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Abstract
In this paper, we study the degenerate logistic equation with a free boundary and
general logistic term in higher space dimensions and heterogeneous environment,
which is used to describe the spreading of a new or invasive species. We first prove
the existence and uniqueness of the local solution for the free boundary problem by
the contraction mapping theorem, then we show that the solution can be expanded
to all time using suitable estimates. Finally, we prove the spreading-vanishing
dichotomy.
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1 Introduction
It is an important problem to study the spreading of the invasive species in invasion ecol-
ogy, which is an interesting branch of ecology. Using differential equations to study ecol-
ogy becomes a main approach in ecological research. Most of the ecological phenomena
such as species extinction can be explained by the nature of the differential equations.
In the research of the spreading of the muskrat in Europe, Skellam observed the well-
known phenomenon that many animal species spread to a new environment in a linear
speed, which means the spreading radius eventually shows a linear growth speed against
times []. Firstly, he calculated the square root of the area of themuskrat range from amap,
which gives the spreading radius. Then he plotted it against times and observed the data
points lay on a straight line. Several mathematical models have been proposed to discuss
this phenomenon (see []).
Themost successful mathematical model to describe the problem is the following logis-

tic equation over the entire space Rn:

ut – d� = u(a – bu), t > ,x ∈R
n, ()

where u = u(t,x) stands for the population density of a spreading species, d is the diffusion
rate, a is the intrinsic growth rate, a/bmeans the habitat carrying capacity. Fisher [] and
Kolomogorov et al. [] made a pioneering contribution on this problem. They proved the
problem admits traveling wave solutions of the problem () for space dimension n = : for
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any c≥ c∗ := 
√
ad, there is a solution u(t,x) :=W (x – ct) satisfying

W ′(y) <  for y ∈ R, W (–∞) = a/b, W (+∞) = ;

or there is no such solution if c < c∗. The constant c∗ is regarded as theminimal speed of the
traveling waves. Fisher claimed that the constant c∗ is the spreading speed for the advan-
tageous gene and proved it by a probabilistic argument. Then Aronson and Weinberger
gave a clearer description and a rigorous proof for this phenomenon (see []).
Although the approach predicts the successful spreading and the establishment of a new

species with a nontrivial initial population u, it has the obvious shortcoming that it is
regardless of its initial population and the initial area, which is in sharp contrast with the
real-world observations. It is a well-known conclusion that the large time behavior of a
species determined by its initial size. In the real-world environment, an animal species
either profits from the same species, or it will be hurt by the competition with the same
species. This phenomenon is called ‘Allee effect’, namely there exists a critical population
density such that the species can establish itself when the density is greater than the critical
value, or it will die out on the other hand []. To include the ‘Allee effect’, we usually replace
the logistic term in () by a bistable function f(u) as follows:

f(u) = au( – u)(u – θ ), θ ∈
(
,




)
.

In , Du used a free boundary problem to describe the spreading of species in [, ].
First, Du studied the problem in one space dimension and with a homogeneous environ-
ment in [] and then extended the conclusions to higher space dimensions and a heteroge-
neous environment in []. Considering the following free boundary problem with logistic
term in the same way as the problem (), Du proved both spreading and vanishing can
happen depending on the initial size:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut – d�u = u(α(r) – β(r)u), t > , < r < h(t),
ur(t, ) = , u(t,h(t)) = , t > ,
h′(t) = –μur(t,h(t)), t > ,
h() = h, u(, r) = u(r),  ≤ r ≤ h,

()

where u(t, r), r = |x|, x ∈R
n (n≥ ), �u = urr + N–

r ur , and r = h(t) is the moving boundary
to be determined, and the initial function u(r) satisfies

u ∈ C([,h]), u′
() = u(h) = , u >  in [,h]. ()

Problem () describes spreading of a new species over an n-dimensional habitat with an
initial population density u, which occupies an initial region Bh . (Here BR stands for the
ball with the center at  and radiusR.) The free boundary |x| = h(t) stands for the spreading
front, which is the boundary of the ballBh(t). The radius of the free boundary increaseswith
a speed that is proportional to the population gradient at the front: h′(t) = –μur(t,h(t)).
In the same way as (), the coefficient function α(|x|) means an intrinsic growth, β(|x|)
represents an intra-specific competition, and d is the diffusion rate.
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The free boundary is governed by the equation h′(t) = –μux(t,h(t)), which is a special
case of the well-known Stefan condition. The condition has been applied in a number of
problems. For example, it was used to describe the melting of ice in contact with water
[], in the modeling of oxygen in the muscle [], and in wound healing [].
Du has proved that the problem () admits a unique solution for all the t > with u(t, r) >

 and h′(t) > . Moreover, compared with the traditional logistic equation, the solution
of the free boundary problem () is typical of the spreading-vanishing dichotomy. All this
means that as t → ∞ the species either successfully spreads to the entire new environment
and stabilizes at a positive equilibrium (called spreading), in the case that h(t) → ∞ and
u(t,x)→ a/b, or it fails to establish itself and dies out in the long run (called vanishing), in
the sense that h(t) → h∞ ≤ π



√
d
a and u(t,x) → . The criteria for spreading or vanishing

are as follows: If the radius of the initial region is greater than a critical size R∗, namely
h ≥ R∗, then the spreading always occurs for all the initial function u satisfying (). On
the other hand, if h < R∗, whether spreading or vanishing happens is determined by the
initial population u and the coefficient μ in the Stefan condition.
Compared with the free boundary problem () and the problem (), () is more similar

to the spreading process in real world. At first, compared with the persistent spreading in
the model (), both spreading and vanishing can occur in the model () depending on the
initial size. Next, for any finite t > , the solution u(t,x) of the problem () is supported on
a finite domain of x, which expands with the increase of t. However, in the problem (),
the solution is always positive for all the x ∈ R

n as t > .
The logistic term of the form u(a – bu) has been thoroughly discussed by Du in [, ].

In ecology, this logistic term is too simple to describe the phenomenon in the real world.
Thus, we will study a more complex logistic term as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut – d�u = α(r)u – β(r)f (u), t > , < r < h(t),
ur(t, ) = , u(t,h(t)) = , t > ,
h′(t) = –μur(t,h(t)), t > ,
h() = h, u(, r) = u(r),  ≤ r ≤ h.

()

Here, the main condition is the same as the problem (), where u(t, r), r = |x|, x ∈R
n (n≥

),�u = urr + N–
r ur , r = h(t) is a moving boundary to be determined, h,μ and d are given

positive constants, α,β ∈ Cv ([,∞)), v ∈ (, ), and there exist positive constants κ ≤ κ

such that

κ ≤ α(r)≤ κ, κ ≤ β(r)≤ κ for r ∈ [,∞). ()

The initial function u(r) satisfies

u ∈ C([,h]), u′
() = u(h) = , u >  in [,h]. ()

Moreover, the logistic nonlinear term f (u) ∈ C((, +∞]) satisfy the conditions (A) and
(A) listed below:
(A) f (s) >  and f (s)

s is increasing on [, +∞);
(A)

∫ ∞
 F(t)–/ dt < ∞, where F(s) =

∫ t
 f (s)ds.
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Keller [] and Osserman [] proposed these conditions in . These conditions have
been used widely to study those functions which behave like uq (q > ). We can easily
obtain lims→ f (s)/s = , lims→+∞ f (s)/s = +∞ from condition (A). Clearly, uq is a special
case.
In Section , we first prove the existence and uniqueness of the local solution for the

free boundary problem () (Theorem .) by the contraction mapping theorem, then we
show that the solution can be expanded to all t >  using suitable estimates (Theorem .).
Finally, we prove the spreading-vanishing dichotomy in Section .

2 Existence and uniqueness for the free boundary problem
In this section, we will prove the existence and uniqueness for the problem (). The ap-
proaches were introduced in [] and some changes on it are needed.

Theorem . For any given u satisfying () and any constant v ∈ (, ), there is a T > 
such that problem () has a unique solution

(u,h) ∈ C(+v)/,+v(DT )×C+v/([,T]);

moreover,

‖u‖C(+v)/,+v(DT ) + ‖h‖C+v/([,T]) ≤ C, ()

where DT = {(t, r) ∈ R
 : y ∈ [,T], r ∈ [,h(t)]}, C and T only depend on h, v and

‖u‖C([,h]).

Proof At first, we follow [] and [] to straighten the free boundary. Then the problem
() becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt –Adwss – (Bd + h′C +Dd)ws = α̃w – β̃f (w), t > , < s < h,
w = , h′(t) = –μws, t > , s = h,
ws(t, ) = , t > ,
h() = h, w(, s)u(s),  ≤ s≤ h,

()

where A = A(h(t), s), B = B(h(t), s), C = C(h(t), s), D =D(h(t), s), α̃ = α̃(h(t), s), β̃ = β̃(h(t), s).
We denote h̃ = –μu′

(h) and �T = [,T]× [,h] for  < T ≤ h
(+h)

,

DT =
{
w ∈ C(�T ) : w(, s) = u(s),‖w – u‖C(�T ) ≤ 

}

and

DT =
{
h ∈ C([,T]) : h() = h,h′() = h̃,

∥∥h′ – h̃
∥∥
C([,T]) ≤ 

}
.

It is easily seen thatD :=DT ×DT is a complete metric space with the following metric:

d
(
(w,h), (w,h)

)
= ‖w –w‖C(�T ) +

∥∥h′
 – h′


∥∥
C[,T].
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For h,h ∈DT , due to h() = h() = h, we have

‖h – h‖C([,T]) ≤ T
∥∥h′

 – h′

∥∥
C([,T]). ()

Next, we use the contraction mapping theorem to prove the existence and uniqueness
of the local solution. Firstly, for any given (w,h) ∈DT ×DT , we have

∣∣h(t) – h
∣∣ ≤ T( + h̃) ≤ h


.

Thus, for  ≤ s≤ h/, we have ζ (s)≡  and for such s,

A≡ , B ≡ C ≡ , D ≡ (N – )/s;

therefore

–Adwss –
(
Bd + h′C +Dd

)
ws = –d�w in the ball |y| ≤ h


.

So, although D =D(h(t), s) is singular at s = ,

Adwss +
(
Bd + h′C +Dd

)
ws

still represents an elliptic operator acting on w = w(t, y) (= w(t, |y|)) over the ball |y| ≤ h,
whose coefficients are continuous in (t, y) when h ∈DT .
Applying Lp theory and the Sobolev imbedding theorem [], we find that the following

initial boundary value problem:

⎧⎪⎨
⎪⎩
wt –Adwss – (Bd + h′C +Dd)ws = α̃w – β̃f (w), t > , ≤ s < h,
ws(t, ) = , w(t,h) = , t > ,
w(, s) = u(s),  ≤ s≤ h

()

has a unique solution w ∈ C(+v)/,+v(�T ) for any (w,h) ∈D and

‖w‖C(+v)/,+v(�T ) ≤ C, ()

where C is a constant dependent on h, v and ‖u‖C[,h].
Let

h(t) := h –
∫ t


μws(τ ,h)dτ , ()

we have

h′(t) = –μws(t,h), h() = h, h′() = –μws(,h) = h̃,

and h′ ∈ Cv/([,T]) with

∥∥h′∥∥
Cv/([,T]) ≤ C := μC. ()
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Now, we define F :D → C(�T )×C([,T]),

F (w,h) = (w,h).

Clearly (w,h) ∈D is a solution of () if and only if it is the fixed point of F .
Due to () and (), we have

∥∥h′ – h̃
∥∥
C([,T]) ≤

∥∥h′∥∥
Cv/([,T])T

v/ ≤ μCTv/,

‖w – u‖C(�T ) ≤ ‖w – u‖C(+v)/,(�T )T
(+v)/ ≤ CT (+v)/.

Thus, if we let T ≤ min{(μC)–/v,C–/(+v)
 }, F maps D into itself.

Next, we will prove that if T >  is sufficiently small, F is a contraction mapping on D.
In fact, if we let (wi,hi) ∈D(, ) and denote (wi,hi) =F (wi,hi), we obtain

‖wi‖C(+v)/,+v(�T ) ≤ C,
∥∥h′

i(t)
∥∥
Cv/([,T]) ≤ C

by () and ().
SettingW = w –w, thenW (t, s) satisfies

Wt –A(h, s)dWss –
(
B(h, s)d + h′C(h, s) +D(h, s)d

)
Ws

=
(
A(h, s) –A(h, s)

)
dw,ss +

(
B(h, s) – B(h, s) +D(h, s) –D(h, s)

)
dw,s

+
(
h′
C(h, s) – h′

C(h, s)
)
w,s + (w –w)

(
α̃(h, s) – β̃(h, s)

(
f (w) – f (w)

w –w

))

+w

((̃
α(h, s) – α̃(h, s)

)
–

(
β̃(h, s) – β̃(h, s)

) f (w)
w

)
, t > , ≤ s < h,

Ws(t, ) = , W (t,h), t > ,

W (, s) = ,  ≤ s≤ h.

Using the Lp estimates and the Sobolev imbedding theorem, we have

‖w –w‖C(+v)/,+v(�T ) ≤ C
(‖w –w‖C(�T ) + ‖h – h‖C([,T])

)
, ()

where C depends on C, C and A, B, C, D. Taking the difference of the equations for h,
h results in

∥∥h′
 – h′


∥∥
Cv/([,T]) ≤ μ

(‖w,s –w,s‖Cv/,(�T )
)
. ()

Combining (), (), and (), and assuming T ≤ , we get

‖w –w‖C(+v)/,+v(�T ) +
∥∥h′

 – h′

∥∥
Cv/([,T]) ≤ C

(‖w –w‖C(�T ) +
∥∥h′

 – h′

∥∥
C([,T])

)
,

where C depends on C and μ. Therefore for

T := min

{
,

(


C

)/v

, (μC)–/v,C–/(+v)
 ,

h
( + h̃)

}
,

http://www.boundaryvalueproblems.com/content/2014/1/180
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we have

‖w –w‖C(�T ) +
∥∥h′

 – h′

∥∥
C([,T])

≤ T (+v)/‖w –w‖C(+v)/,+v(�T ) + Tv/∥∥h′
 – h′


∥∥
Cv/([,T])

≤ CTv/(‖w –w‖C(�T ) +
∥∥h′

 – h′

∥∥
C([,T])

)

≤ 

(‖w –w‖C(�T ) +

∥∥h′
 – h′


∥∥
C([,T])

)
.

This means that F is a contraction mapping on D. By the contraction mapping theorem,
we find that F has a unique fixed point (w,h) in D. Moreover, it follows that we have
the Schauder estimates h ∈ C+v/(,T] and w ∈ C+v/,+v((,T] × [,h]). Moreover, we
have () and (). This shows that (w(t, s),h(t)) is a unique local classical solution of the
problem (). �

Next, we will use some suitable estimates to show that the solution can be extended to
all t > .

Lemma . Let (u,h) be the solution to the problem () defined on t ∈ (,T] for some
T ∈ (, +∞]. Then there exist constants C and C independent of T such that

 < u(t, r)≤ C,  < h′(t) ≤ C for ≤ r < h(t), t ∈ (,T).

Proof By the strong maximum principle, we have

u(t, r) > , ur
(
t,h(t)

)
<  for  < t < T, ≤ r < h(t).

Thus t ∈ (,T) for h′(t) > .
Due to (), using the comparison principle, we have u(t, r) ≤ u(t) for t ∈ (,T), r ∈

[,h(t)], where u(t) is the solution of following problem:

du
dt

= κu – κf (u), t > ; u() = ‖u‖∞. ()

By the condition (A), we easily obtain lims→ f (s)/s = , lims→+∞ f (s)/s = +∞. Thus, there
exists an s∗ such that f (s∗)/s∗ = κ/κ. Clearly, the s∗ is the supremum of the problem ().
Therefore, we have

u(t, r) ≤ C := sup
t≥

u(t).

Next, using the approach in [], it is easy to prove that h′(t) ≤ C for t ∈ (,T), where
C is independent of T. Then the proof is complete. �

Theorem . The solution of the problem () exists and is unique for all t ∈ (,∞).More-
over, the unique solution (u,h) depends continuously on u and the parameters appearing
in ().

The proof is the same as Theorem . in []. So we omit the details.
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3 Spreading-vanishing dichotomy
By Lemma ., we see that r = h(t) is monotonic and therefore there exists h∞ ∈ (, +∞]
such that limt→+∞ h(t) = h∞. Let λ(d,α,R) be the principal eigenvalue of the problem

{
–d�φ = λα(|x|)φ in BR,
φ =  on ∂BR.

()

It is well known that λ(d,α, ·) is a strictly decreasing continuous function and

lim
R→+

λ(d,α,R) = +∞, lim
R→+∞λ(d,α,R) = .

Thus, for fixed d >  and α ∈ Cv ([,∞)), there is a unique R∗ := R∗(d,α) such that

λ
(
d,α,R∗) =  ()

and

 > λ(d,α,R) for R > R∗;  < λ(d,α,R) for R < R∗.

By the following two lemmas, we can obtain the spreading-vanishing dichotomy.

Lemma . If h∞ < +∞, then h∞ ≤ R∗, and limt→+∞‖u(t, ·)‖C([,h(t)]) = .

Proof We first prove h∞ ≤ R∗. Arguing by contradiction, we suppose h∞ > R∗ and there
is a T >  such that h(t) > R∗ for all the t ≥ T . Therefore, for all t ≥ T , we have

 > λ
(
d,α,h(t)

)
.

Moreover, for any sufficiently small ε > , there exists a T := T(ε) > T such that

R∗ < h∞ – ε < h(t) < h∞ for t ≥ T.

Consider the following problem:

⎧⎪⎨
⎪⎩
wt – d�w = α(r)w – β(r)f (w), t ≥ T, r ∈ [,h∞ – ε],
wr(t, ) = , w(t,h∞ – ε) = , t ≥ T,
w(T, r) = u(T, r), r ∈ [,h∞ – ε],

()

which is a logistic problem λ(d,α,h∞ – ε) ≤ . Clearly, the problem () has a unique
positive solution w = wε(t, r) (see Proposition . in []). We have

w(t, ·) → Vh∞–ε in C([,h∞ – ε]
)
as t → ∞, ()

where Vh∞–ε(r) is the unique positive solution of the following problem:

{
–d�V = α(r)V – β(r)f (V ) in Bh∞–ε ,
V =  on ∂Bh∞–ε .

()

http://www.boundaryvalueproblems.com/content/2014/1/180
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Using the comparison principle

u(t, r) ≥ w(r, t) for t > T, r ∈ [,h∞ – ε], ()

which implies that

lim
t→+∞

u(t, r) ≥ Vh∞–ε(r), r ∈ [,h∞ – ε]. ()

On the other hand, consider the problem

⎧⎪⎨
⎪⎩
wt – d�w = α(r)w – β(r)f (w), t ≥ T, r ∈ [,h∞],
wr(t, ) = , w(t,h∞) = , t ≥ T,
w(T, r) = ũ(T, r), r ∈ [,h∞],

()

where

ũ(T, r) =

{
u(T, r) for r ∈ [,h(T)],
 for r ∈ (h(T),h∞].

Clearly, the problem () also has a unique positive solution

w(t, ·) → Vh∞ in C([,h∞]
)
as t → +∞, ()

where Vh∞ is a unique positive solution of the following problem:

{
–d�V = α(r)V – β(r)f (V ) in Bh∞ ,
V =  on ∂Bh∞ .

()

In the same way, the comparison principle implies that

u(t, r) ≤ w̃(t, r) for r ∈ [
,h(t)

]
()

and

lim
t→+∞ ≤ Vh∞ (r) for r ∈ [,h∞]. ()

Using a compactness and uniqueness argument, we can easily obtain

Vh∞ → Vh∞ in C
loc

(
[,h∞]

)
as ε → +.

Therefore, it follows from (), () and the arbitrariness of ε that

lim
t→∞u(t, r) = Vh∞ (r) for r ∈ [,h∞). ()

By the argument of Lemma . in [], we obtain

∥∥u(t, ·) –Vh∞
∥∥
C([,h(t)]) →  as t → ∞.

http://www.boundaryvalueproblems.com/content/2014/1/180
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Thus

ur
(
t,h(t)

) → V ′
h∞ (h∞) <  for t → ∞,

which implies that

h′(t) = –μur
(
t,h(t)

) → –μV ′
h∞ (h∞) >  as t → ∞.

Hence h∞ = ∞, which contradicts our assumption h∞ < ∞. So we have h∞ ≤ R∗.
Next, we will prove that ‖u(t, ·)‖C([,h(t)]) →  as t → ∞. Let u(t, r) be the unique positive

solution of the following problem:

⎧⎪⎨
⎪⎩
ut – d�u = α(r)u – β(r)f (u), t > , < r < h∞,
ur(t, ) = , u(t,h∞) = , t > ,
u(, r) = ũ(r),  < r < h∞,

()

where

ũ(r) =

{
u(r),  ≤ r ≤ h,
, r ≥ h.

The comparison principle implies  ≤ u(t, r) ≤ u(t, r) for t >  and r ∈ [,h(t)]. Due to h∞ <
R∗, we have  ≤ λ(d,α,h∞) and it follows from a well-known conclusion about logistic
equation that u(t, r)→  uniformly for r ∈ [,h∞] as t → +∞ (see []). Therefore, we get
limt→+∞‖u(t, ·)‖C([,h(t)]) = . �

Lemma . If h∞ = +∞, then

lim
t→+∞u(t, r) = Û(r) locally uniformly for r ∈ [, +∞), ()

where Û(|x|) is the unique positive solution of the following problem:

–d�u = α
(|x|)u – β

(|x|)f (u), x ∈R
n. ()

Proof By [], we find that the problem () has a unique positive solution. Moreover,
the solution must be radially symmetric since () is invariant under rotations around the
origin of Rn.
To prove (), we use a squeezing argument in []. Consider the Dirichlet problem

–d�v = α(r)v – β(r)f (v), v(R) = ,

and the boundary blow-up problem

–d�w = α(r)w – β(r)f (w), w(R) = +∞.

Clearly, these problems have positive radial solutions vR andwR for large R. It follows from
the comparison principle in [] that vR increases to the unique positive solution Û of ()
as R→ +∞ and wR decreases to Û .
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Choose an increasing sequence Rk such that Rk → +∞ as k → ∞, and  > λ(d,α,Rk)
for all k. Then both vRk and wRk converge to Û as k → ∞. For each k, we can find a Tk > 
such that h(t) ≥ Rk for t ≥ Tk . Note that the following problem:

⎧⎪⎨
⎪⎩
wt – d�w = α(r)w – β(r)f (w), t ≥ Tk , r ∈ [,Rk],
wr(t, ) = , w(t,Rk) = , t ≥ Tk ,
w(Tk , r) = u(Tk , r), r ∈ [,Rk]

()

has a unique positive solution wk(t, r), and

wk(t, r) → vRk (r) uniformly for r ∈ [,Rk] as t → +∞. ()

Using the comparison principle, we have

wk(t, r) ≤ u(t, r) for t ≥ Tk and r ∈ [,Rk].

Thus

lim
t→+∞

u(t, r) ≥ vRk (r) uniformly in r ∈ [,Rk].

Let k → ∞, we have

lim
t→+∞

u(t, r) ≥ Û(r) locally uniformly for r ∈ [, +∞]. ()

Similarly, by the proof of Theorem . in [], we obtain

lim
t→+∞u(t, r) ≤ wRk (r) uniformly for r ∈ [,Rk].

Let k → ∞, we have

lim
t→+∞u(t, r) ≤ Û(r) locally uniformly for r ∈ [, +∞]. ()

Therefore, () follows from () and (). �

Combining Lemmas . and ., we can easily obtain the spreading-vanishing di-
chotomy as follows.

Theorem . Let (u(t, r),h(r)) be the solution of the free boundary problem (). Then the
following alternative holds:
. Spreading: h∞ = +∞ and

lim
t→∞u(t, r) = Û(r) locally uniformly for r ∈ [,∞).

. Vanishing: h∞ ≤ R∗ and limt→∞‖u(t, ·)‖C([,h(t)]) = .

Next, we will discuss when the two alternatives occur exactly. We divide the argument
into two cases:

(a) h ≥ R∗, (b) h < R∗.

http://www.boundaryvalueproblems.com/content/2014/1/180
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In case (a), we can easily obtain h∞ > R∗ since h′(t) >  for all t > . Therefore, the following
conclusion follows from Lemma ..

Theorem . If h ≥ R∗, then h∞ = +∞.

In the same way as in the discussion in [], we need a comparison principle which can
be used to estimate both u(t, r) and the free boundary r = h(t) to study case (b).

Lemma . (Comparison principle) Suppose T ∈ (,∞), h ∈ C([,T]), u ∈ C,(D∗
T )with

D∗
T = {(t, r) ∈R

 :  ≤ t ≤ T , ≤ r ≤ h(t)}, and
⎧⎪⎨
⎪⎩
ut – d�u≥ α(r)u – β(r)f (u),  < t ≤ T ,  < r < h(t),
u = , h′(t) ≥ –μur ,  < t ≤ T , r = h(t),
ur(t, )≤ ,  < t ≤ T .

If we have

h ≤ ht ∈ (,T], u(r) ≤ u(, r) ∈ [,h],

then the solution (u,h) of the free boundary problem () satisfies

h(t) ≤ h(t) ∈ (,T], u(r, t) ≤ u(r, t) for t ∈ (,T] and r ∈ (
,h(t)

)
.

Proof For small ε > , in the problem (), let hε
 := h(–ε) replace h := h(),με := μ(–ε)

replace μ, and uε
(r) replace u, where uε

 ∈ C([,hε
]) satisfying

 < uε
(r)≤ u(, r) in

[
,hε


]
, uε


(
hε

)
= 

and

uε


(
h
hε

r
)

→ u(, r) in C([,h]) as ε → .

We denote by (uε ,hε) the unique solution of the above problem.
We claim that hε(t) < h(t) for all t ∈ (,T]. Clearly, it is true for small t > . If our claim is

wrong, then we will find a first t∗ ≤ T such that hε(t) < h(t) for t ∈ (, t∗) and hε(t∗) = h(t∗),
which implies

h′
ε

(
t∗

) ≥ h′(t∗). ()

Now, we compare uε and u over the region �t∗ := {(t, r) ∈ R
;  < t ≤ t∗,  ≤ r < hε(t)}.

Using the strong maximum principle in �t∗ , we have uε(t, r) < u(t, r). Thus w(t, r) :=
u(t, r) – uε(t, r) >  with w(t∗,hε(t∗)) = . It follows that wr(t∗,hε(t∗)) ≤ . Then we ob-
tain (uε)r(t∗,h(t∗)). Due to με < μ, it follows that h′

ε(t∗) < h′(t∗), which contradicts ().
This shows our claim is correct. Then applying the usual comparison principle for �T , we
obtain uε < u.
Due to the unique solution (uε ,hε) depending continuously on the parameters in (), as

ε → , (uε ,hε) converges to the unique solution (u,h) of the problem (). Setting ε → ,
we can get the conclusion. �
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Now, we consider case (b). As in [], we first examine the case that μ is large, then we
investigate the case μ >  is small. Finally, we use Lemma . to show that there exists
a critical μ∗ such that spreading occurs when μ > μ∗ and vanishing happens when μ ∈
(,μ∗].

Lemma. Suppose h ≤ R∗, then there existsμ >  depending on u such that spreading
occurs when μ > μ.

Proof We prove it by contradiction. Suppose that there is an increasing sequence μk sat-
isfying μk → +∞ as k → ∞ such that the unique solution (uk ,hk) of the problem ()
with μ = μk satisfies hk∞ := limt→∞ hk(t) < +∞ for all the k. Thus, by Lemma ., we have
hk∞ ≤ R∗ and hence

uk(t, r) ≤ w∗(t, r) for t > , r ∈ [
,hk(t)

]
, ()

where w∗(t, r) is the unique solution of following problem:

⎧⎪⎨
⎪⎩
wt – d�w = α(r)w – β(r)f (w), t > , r ∈ [,R∗],
wr(t, ) = , w(t,R∗) = , t > ,
w(, r) = û(t), r ∈ [,R∗],

where

û(t) =

{
u(t), r ∈ [,h],
, r ∈ (h,R∗].

Due to the fact that  = λ(d,α,R∗), we have

lim
t→+∞

∥∥w∗(t, ·)∥∥C([,R∗]) → . ()

Combining () and (), we obtain limt→∞ uk(t, ·)→  uniformly for k. Therefore, it fol-
lows from conditions (A) and (A) that there exists a T >  independent of k such that

f (uk)
uk

≤ κ

κ
for t > T and r ∈ [

,hk(t)
]
.

To simplify the discussion, we omit k from uk , hk , hk∞, and μk in the following argument.
One calculates directly

d
dt

∫ h(t)


rn–u(t, r)dr =

∫ h(t)


rn–ut(t, r)dr + hn–(t)h′(t)u

(
t,h(t)

)

= d
∫ h(t)


rn–�udr +

∫ h(t)


α(r)u – β(r)f (u)rn– dr

= d
∫ h(t)



(
rn–ur(r)

)
r dr +

∫ h(t)


α(r)u – β(r)f (u)rn– dr

= –
d
μ
hn–(t)h′(t) +

∫ h(t)


α(r)u – β(r)f (u)rn– dr.
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Integrating from T to t > T implies

∫ h(t)


rn–u(t, r)dx =

∫ h(T)


rn–u(T , r)dr +

d
nμ

(
h(T)n – h(t)n

)

+
∫ t

T

∫ h(s)


α(r)u – β(r)f (u)rn– dr ds.

For t ≥ T and r ∈ [,h(t)], due to  < f (u)
u(t,r) ≤ κ

κ
, we have

α(r) – β(r)
f (u)
u(t, r)

≥ κ – κ
f (u)
u(t, r)

≥ .

Then
∫ h(t)


rn–u(t, r)dx ≥ d

nμ

(
h(T)n – h(t)n

)
+

∫ h(T)


rn–u(T , r)dr.

Let t → +∞, since () and (), we obtain

d
nμ

(
h(T)n – hn∞

)
+

∫ h(T)


rn–u(t, r)dr ≤ 

and hence

μ ≤ d[(R∗)n – h(T)n]
n

∫ h(T)
 rn–u(T , r)dr

. ()

Using Lemma ., uk(t,x) and hk(t) are increasing in k. Thus

uk(t,x)≥ u(t,x) and hk(t)≥ h(t).

Thus, from () we deduce

μ ≤ d[(R∗)n – h(T)n]

n
∫ h(T)
 rn–u(T , r)dr

< +∞.

This contradicts μk → +∞ as k → ∞. �

Lemma . Suppose h < R∗, then there exists μ >  depending on u such that vanishing
occurs when μ ≤ μ.

Proof At first, we will construct a suitable upper solution of the problem (), then we use
Lemma . to obtain the conclusion. For t >  and r ∈ [,σ (t)], define

σ (t) = h
(
 + δ –

δ


e–γ t

)
, w(t, r) =Me–γ tV

(
h

σ (t)
r
)
,

whereM, δ, γ are positive constants to be chosen later andV (|x|) is the first eigenfunction
of the following problem:

{
–d�V = λ(d,α,h)α(|x|)V in Bh ,
V =  on ∂Bh
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with V ≥  and ‖V‖∞ = . Due to h < R∗, we have

 < λ(d,α,h).

Since we have the fact that V ′() =  and

–d
(
rn–V ′)′ = rn–λ(d,α,h)α(r)V >  for  < r < h,

we have

V ′(r) <  for  < r ≤ h.

Let τ (t) =  + δ – δ
e

–γ t , then σ (t) = hτ (t). Direct calculation gives

wt – d�w – α(r)w – β(r)f (w)

=Me–γ t
(
–γV – rτ–τ ′(t)V ′ – dt–V ′′

– d(N – )r–τ–V ′ –V
(

α(r) – β(r)
f (Me–γ tV )
Me–γ tV

))

=Me–γ t
(
–γV – rτ–τ ′(t)V ′ + τ–λ(d,α,h)α

(
r
τ

)
V

–V
(

α(r) – β(r)
f (Me–γ tV )
Me–γ tV

))

≥ Me–γ tV
(
–γ + τ–λ(d,α,h)α

(
r
τ

)
– α(r) + β(r)

f (Me–γ tV )
Me–γ tV

)

≥ Me–γ tV
(
–γ +

λ(d,α,h)
( + δ)

α

(
r
τ

)
– α(r) + β(r)

f (Me–γ tV )
Me–γ tV

)

=Me–γ tV
(
–γ +

(
λ(d,α,h)
( + δ)

α( r
τ
)

α(r)
– 

)
α(r) + β(r)

f (Me–γ tV )
Me–γ tV

)
.

Due to condition (A), we easily obtain f (Me–γ tV )
Me–γ tV > . Since  < λ(d,α,h), we can choose

δ >  sufficiently small such that

� := min
t>,r∈[,σ (t)]

λ(d,α,h)α( rτ )
( + δ)α(r)

–  > . ()

Let γ = �κ, we have

wt – d�w – α(r)w – β(r)f (w) ≥  for t >  and r ∈ [
,σ (t)

]
.

Now, we chooseM >  sufficiently large such that

u(r) ≤ MV
(

r
( + δ/)

)
= w(, r) for r ∈ [,h].
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Direct calculation implies

σ ′(t) =


hγ δe–γ t ,

–μwr
(
t,σ (t)

)
= μMe–γ t h

σ (t)
∣∣Vr(h)

∣∣ ≤ μMe–γ t |Vr(h)|
 + δ/

.

Thus if we let

μ =
δ( + δ/)γh
M|Vr(h)| ,

then for any  < μ ≤ μ, we have

σ ′(t) ≥ –μwr
(
t,σ (t)

)
,

hence (w,σ ) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt – d�w≥ α(r)w – β(r)f (w), t > , < r < σ (t),
w = , σ ′(t) ≥ –μwr , t > , r = σ (t),
wr(t, ) = , t > ,
σ () = ( + σ

 )h > h.

Hence, from Lemma ., we have h(t) ≤ σ (t) and u(t, r) ≤ w(t, r) for  ≤ r ≤ h(t), t > .
This implies h∞ ≤ limt→∞ σ (t) = h( + δ) < ∞. �

In the same way as the proof of Theorem . in [], we can prove the following theorem.

Theorem . If h < R∗, then there exists a μ∗ >  depending on u such that spreading
occurs when μ > μ∗, and vanishing happens when μ ≤ μ∗.
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