = σ .

When

F
(
λ
(
Du

))
= σk

(
λ
(
Du

))
, � = �k =

{
λ ∈ Rn : σj > , j = , , . . . ,k

}
,

where the kth elementary symmetric function

σk(λ) =
∑

i<···<ik
λi · · ·λik

for λ = (λ, . . . ,λn), in [] Dai obtained the following result.
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Theorem . Let k ≥ . Then, for any Cm ∈ R, there exists a k-convex viscosity solution
u ∈ C(Mk) of

σk
(
λ
(
Du

))
= , (x,m) ∈Mk

satisfying

lim sup
|x|→∞

(
|x|k–

∣∣
∣∣u(x,m) –

(
C∗


|x| +Cm

)∣∣
∣∣

)
< ∞,

where C∗ = ( 
Ck
n
)

k .

Proof of Theorem . We divide the proof of Theorem . into two steps.
Step . By [], there is an admissible solution � ∈ C∞(�) of the Dirichlet problem:

F
(
λ
(
D�

))
= C > σ , x ∈ �,

� = , x ∈ ∂�.

By the comparison principles in [],� ≤  in�. Further, by Lemma ., for each ξ ∈ ∂�,
there exists x(ξ ) ∈ Rn such that

Wξ (x) < �(x), x ∈ � \ {ξ},

where

Wξ (x) =
R


(∣∣x – x(ξ )
∣∣ –

∣∣ξ – x(ξ )
∣∣), ξ ∈ Rn,

and supξ∈∂� |x(ξ )| < ∞. Therefore

Wξ (ξ ) = , Wξ (x)≤ �(x)≤ , x ∈ �,

F
(
λ
(
DWξ (x)

))
= F(R,R, . . . ,R) = σ , ξ ∈ Rn.

Denote

W (x) = sup
ξ∈∂�

Wξ (x).

Then

W (x)≤ �(x), x ∈ �,

and by []

F
(
λ
(
DW

)) ≥ σ , x ∈ Rn.

Define

V (x) =

{
�(x), x ∈ �,
W (x), x ∈ Rn \ �.
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Then V ∈ C(Rn) is an admissible viscosity solution of

F
(
λ
(
DV

)) ≥ σ , x ∈ Rn.

Fix some R >  such that� ⊂ BR (), where BR () is the ball centered at the origin with
radius R.
Let R = RR


 . For a > , defuse

Wa(x) = inf
BR

V +
∫ |R 

 x|

R

(
sn + a

) 
n ds, x ∈ Rn.

Then

DijWa =
(|y|n + a

) 
n–

[(
|y|n– + a

|y|
)
Rδij –

aRxixj
|y|

]
, |x| > ,

where y = R

 x. By rotating the coordinates, we may set x = (r, , . . . , ). Therefore

DWa =
(
Rn + a

) 
n–Rdiag

(
Rn–,Rn– +

a
R
, . . . ,Rn– +

a
R

)
,

where R = |y|. Consequently, λ(DWa) ∈ � for |x| >  and by (.)

F
(
λ
(
DWa

)) ≥ F(R,R, . . . ,R) = σ , |x| > .

Moreover,

Wa(x)≤ V (x), |x| ≤ R. (.)

Fix some R > R satisfying

RR

 > R.

We choose a >  such that for a ≥ a,

Wa(x) > inf
BR

V +
∫ R

R

(
sn + a

) 
n ds≥ V (x), |x| = R.

Then by (.) R ≥ R. According to the definition ofWa,

Wa(x) = inf
BR

V +
∫ |R 

 x|

R
s
((

 +
a
sn

) 
n
– 

)
ds +

∫ |R 
 x|

R
s ds

=
R


|x| +Cm + inf
BR

V +
∫ +∞

R
s
((

 +
a
sn

) 
n
– 

)
ds –Cm

– R
 –

∫ +∞

|R 
 x|

s
((

 +
a
sn

) 
n
– 

)
ds, x ∈ Rn.
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Let

μ(m,a) = inf
BR

V +
∫ +∞

R
s
((

 +
a
sn

) 
n
– 

)
ds –Cm – R

.

Then μ(m,a) is continuous and monotonic increasing for a and when a→ ∞, μ(m,a) →
∞,  ≤ m ≤ k. Moreover,

Wa(x) =
R


|x| +Cm +μ(m,a) –O
(|x|–n), when |x| → ∞. (.)

Define, for a ≥ a and  ≤ m ≤ k,

um,a(x) =

{
max{V (x),Wa(x)} –μ(m,a), |x| ≤ R,
Wa –μ(m,a), |x| ≥ R.

Then by (.), for  ≤ m≤ k,

um,a(x) =
R


|x| +Cm –O
(|x|–n), when |x| → ∞,

and by the definition of V ,

um,a(x) = –μ(m,a), x ∈ ∂�.

Choose a ≥ a large enough such that when a≥ a,

V (x) –μ(m,a) = V (x) – inf
BR

V –
∫ +∞

R
s
((

 +
a
sn

) 
n
– 

)
ds +Cm + R



≤ Cm

≤ R


|x| +Cm, |x| ≤ R.

Therefore

um,a(x)≤
R


|x| +Cm, a ≥ a,x ∈ Rn.

By Lemma ., um,a ∈ C(Rn) is admissible and satisfies in the viscosity sense

F
(
λ
(
Dum,a

)) ≥ σ , x ∈ Rn.

It is easy to see that there exists a continuous function a(m)(a) such that lima→∞ a(m)(a) =
∞ and μ(m,a(m)(a)) = μ(,a) for  ≤ m ≤ k. So there exists a ≥ a such that a(m)(a) > a
whenever a ≥ a and  ≤ m ≤ k. Let a()(a) = a and define

ua(x,m) = um,a(m)(a)(x), (x,m) ∈Mk .
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Then, by the definition of um,a, when a ≥ a, ua ∈ C(Mk) is a locally admissible function
satisfying

ua(x,m) =
R


|x| +Cm –O
(|x|–n), when |x| → ∞,

ua(x,m)≤ R


|x| +Cm, x ∈ Rn,  ≤ m ≤ k,

lim
x→x

ua(x,m) = –μ(,a), x ∈ ∂�,  ≤ m ≤ k,

and in the viscosity sense

F
(
λ
(
Dua

)) ≥ σ , (x,m) ∈Mk .

Step . We define the solution of (.) by the Perron method.
For a ≥ a, let Sa denote the set of admissible functions V ∈ C(Mk) which can be ex-

tended to ∂� and satisfies

F
(
λ
(
DV

)) ≥ σ , (x,m) ∈Mk ,

lim
x→x

V (x,m) ≤ –μ(,a), x ∈ �,

V (x,m) ≤ R


|x| +Cm, x ∈ Rn,  ≤ m ≤ k.

It is obvious that ua ∈ Sa. Hence Sa �= ∅. Define

ua(x,m) = sup
{
V (x,m) : V ∈ Sa

}
, (x,m) ∈Mk .

Next we prove that ua is a viscosity solution of (.). From the definition of ua, it is a
viscosity subsolution of (.) and satisfies

ua(x,m)≤ R


|x| +Cm, x ∈ Rn.

So we need only to prove that ua is a viscosity supersolution of (.) satisfying (.).
For any x ∈ Rn \ ∂�, fix ε >  such that B = Bε(x) ⊂ Rn \ ∂�. Then the lifting of B into

Mk is the k disjoint balls denoted as {B(i)}ki=. For any (x,m) ∈ B(i), by Lemma ., there
exists an admissible viscosity solution ũ ∈ C(B(i)) to the Dirichlet problem

F
(
λ
(
Dũ

))
= σ , (x,m) ∈ B(i),

ũ = ua, (x,m) ∈ ∂B(i).

By the comparison principle in [],

ua ≤ ũ, (x,m) ∈ B(i). (.)

Define

ψ(x,m) =

{
ũ(x,m), (x,m) ∈ B(i),
ua(x,m), (x,m) ∈Mk \ {B(i)}ki=.

http://www.boundaryvalueproblems.com/content/2014/1/165
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By Lemma .,

F
(
λ
(
Dψ(x,m)

)) ≥ σ , x ∈ Rn.

As

F
(
λ
(
Dũ

))
= σ = F

(
λ
(
Dg

))
, (x,m) ∈ B(i),

ũ = ua ≤ g, (x,m) ∈ ∂B(i),

where g(x,m) = R
 |x| +Cm, we have

ũ≤ g, (x,m) ∈ B(i)

by the comparison principle in []. Therefore ψ ∈ Sa.
By the definition of ua,ua ≥ ψ in Mk . Consequently, ũ ≤ ua in B(i) and further ũ = ua,

(x,m) ∈ B(i) in view of (.). Since x is arbitrary, we conclude that ua is an admissible
viscosity solution of (.).
By the definition of ua,

ua ≤ ua ≤ g, (x,m) ∈Mk ,

so ua satisfies (.) and we complete the proof of Theorem .. �
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