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Abstract
In this paper, an analytical solution for the effect of the rotation in a magneto-
thermo-viscoelastic non-homogeneous medium with a spherical cavity subjected
to periodic loading is presented. The distribution of displacements, temperature,
and stresses in the non-homogeneous medium in the context of generalized
thermo-elasticity using GL (Green-Lindsay) theory is discussed and obtained in
analytical form. The results are displayed graphically to illustrate the effect of rotation,
relaxation, magnetic field, viscoelasticity, and non-homogeneity. Comparisons
are made with the previous work in the absence of rotation and initial stress.
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1 Introduction
In recent years, the theory of magneto-thermo-viscoelasticity, which deals the interac-
tions among strain, temperature, and electromagnetic fields has drawn the attention of
many researchers because of its extensive use in diverse fields, such as geophysics for un-
derstanding the effect of the Earth’s magnetic field on seismic waves, damping of acoustic
waves in a magnetic field, emission of electromagnetic radiations from nuclear devices,
development of a highly sensitive superconducting magnetometer, electrical power engi-
neering, optics, etc.; see [–]. Mahmoud et al. [, ] investigated the effect of the rotation
on plane vibrations in a transversely isotropic infinite hollow cylinder, the effect of the
rotation on wave motion through a cylindrical bore in a micropolar porous cubic crystal
and he investigated the effect of amagnetic field and non-homogeneity on the radial vibra-
tions in a hollow rotating elastic cylinder. Abd-Alla et al. [–] investigated the effect of
the rotation on a non-homogeneous infinite cylinder of orthotropic material, influence of
rotation, radial vibrations in a non-homogeneous orthotropic elastic hollow sphere sub-
jected to rotation, and they investigated themagneto-thermo-elastic problem in a rotating
non-homogeneous orthotropic hollow cylinder in the hyperbolic heat conduction model.
Mahmoud [, ] investigated the analytical solution for an electrostatic potential onwave
propagationmodeling in human longwet bones, and they studied the influence of rotation
and generalized magneto-thermo-elastics on Rayleigh waves in a granular medium under
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the effect of initial stress and a gravity field. Abd-Alla and Mahmoud [] investigated the
analytical solution of wave propagation in non-homogeneous orthotropic rotating elas-
tic media. Abd-Alla et al. [–] investigated some problems like the propagation of an
S-wave in a non-homogeneous anisotropic incompressible and initially stressed medium
under the influence of a gravity field, the generalized magneto-thermo-elastic Rayleigh
waves in a granular medium under the influence of a gravity field and initial stress, and
they also investigated the problem of transient coupled thermo-elasticity of an annular
fin. Some problems of thermo-elasticity and wave propagation modeling in a cylinder are
investigated by Abd-Alla et al. [, ], respectively. Mukhopadhyay [] investigated the
effects of thermal relaxations on thermo-viscoelastic interactions in an unbounded body
with a spherical cavity subjected to a periodic loading on the boundary. The effects of
thermal relaxations on thermo-elastic interactions in an unbounded body with a spheri-
cal cavity or cylindrical hole subjected to a periodic loading on the boundary, respectively,
were investigated by Roychoudhuri and Mukhopadhyay []. The thermally induced vi-
brations in a generalized thermo-elastic solid with a cavity have been investigated by Erbay
et al. [] and Li and Qi []. Mahmoud [] investigated the analytical solution for free
vibrations of an elasto-dynamic orthotropic hollow sphere under the influence of rotation.
In this paper, rotation and the magneto-thermo-elastic equation of a spherical cavity

are decomposed into a non-homogeneous equation with boundary conditions. The effect
of thermal relaxation times on the wave propagation in the magneto-thermo-viscoelastic
case using the GL theory will be discussed. We take the material of the spherical cavity
to be of Kelvin-Voigt type. Thus, the exact expressions for the transient response of dis-
placement, stresses, and temperature in a spherical cavity are obtained. The numerical
calculations will be investigated for the displacement, temperature, and the components
of stresses, and we explain the special case from this study when the magnetic field and
non-homogeneity are neglected. Finally, numerical results are calculated and discussed.

2 Formulation of the problem
We shall consider the spherical coordinates of any representing point to be (r, θ ,φ) and
assume that the spherical cavity is subjected to a rapid change in temperature T(r, t) and
magnetic fieldH(, ,H), for the axisymmetric plane strain problem, and the components
of the displacement u = u(ur ,uθ ,uφ) are expressed as uθ = uφ = , and ur = ur(r, t). Let us
consider an infinite isotropic non-homogeneous viscoelastic solid, and the viscoelastic
nature of the material is described by the Voigt type of linear viscoelasticity. The medium
is assumed to have a spherical cavity of radius a. For a spherical symmetric system, the
non-vanishing stress components are expressed as

τrr = τm(λ + μ)
∂ur
∂r

+ λτm
ur
r
– γ (T + τṪ),

τθθ = τm(λ +μ)
ur
r
+ λτm

∂ur
∂r

– γ (T + τṪ),

τϕϕ = τm(λ +μ)
ur
r
+ λτm

∂ur
∂r

– γ (T + τṪ),

τrϕ = τrθ = τθϕ = ,

()

where τrr , τθθ , and τϕϕ are the normal mechanical stresses, τrϕ , τrθ , τθϕ are shear mechan-
ical stresses. τm =  + τ

∂
∂t and τ are the mechanical relaxation times due to the viscosity.

http://www.boundaryvalueproblems.com/content/2014/1/166


Al-Basyouni et al. Boundary Value Problems 2014, 2014:166 Page 3 of 11
http://www.boundaryvalueproblems.com/content/2014/1/166

The magneto-elasto-dynamic equation of the non-homogeneity in the spherical case if
ur = ur(r, t), becomes

∂τrr

∂r
+

r
τrr –


r
τθθ –


r
τϕϕ +μe(J ×H) – ρ(←–
 × ←–


 × ←–u )r – ρ(←–
 × ←–
u̇ )r

= ρ
∂ur
∂t

, ()

where ←–

 = (
, , ), ←–
 × ←–


 × ←–u is the centripetal acceleration due to the time varying
motion only and ←–
 ×←–̇

u is the Coriolis acceleration, we have the Lorentz force [], which
may be written as

fr = μe(J ×H) = μeH


∂

∂r

(
∂ur
∂r

+
ur
r

)
,

h = curl(u×H) =
(
,,–H

(
∂ur
∂r

+
ur
r

))
, J = curlh =

(
,

∂hφ

∂r
, 

)
,

()

where h is the perturbed magnetic field over the primary magnetic field, E is the electric
intensity, J is the electric current density,μe is themagnetic permeability,H is the constant
primary magnetic field, and u is the displacement vector.
The magneto-thermo-elasto-dynamic equations of the non-homogeneity sphere may

be written as

∂τrr

∂r
+

r
τrr –


r
τθθ –


r
τϕϕ +μeH


∂

∂r

(
∂ur
∂r

+
ur
r

)
+ ρ
ur = ρ

∂ur
∂t

, (a)

L
(

∂θ

∂r
+

r

∂θ

∂r

)
= ρcv

(
∂θ

∂t
+ τ

∂θ

∂t

)
+ γT

[
∂

∂r
+

r

]
u̇r , (b)

where L is the thermal conductivity, γ = αt(λ + μ), 
 is the rotation, ρ is the density
of the material, cv is the specific heat of the material per unit mass, τ, τ are thermal
relaxation parameters, αt is the coefficient of linear thermal expansion, λ, μ are Lame
elastic constants, T is the absolute temperature, T is a reference temperature of solid,
θ is temperature difference (T – T), and τ is the mechanical relaxation time due to the
viscosity. In the above formula, the non-homogeneity of the material is characterized by
a special law as follows:

λ = λrn, μ = μrn, ρ = ρrn, μe = μ
e r

n, γ = γrn, ()

where λ, μ, ρ and μ
e are the Lame’s constant, shear modulus, mass density, pressure,

and magnetic permeability coefficient of the homogeneous material, respectively, and n
expresses a non-homogeneous exponent of thematerial, which is an arbitrary real number.
Substituting () into () yields

τrr = rn
[
τm(λ + μ)

∂ur
∂r

+ (λ)τm
ur
r
– γ(θ + τθ̇ )

]
,

τθθ = rn
[
τm(λ +μ)

ur
r
+ (λ)τm

∂ur
∂r

– γ(θ + τθ̇ )
]
,
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τϕϕ = rn
[
τm(λ +μ)

ur
r
+ λτm

∂ur
∂r

– γ(θ + τθ̇ )
]
, ()

τrϕ = τrθ = τθϕ = ,

σ ∗
rr = μ

eH

r

n
(

∂ur
∂r

+
ur
r

)
,

where σ ∗
rr is the Maxwell stress tensor. From plugging () and () into () we have

[
τm +

μ
eH

φ

(λ + μ)

]
∂ur
∂r

+
[
(n + )τm +

μ
eH

φ

(λ + μ)

]

r
∂ur
∂r

+
[

nλτm

(λ + μ)
– τm –

μ
eH

φ

(λ + μ)

]
ur
r

–
[
n
r

+
∂

∂r

]
γ

(λ + μ)
(θ + τθ̇ )

+ ρrn
u =
ρ

(λ + μ)
∂u
∂t

. ()

Let c = λ
(λ+μ)

, c = γ
(λ+μ)

, c =
μ
e H

φ

(λ+μ)
, cv =

√
(λ+μ)

ρ
.

Then the elasto-dynamic equation () becomes

(τm + c)
∂ur
∂r

+
[
(n + )τm + c

]
r
∂ur
∂r

+ [ncτm – τm – c]
ur
r

– c
[
n
r

+
∂

∂r

]
(θ + τθ̇ ) + ρ


ur =

cv

∂ur
∂t

. ()

In addition, the heat conduction equation is

L
(

∂θ

∂r
+

r

∂θ

∂r

)
= ρrncv

(
∂θ

∂t
+ τ

∂θ

∂t

)
+ γrnT

[
∂

∂r
+

r

]
u̇r . ()

We now use the following dimensionless quantities:

U =
ur
a
, l =

L
ρcv

, t′ =
kcv
a

t, T =
θ

T
, τ ′

 =
cv
a

τ, τ ′
 =

cv
a

τ,

τ ′
 =

kcv
a

τ, r′ =
r
a
, 
∗ =




a
, ()

σrr =
τrr

(λ + μ)
, σθθ =

τθθ

(λ + μ)
.

In the following discussion the primes are neglected for r′.
The normal stresses relations can be set right in non-dimensional form as:

σrr = (ar)n
[(

 + τ ′


∂

∂t′

)
∂U
∂r

+ c
(
 + τ ′


∂

∂t′

)
U
r
– Tc

(
 + τ ′


∂

∂t′

)
T

]
,

σθθ = (ar)n
[

(
 + τ ′


∂

∂t′

)
U
r
+ c

(
 + τ ′


∂

∂t′

)
∂U
∂r

– Tc
(
 + τ ′


∂

∂t′

)
T

]
, ()

σ ∗
rr = μ

eH

φ(ar)

n
(

∂U
∂r

+
U
r

)
, fr =

μ
eH

φ(ar)n

a

(
∂U
∂r

+

r

∂U
∂r

–
U
r

)
,

where c =
λ+P∗


(λ+μ)

, c = γ
(λ+μ)

.
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Substituting of () into () and () gives the displacement equation in the non-dimen-
sional form of the non-homogeneous spherical as follows:

[(
 + τ ′


∂

∂t′

)
+ c

]
∂U
∂r

+
[
(n + )

(
 + τ ′


∂

∂t′

)
+ c

]

r
∂U
∂r

+
[
(nc – )

(
 + τ ′


∂

∂t′

)
– c

]
U
r

– cT

[
 + τ ′


∂

∂t′

](
l
r
+


cL

∂

∂r

)
T + ρac


∗U = l
∂U
∂t′

. ()

The heat conduction equation in non-dimensional form is
(

∂T
∂r

+

r

∂T
∂r

)
= l

(
 + τ ′


∂

∂t′

)
∂T
∂t′

+ l
[

∂

∂r
+

r

]
∂U
∂t′

, ()

where l = acv
l , l = aγ

ρ
.

3 The problem solution
We seek the general solution to the basic equation () of magneto-thermo-elastic motion
as a harmonic vibration in the form

U
(
r, t′

)
=U∗(r)eiωt′ , ()

T
(
r, t′

)
= T∗(r)eiωt

′
. ()

From () the equation of motion becomes

[(
 + iωτ ′


)
+ c

]dU∗

dr
+

[
(n + )

(
 + iωτ ′


)
+ c

]
r
dU∗

dr

+
[
(nc – )

(
 + iωτ ′


)
– c

]U∗

r
+ ρac


∗U∗

= –kωU∗ + cTγ
′
(
n
r

+
d
dr

)
T∗, ()

where γ ′ = ( + iτ ′
ω), or in the form

dU∗

dr
+ η


r
dU∗

dr
+ η

U∗

r
+ ρac


∗U∗ = –m
U

∗ + ε

(
n
r

+
d
dr

)
T∗,

where

η =
(n + )( + iωτ ′

)
( + iωτ ′

) + c
+ , η =

(nc – )( + iωτ ′
)

( + iωτ ′
) + c

– ,

ε =
cTγ

′

( + iωτ ′
) + c

, m
 =

kω

( + iωτ ′
) + c

, c =

√
λ + μ

ρ
.

Also the heat conduction equation becomes

(∇ + β
)
T∗ = β

[
d
dr

+

r

]
U∗, ()

where ∇ = d
dr +


r

d
dr , β = l(ωτ ′

 – iω), β = iωl.
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To solve () and (), we let

U∗(r) =
dξ (r)
dr

, ()

d
dr

[
dξ (r)
dr

+
η

r
dξ (r)
dr

+
η

r
ξ (r)

]
+ f
∗ dξ (r)

dr
= –m


dξ (r)
dr

+ ε

(
n
r

+
d
dr

)
T∗. ()

By comparing the coefficients of d
dr in (), we get

dξ (r)
dr

+
η

r
dξ (r)
dr

+
[

η

r
+m



]
ξ (r) = εT∗. ()

The heat conduction equation becomes

(∇ + β
)
T∗ = β∇ξ (r). ()

From () and (), we have

dξ (r)
dr

+ [η + ]

r
dξ (r)
dr

+
[
� +

η – η

r

]
dξ (r)
dr

+
[

η + η

r
+

�

r

]
dξ (r)
dr

+ βNξ + f
∗ dξ (r)
dr

= , ()

where � =m
 + β – εβ, � =m

 + βη – εβ.
Decoupling () and (), we obtain

(∇ + χ

)(∇ + χ


)(

ξ ,T∗) = , ()

where β = β
l , χ


 and χ

 are the roots with positive real parts of the biquadratic equation:

χ +
(
m

 + β
 – ηη

)
χ +m

β

 = . ()

Assuming the regularity conditions for ξ andT∗ the solutions of () are obtained in terms
of the spherical Hankel function, () representing an ordinary differential equation with
variable coefficients of order four; from this equation we can determine the components
of the displacement U and the temperature T , and finally determine the components of
the stress. We have

ξ = Kh() (χr) +Kh() (χr), (a)

T∗ = Kh() (χr) +Kh() (χr), (b)

where K and K are arbitrary constants and h() is the Hankel function of order zero and
of the second kind. From (), (), (), and (a)-(b), the solution for the displacement,
temperature and the radial and hoop stresses are found to have the forms

U =
{
Ah() (χr) + Bh() (χr)

}
eiωt

′
, ()

T =
{
Kh() (χr) +Kh() (χr)

}
eiωt

′
, ()
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σrr =
{
Qh() (χr) +

Q

r
h() (χr)

}
Aeiωt

′

+
{
Qh() (χr) +

Q

r
h() (χr)

}
Beiωt

′
, ()

σθθ =
{
Qh() (χr) +

Q

r
h() (χr)

}
Aeiωt

′

+
{
Qh() (χr) +

Q

r
h() (χr)

}
Beiωt

′
. ()

4 Boundary conditions
Let us consider the corresponding boundary conditions,

u(, t) = , r = ,

σrr + σ ∗
rr = –σeiωt , r = ,

()

where σ is a constant; we get

zi =
χ
i –m


t′χi

, Ki = ziAi, i = , ,

A = –
σ ′
h

()
 (χ)
d

, A =
σ ′
zh

()
 (χ)
d

, σ ′
 =

σ

γT
,

d = zh() (χ)
{
Qh() (χ) +Qh() (χ)

}
– zh() (χ)

{
Qh() (χ) +Qh() (χ)

}
,

Q =
(
 + iωτ ′

 + β

)
χ –

(
 + iωτ ′


)
z, Q =

(
 + iωτ ′

 + β

)
(λe – ),

Q =
(
 + iωτ ′

 + β

)
χ –

(
 + iωτ ′


)
z, Q =

(
 + iωτ ′

 + β

)
χ –

(
 + iωτ ′


)
z,

Q =
(
 + iωτ ′

 + β

)
( – λe), Q = λe

(
 + iωτ ′

 + β

)
χ –

(
 + iωτ ′


)
z,

β
 =

μ
eH

ϕ

ρc
, m

 =
kω

ac( + iωτ ′
 + β

)
, λe =

λ

λ + μ + P
.

This is the solution of the current problem for the case of a non-homogeneous isotropic
viscoelastic unbounded body with spherical cavity without the effect of a magnetic field;
it coincides with one previously published.

5 Discussion and numerical results
The results presented in this paper should prove useful for researchers inmaterial science,
designers of newmaterials, low-temperature physicists as well as for those working on the
development of magneto-thermo-viscoelastic theory. The copper material was used cho-
sen for purposes of numerical evaluations. The constants of the problem are given [].
The numerical technique outlined above was used to obtain the temperature, radial dis-
placement, radial stress and hoop stress inside the sphere. These distributions are shown
in Figures -, respectively. Important phenomena are observed in all computations: It
was found that for large values of time the coupled and the generalized give close results.
The case is quite different when we consider a small value of time. The coupled theory
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Figure 1 Variation of temperature versus the radius r at various values of rotation when τ1 = 0.75,
τ0 = 0.64, ω = 2× 103,m = 0.5, H0 = 1× 102.

Figure 2 Variation of radial displacement versus the radius r at various values of rotation when
τ1 = 0.75, τ0 = 0.64, ω = 2× 103,m = 0.5, H0 = 1× 102.

predicts infinite speeds of wave propagation. This is evident from the fact that the ob-
tained solutions are not identically zero for any values of time but fade gradually to very
small values at points for removed from the surface. The solutions obtained in the con-
text of GL theory, however, exhibit the behavior of finite speeds of wave propagation. The
computations were carried out for a thermal relaxation time of τ = ., a magnetic field
of H = × , a mechanical relaxation time of τ = ., and a frequency of ω = × .
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Figure 3 Variation of radial stress versus the radius r at various values of rotation when τ1 = 0.75,
τ0 = 0.64, ω = 2× 103,m = 0.5, H0 = 1× 102.

Figure 4 Variation of hoop stress versus the radius r at various values of rotation when τ1 = 0.75,
τ0 = 0.64, ω = 2× 103,m = 0.5, H0 = 1× 102.

For the sake of brevity some computational results are not presented here. Figures -
show the solution corresponding to the use of the non-homogeneous material (m = .).
Figure  shows the temperature distribution and the solution corresponding to the effect
of rotation. Figure  shows the radial displacement in a generalized thermo-elastic non-
homogeneous medium subjected to rotation, thermal relaxation, and a magnetic field.
The figures indicate that the medium along the radius r undergoes expansion deforma-
tion because of these effects. The radial displacement increases with increasing rotation

http://www.boundaryvalueproblems.com/content/2014/1/166
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and it increases with increasing radius r. Figure  shows the radial stress in a generalized
thermo-elastic non-homogeneous medium subjected to rotation, thermal relaxation, and
a magnetic field; in Figure  the radial stress decreases with increasing rotation when we
have a small value of the radius r of less than . Also, Figure  represents the solution
corresponding to the use of the effect of the magnetic field H. Figure  shows the hoop
stress in a generalized thermo-elastic non-homogeneous medium subjected to rotation,
thermal relaxation, and a magnetic field. From this figure, the hoop stress decreases with
increasing radius r; Figure  represents the solution corresponding to the use of the effect
of rotation; also Figure  represents the hoop stress corresponding to the use of the effect
of themagnetic fieldH. It was found that near the surface cavity where the boundary con-
ditions dominate the coupled and the generalized theories give very close results. Inside
the sphere, the solution is markedly different. This is due to the fact that thermal waves
in the coupled theory the traveled distance is not identically zero (though it may be very
small) for any small of time. By comparing with results in [] it was found that U has the
same behavior in both media. But the values of u in a generalized thermo-elastic medium
are larger in comparison with those in a thermo-elastic medium. The same remark can
be made for σrr by comparing the figures. This is due to the influence of relaxation time,
magnetic field, and frequency. Extensive literature on the topic is now available and we
can only mention a few recent interesting investigations in [–].

6 Conclusions
The elasto-dynamic equations for the generalized thermo-viscoelastic theory under the
effect of the non-homogeneous material, rotation, relaxation, and magnetic field have a
complicated nature. Themethod used in this study provides a quite successful approach in
dealing with such problems. The displacement, temperature, and stress components have
been obtained in analytical form. This approach gives an exact solution in the Hankel
transform domain that appears in the governing equations of the problem considered.
Numerical results are calculated and discussed and illustrated graphically.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors, KSA, SRM and EOA contributed to each part of this work equally and read and approved the final version of
the manuscript.

Author details
1Mathematics Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
2Mathematics Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt.

Acknowledgements
This article (project) was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under
grant No. (130-094-D1434). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Received: 16 April 2014 Accepted: 25 June 2014

References
1. Yang, GC, Xu, YZ, Dang, LF: On the shear stress function and the critical value of the Blasius problem. J. Inequal. Appl.

2012, 208 (2012)
2. Ma, Z: Exponential stability and global attractors for a thermoelastic Bresse system. Adv. Differ. Equ. 2010, Article ID

748789 (2010)
3. Marin, M, Agarwal, RP, Mahmoud, SR: Modeling a microstretch thermoelastic body with two temperatures. Abstr.

Appl. Anal. 2013, Article ID 583464 (2013). doi:10.1155/2013/583464
4. Emamizadeh, B: Applications of a weighted symmetrization inequality to elastic membranes and plates. J. Inequal.

Appl. 2010, Article ID 808693 (2010). doi:10.1155/2010/808693

http://www.boundaryvalueproblems.com/content/2014/1/166
http://dx.doi.org/10.1155/2013/583464
http://dx.doi.org/10.1155/2010/808693


Al-Basyouni et al. Boundary Value Problems 2014, 2014:166 Page 11 of 11
http://www.boundaryvalueproblems.com/content/2014/1/166

5. Mahmoud, SR, Abd-Alla, AM, Al-Shehri, NA: Effect of the rotation on plane vibrations in a transversely isotropic infinite
hollow cylinder. Int. J. Mod. Phys. B 25(26), 3513-3528 (2011)

6. Mahmoud, SR, Abd-Alla, AM, Matooka, BR: Effect of the rotation on wave motion through cylindrical bore in a
micropolar porous cubic crystal. Int. J. Mod. Phys. B 25, 2713-2728 (2011)

7. Abd-Alla, AM, Yahya, GA, Mahmoud, SR: Effect of magnetic field and non-homogeneity on the radial vibrations in
hollow rotating elastic cylinder. Meccanica 48(3), 555-566 (2013)

8. Abd-Alla, AM, Mahmoud, SR, Al-Shehri, NA: Effect of the rotation on a non-homogeneous infinite cylinder of
orthotropic material. Appl. Math. Comput. 217, 8914-8922 (2011)

9. Abd-Alla, AM, Yahya, GA, Mahmoud, SR: Radial vibrations in a non-homogeneous orthotropic elastic hollow sphere
subjected to rotation. J. Comput. Theor. Nanosci. 10(2), 455-463 (2013)

10. Abd-Alla, AM, Mahmoud, SR: Magneto-thermoelastic problem in rotating non-homogeneous orthotropic hollow
cylinder under the hyperbolic heat conduction model. Meccanica 45, 451-462 (2010)

11. Mahmoud, SR: Analytical solution for electrostatic potential on wave propagation modeling in human long wet
bones. J. Comput. Theor. Nanosci. 11(2), 454-463 (2014)

12. Mahmoud, SR: Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular
medium under effect of initial stress and gravity field. Meccanica 47(7), 1561-1579 (2012)

13. Abd-Alla, AM, Mahmoud, SR: Analytical solution of wave propagation in non-homogeneous orthotropic rotating
elastic media. J. Mech. Sci. Technol. 26(3), 917-926 (2012)

14. Abd-Alla, AM, Mahmoud, SR, Abo-Dahab, SM, Helmi, MIR: Propagation of S-wave in a non-homogeneous anisotropic
incompressible and initially stressed medium under influence of gravity field. Appl. Math. Comput. 217(9), 4321-4332
(2011)

15. Abd-Alla, AM, Abo-Dahab, SM, Mahmoud, SR, Hammad, HA: On generalized magneto-thermoelastic Rayleigh waves
in a granular medium under influence of gravity field and initial stress. J. Vib. Control 17, 115-128 (2011)

16. Abd-Alla, AM, Mahmoud, SR, Abo-Dahab, SM: On problem of transient coupled thermoelasticity of an annular fin.
Meccanica 47(5), 1295-1306 (2012)

17. Abd-Alla, AM, Mahmoud, SR, Abo-Dahab, SM: Wave propagation modeling in cylindrical human long wet bones with
cavity. Meccanica 46(6), 1413-1428 (2011)

18. Abd-Alla, AM, Mahmoud, SR: On problem of radial vibrations in non-homogeneity isotropic cylinder under influence
of initial stress and magnetic field. J. Vib. Control 19(9), 1283-1293 (2013)

19. Mukhopadhyay, S: Effects of thermal relaxations on thermo-visco-elastic interactions in an unbounded body with a
spherical cavity subjected to a periodic loading on the boundary. J. Therm. Stresses 23, 675-684 (2000)

20. Roychoudhuri, SK, Mukhopadhyay, S: Effect of rotation and relaxation times on plane waves in generalized
thermo-viscoelasticity. Int. J. Math. Math. Sci. 23(7), 497-505 (2000)

21. Erbay, HA, Erbay, S, Dost, S: Thermally induced vibrations in a generalized thermoelastic solid with a cavity. J. Therm.
Stresses 14, 161-171 (1991)

22. Li, J, Qi, J: Spectral problems for fractional differential equations from nonlocal continuummechanics. Adv. Differ. Equ.
2014, 85 (2014)

23. Mahmoud, SR: Analytical solution for free vibrations of elastodynamic orthotropic hollow sphere under the influence
of rotation. J. Comput. Theor. Nanosci. 11, 137-146 (2014)

24. Roychoudhuri, SK, Banerjee, S: Magneto-thermoelastic interactions in an infinite viscoelastic cylinder of temperature
rate dependent material subjected to a periodic loading. Int. J. Eng. Sci. 36(5/6), 635-643 (1998)

25. Abd-Alla, AM, Abo-Dahab, SM, Mahmoud, SR, Al-Thamalia, TA: Influence of the rotation and gravity field on Stonely
waves in a non-homogeneous orthotropic elastic medium. J. Comput. Theor. Nanosci. 10(2), 297-305 (2013)

26. Mahmoud, SR: On problem of shear waves in a magneto-elastic half-space of initially stressed a non-homogeneous
anisotropic material under influence of rotation. Int. J. Mech. Sci. (2013). doi:10.1016/j.ijmecsci.2013.10.004

27. Marin, M: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32(8),
1229-1240 (1994)

28. Mahmoud, SR: Effect of non-homogeneity and rotation on an infinite generalized thermoelastic diffusion medium
with a spherical cavity subject to magnetic field and initial stress. Abstr. Appl. Anal. 2013, Article ID 284646 (2013)

29. Marin, M: A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal., Real World Appl. 11(4),
2436-2447 (2010)

30. Bessaim, A, Houari, MSA, Tounsi, A, Mahmoud, SR, Adda Bedia, EA: A new higher-order shear and normal deformation
theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets.
J. Sandw. Struct. Mater. (2013). doi:10.1177/1099636213498888

31. Mahmoud, SR, Marin, M, Ali, SI, Al-Basyouni, KS: On free vibrations of elastodynamic problem in rotating
non-homogeneous orthotropic hollow sphere. Math. Probl. Eng. 2013, Article ID 250567 (2013)

32. Marin, M, Marinescu, C: Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies. Int. J. Eng.
Sci. 36(1), 73-86 (1998)

33. Ezzat, MA, Atef, HM: Magneto-thermo-viscoelastic material with a spherical cavity. J. Civ. Eng. Constr. Technol. 2(1),
6-16 (2011)

34. Marin, M, Agarwal, RP, Mahmoud, SR: Nonsimple material problems addressed by the Lagrange’s identity. Bound.
Value Probl. 2013, 135 (2013). doi:10.1186/1687-2770-2013-135

doi:10.1186/s13661-014-0166-7
Cite this article as: Al-Basyouni et al.: Effect of rotation, magnetic field and a periodic loading on radial vibrations
thermo-viscoelastic non-homogeneous media. Boundary Value Problems 2014 2014:166.

http://www.boundaryvalueproblems.com/content/2014/1/166
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.004
http://dx.doi.org/10.1177/1099636213498888
http://dx.doi.org/10.1186/1687-2770-2013-135

	Effect of rotation, magnetic ﬁeld and a periodic loading on radial vibrations thermo-viscoelastic non-homogeneous media
	Abstract
	Keywords

	Introduction
	Formulation of the problem
	The problem solution
	Boundary conditions
	Discussion and numerical results
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


