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1 Introduction
AGreen’s function is an integral kernel that can be used to solve inhomogeneous differen-
tial equations with boundary conditions. It has interesting physical significance when the
involved differential operator is a Laplacian. For example, for the heat conduction equa-
tion, the Green’s function is proportional to the temperature caused by a concentrated
energy source. The theory of the Green’s function has been widely studied in the case of
domains in Euclidean spaces.
Let � be a domain in R

n with smooth boundary. Let ∂
∂n and dσ denote the outward

normal derivative and surface measure, respectively, on the boundary ∂� of �. Then a
function u ∈ C(�)∩C(�̄) is given by

u(y) =
∫

�

G(x, y)�u(x)dx –
∫

∂�

(
G(x, y)

∂u(x)
∂n

– u(x)
∂G(x, y)

∂n

)
dσ (x),

whereG(x, y) = ϕ(‖x– y‖) + g̃(x), x ∈ �̄, y ∈ �, x �= y, g̃(x) is an arbitrary harmonic function
in � and

ϕ(r) =

⎧⎨
⎩

r–n
(–n)σn , for n > ,

π log r, for n = ,

σn being the volume of the n-sphere in R
n. Suppose that the function G(x, y) satisfies in

additionG(x, y) =  for x ∈ �̄, y ∈ �. Then, in particular the solution of the Dirichlet prob-
lem,

�u = f on �, u = g on ∂�,
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is given by

u(y) =
∫

�

G(x, y)f (x)dx +
∫

∂�

g(x)
∂G(x, y)

∂n
dσ (x).

A Green’s functionG(x, y) for � on � is a functionG as above, i.e. x →G(x, y) is in C(�̄ \
{y}), �xG(x, y) =  for x ∈ �, G(x, y) =  for x ∈ ∂�, y ∈ �.
The case n = , as can be seen above, is different from the cases for n ≥ , and is even

more interesting. For one can identifyR with the complex planeC and thewhole classical
complex function theory can used as a tool [, ]. In [, p.], Courant andHilbert gave an
explicit Green’s function for annular domain in C using infinitely many reflections of the
pole with respect to the boundary circles of the domain which we describe in brief here.
We take A to be the set {z ∈ C : r 

 < |z| < r– 
 }, where  < r < . Since in two dimensions,

log |z| is a fundamental solution for the Laplacian, the Green’s function (up to a constant
multiple) can be sought in the form

G(z, ζ ) = log |z – ζ | – h(z, ζ ),

where h(z, ζ ) is harmonic in A satisfying

lim
|ζ |→r




log |z – ζ | = lim
|ζ |→r




h(z, ζ ),

lim
|ζ |→r–




log |z – ζ | = lim
|ζ |→r–




h(z, ζ ).

Since harmonic functions in C are real parts of analytic functions, we may find G in the
form log |f (z, ζ )| for suitable analytic function f in ζ . Since G(z, ζ ) must have a pole at
z = ζ , (z – ζ ) is an obvious factor of f (z, ζ ). Assuming that f (z, ζ̄ ) is equal to f (z, ζ ), one
may arrive at the functional equations

⎧⎨
⎩
f (z, ζ )f (z, r/ζ ) = ,

f (z, ζ )f (z, /ζ ) = .
()

Since f has a simple zero at ζ = z, it must have simple zeros at r±z, r±z, . . . and simple
poles at r

z
±, rz

±, . . . . It may be noted here that the point r/z is obtained by reflecting z
with respect to boundary |ζ | = r 

 and r/z is obtained by reflecting r/z with respect to the
image of boundary |ζ | = r– 

 under the first reflection and so on. We may now consider
the function

F(ζ ) =
(
 –

ζ

z

) ∏∞
ν=( – rν z

ζ
)( – rν ζ

z )∏∞
ν=( – rν–zζ )( – rν– 

zζ )
,

which has poles and zeros at exactly the same set of points as f has. Now, f (z, ζ ) may
be adopted in the form aζ bF(ζ ), the constants a and b to be determined in a way that f
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satisfies the functional equations () and

lim
|ζ |→r




f (z, ζ ) = ,

lim
|ζ |→r–




f (z, ζ ) = .

After an easy calculation, one arrives at

a =
√
zr/ and b = –



–

log z
log r

.

In order to generalise this idea, one may just rewrite the expression of G as a product

G(z, ζ ) = Re
[

logaζ b
(
 –

ζ

z

) ∏∞
ν=( – rν z

ζ
)( – rν ζ

z )∏∞
ν=( – rν–zζ )( – rν– 

zζ )

]
. ()

The expression in () indicates that the Green’s function for annulus in a general setup
must look like an infinite convergent sum of functions harmonic in annulus and having
poles at carefully chosen points outside the annulus.
The rich geometric structure of Heisenberg group allows us to construct explicit exam-

ples of domains that are relevant in Potential theory. On the Heisenberg group we have an
analogue of the Laplacian which was first studied by Folland and Stein []. The study of
the Green’s function on the Heisenberg group became interesting after Folland [] found
a smooth fundamental solution for this operator. Korányi first gave a Green’s function for
circular data for a certain gauge ball [] using the Kelvin transform onHn [, ]. The gen-
eral Green’s function is not known for any domain in Hn, n > . The Green’s function for
circular data are studied for various domains, e.g., for half space in [], for quarter space in
[] and for annulus in []. Some estimates for theGreen’s function and the Poisson kernel
on bounded domains of theHeisenberg group have been given in [] andGreen’s function
on bounded domains for sub-Laplacian on the stratified Lie groups are also studied in [].
In this article, we have generalised the method of Courant and Hilbert to the case of

annular domain in the Heisenberg group. The role of repeated reflections here is being
played by repeated Kelvin transforms. A similar idea works for the case of an infinite strip
in the Heisenberg group.

2 The Heisenberg group
The Heisenberg groupHn is the set of points [z, t] ∈ C

n ×R with the multiplication given
by

[z, t] · [z′, t′
]
=

[
z + z′, t + t′ + �(

z · z̄′)],
z, z′ ∈C

n, t, t′ ∈R. This multiplication turns Hn into a Lie group.
A basis of the Lie algebra of Hn is {Zj, Z̄j,T :  ≤ j ≤ n} where

Zj = ∂zj + iz̄j∂t ;

Z̄j = ∂z̄j – izj∂t ;

T = ∂t .
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The sub-Laplacian on Hn is given by

� = 
n∑
j=

(Z̄jZj + ZjZ̄j).

We shall consider a slightly modified subelliptic operator L = – 
�. The natural gauge

on Hn is given by

N(z, t) =
(|z| + t

) 
 .

The fundamental solution for L on Hn with pole at identity is given in [] as

ge(ξ ) = ge
(
[z, t]

)
= ao

(|z| + t
)– n

 ,

where

ao = n–
(�( n ))



πn+ ,

and ξ = [z, t]. The fundamental solution with pole at η is given by

gη(ξ ) = ge
(
ξ–η

)
.

From [], for η = [ς , τ ] and ξ = [z, t],

gη(ξ ) = ao
∣∣C(η, ξ ) – P(η, ξ )

∣∣–n,

where

C(η, ξ ) = |z| + |ς | + i(t – τ ) and P(η, ξ ) = z · ς̄ .

For an integrable function f on Hn, we denote the average of f by

f̄
(
[z, t]

)
=


π

∫ π


f
([
eiθz, t

])
dθ .

A function f is said to be circular if f ([z, t]) = f̄ ([z, t]) for [z, t] ∈Hn.
As in [],

ḡη(ξ ) = ao
∣∣C(η, ξ )∣∣–nF

(
n

,
n

;n;

|P(η, ξ )|
|C(η, ξ )|

)
,

where F is the Gaussian hypergeometric function [].

3 Green’s function for annular domain
In this section, D will denote the annulus {ξ ∈Hn :  < R <N(ξ ) < }.
We will be constructing an explicit Green’s function for the domain D on the lines de-

scribed in Section  for the annulus in C. A natural candidate which would generalise
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the map f (z) → f ( z ) to R
n is the Kelvin transform, which is defined as follows. Given a

function u defined on a set E ⊆ R
n \ {}, the Kelvin transform K[u] of u is defined on

E∗ = {x∗ : x ∈ E} by

K[u](x) = |x|–nu(
x∗),

where x∗ is called the inverse of Rn ∪ {∞} relative to the unit sphere. We are fortunate
enough to have an analogue of the Kelvin transform for the Heisenberg group given by
Korányi [] and also by Koornwinder []. But the property that the classical Kelvin trans-
form of a function agrees with the values of the function at the unit sphere in R

n is not
true in the case of Hn. However, things go well for the class of circular functions. All our
construction, therefore, will work for the class of circular functions only. Finding a Green’s
function which works for all the continuous functions is still an open problem even in the
case of the unit gauge ball.
The Kelvin transform on the Heisenberg group has been defined and studied in []. For

any f on Hn the Kelvin transform of f is defined by

Kf =N–nf ◦ h,

where h is the inversion,

h
(
[z, t]

)
=

[
–z

|z| – it
,

–t
|z| + t

]
,

for [z, t] ∈Hn \ {e}. The Kelvin transform sends a harmonic function on Hn \ {e} to a har-
monic function. It was shown in [] that for a circular function f on Hn \ {e}, we have

K(f )
(
ξ–) = f (ξ ),

for all ξ ∈Hn \ {e} with N(ξ ) = .
From [, (.)] we have, for η �= e ∈Hn,

K(gη) =N(η)–ngη∗ , ()

where we wrote η∗ for h(η).
The Kelvin R-transform on the Heisenberg group was defined and studied in []. For f

defined on Hn \ {e}, the Kelvin R-transform is defined as

KR(f ) = Rngef ◦ hR,

where hR is the inversion with respect to the Korányi ball of radius R, i.e. {[z, t] :N(z, t) < R}

hR
(
[z, t]

)
=

[
–Rz

|z| – it
,

–Rt
|z| + t

]
,

for [z, t] ∈Hn \ {e}.
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The Kelvin R-transform sends a harmonic function onHn \ {e} to a harmonic function.
It was shown in [] that for a circular function f on Hn \ {e}, and R > , we have

KR(f )
(
ξ–) = f (ξ ),

for all ξ ∈Hn with N(ξ ) = R.
From [, ()] we have, for η �= e ∈Hn,

KR(gη) = RnN(η)–ngη† , ()

where η† = hR(η).
A Green’s function for annular domain was given in [], however, the function was not

continuous. The Green’s function constructed below is a smooth function.
For each η ∈ D, we define functions Hk(η, ·), Mk(η, ·), Uk(η, ·) and Vk(η, ·) on D induc-

tively as follows:

H(η, ξ ) = K(ḡη) ◦ i(ξ ),
M(η, ξ ) = ḡη(ξ ),

U(η, ξ ) = KR(ḡη) ◦ i(ξ ),
V(η, ξ ) = K

(
KR(ḡη) ◦ i

) ◦ i(ξ ).

When Hk(η, ξ ),Mk(η, ξ ), Uk(η, ξ ), Vk(η, ξ ) are defined, define

Hk+(η, ξ ) = K
(
KR

(
Hk(η, ξ )

) ◦ i) ◦ i(ξ ),
Mk+(η, ξ ) = KR

(
K

(
Mk(η, ξ )

) ◦ i) ◦ i(ξ ),
Uk+(η, ξ ) = KR

(
K

(
Uk(η, ξ )

) ◦ i) ◦ i(ξ ),
Vk+(η, ξ ) = K

(
KR

(
Vk(η, ξ )

) ◦ i) ◦ i(ξ ),

where i denotes inversion in the Heisenberg group i.e. i[z, t] = [–z, –t] for [z, t] ∈Hn.
For each η, ξ ∈D, define

G(η, ξ ) =
∞∑
k=

[
Mk(η, ξ ) –Hk(η, ξ )

]
+

∞∑
k=

[
Vk(η, ξ ) –Uk(η, ξ )

]
. ()

Our main objective of this section is to prove the following theorem.

Theorem . The function G(η, ξ ) as defined in () is a smooth function on D = {ξ ∈ Hn :
 < R <N(ξ ) < } and satisfies the following.

(i) LG(η, ξ ) = δη .
(ii) The limits of the function G(η, ξ ) vanish at the boundaries of the annular domain i.e.

at N(ξ ) =  and N(ξ ) = R.

Webeginwith some lemmas about the functionsHk(η, ξ ),Mk(η, ξ ),Uk(η, ξ ) andVk(η, ξ ).

http://www.boundaryvalueproblems.com/content/2014/1/182
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Lemma . For k ≥ , let Hk(η, ξ ),Mk(η, ξ ),Uk(η, ξ ) and Vk(η, ξ ) be as defined above then

Hk(η, ξ ) = R(k–)n(N(ξ )
)–n∣∣∣∣ |z|

|z| + t
+ R(k–)|ς | + i

(
t

|z| + t
– R(k–)τ

)∣∣∣∣
–n

× F
(
n

,
n

;n;

uk,
vk,

)
, ()

where

uk,
vk,

=
R(k–)|z||ς |

 + R(k–)(|ς | + τ )(|z| + t) + R(k–)(|z||ς | – tτ )
,

Mk(η, ξ ) = R(k–)n∣∣|z| + R(k–)|ς | + i
(
t – R(k–)τ

)∣∣–nF
(
n

,
n

;n;

uk,
vk,

)
, ()

where

uk,
vk,

=
R(k–)|z||ς |

(|z| + t) + R(k–)(|ς | + τ ) + R(k–)(|z||ς | – tτ )
,

Uk(η, ξ ) = Rkn(N(ξ )
)–n∣∣∣∣ R

k|z|
|z| + t

+ |ς | + i
(

Rkt
|z| + t

– τ

)∣∣∣∣
–n

F
(
n

,
n

;n;

uk,
vk,

)
, ()

where

uk,
vk,

=
R(k)|z||ς |

R(k) + (|ς | + τ )(|z| + t) + R(k)(|z||ς | – tτ )
,

and

Vk(η, ξ ) = Rkn∣∣Rk|z| + |ς | + i
(
Rkt – τ

)∣∣–nF
(
n

,
n

;n;

uk,
vk,

)
, ()

where

uk,
vk,

=
R(k)|z||ς |

R(k)(|z| + t) + (|ς | + τ ) + R(k)(|z||ς | – tτ )
.

Proof We prove () by induction on k.
For k = , H(η, ξ ) = K(ḡη)(–ξ ).
Assume () for k = l, we show the validity of () for k = l + .
From () and (), we have

Hl+(η, ξ ) = K
(
KR

(
Hl(η, ξ )

) ◦ i)(–ξ )

= ge(–ξ )KR
(
Hl(η, ξ )

)
(hξ )

= Rnge(–ξ )ge(hξ )Hl(η, ξ )(hRhξ )

= RnHl(η, ξ )
(
Rz,Rt

)

= RnR(l–)n(N(ξ )
)–nR–n

×
∣∣∣∣ R|z|
R(|z| + t)

+ R(l–)|ς | + i
(

Rt
R(|z| + t)

– R(l–)τ

)∣∣∣∣
–n

http://www.boundaryvalueproblems.com/content/2014/1/182
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× F
(
n

,
n

;n;

al+
bl+

)

= Rln(N(ξ )
)–n∣∣∣∣ |z|

|z| + t
+ R(l)|ς | + i

(
t

|z| + t
– R(l)τ

)∣∣∣∣
–n

× F
(
n

,
n

;n;

ul+,
vl+,

)
,

where

ul+,
vl+,

=
R(l)|z||ς |

 + R(l)(|ς | + τ )(|z| + t) + R(l)(|z||ς | – tτ )
.

Therefore, by induction () follows. Similarly we can prove (), () and (). �

Next, we state a result about estimation ofGaussian hypergeometric function. The proof
can be found in [].

Lemma . The Gaussian hypergeometric function is defined by

F(a,b; c; z) =  +
∞∑
n=

(a)n(b)nzn

(c)nn!
,

for c neither zero nor a negative integer. If none of a, b, c is zero or a negative integer, the
above series has the circle |z| <  as its circle of convergence. If either or both of a and b is zero
or a negative integer, the series terminates, and convergence does not enter the discussion.

Lemma . For each η, ξ ∈D

∞∑
k=

[
Mk(η, ξ ) –Hk(η, ξ )

]
+

∞∑
k=

[
Vk(η, ξ ) –Uk(η, ξ )

]
()

is absolutely and uniformly convergent on compact neighbourhoods of ξ (for η �= ξ ). In other
words, G(η, ξ ) is a well-defined function for η �= ξ .

Proof Firstly, we will prove that the Gaussian hypergeometric functions involved in ex-
pression of infinite series () are uniformly bounded.
Consider

vk, – uk, =  + R(k–)(|ς | + τ )(|z| + t
)
+ R(k–)(|z||ς | – tτ

)

– R(k–)|z||ς |

=  + R(k–)[R(k–)(|ς | + τ )(|z| + t
)
– |z||ς | – tτ

]

≥  – R(k–)[|z||ς | + tτ
]

≥  – R(k–).

http://www.boundaryvalueproblems.com/content/2014/1/182
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We can choose k large enough such that R(k–) < 
 . Thus for sufficiently large k, vk, –

uk, ≥ 
 . Since uk,, vk, are bounded, the argument uk,

vk,
of

F
(
n

,
n

;n;

uk,
vk,

)

is bounded away from . Thus, by using Lemma ., {F( n , n ;n; uk,vk,
)}∞k= is uniformly

bounded for η �= ξ , say

∣∣∣∣F
(
n

,
n

;n;

uk,
vk,

)∣∣∣∣ < E.

Similarly we have constants E, E, E such that

∣∣∣∣F
(
n

,
n

;n;

uk,i
vk,i

)∣∣∣∣ < Ei for i = , , .

We assert that both series in () are uniformly and absolutely convergent on compact
neighbourhoods of ξ .
We have

∣∣Mk(η, ξ )
∣∣ = ∣∣R(k–)n∣∣∣∣|z| + R(k–)|ς | + i

(
t – R(k–)τ

)∣∣–n
∣∣∣∣F

(
n

,
n

;n;

uk,
vk,

)∣∣∣∣
≤ [


(
 + |z||ς | + |tτ |)] –n

 · E · ∣∣R(k–)n∣∣.

Since R < , the series
∑∞

k= Rkn is convergent and so
∑∞

k= |Mk(η, ξ )| is uniformly conver-
gent on compact neighbourhood of ξ = [z, t].
Similar estimates show that

∑∞
k= |Hk(η, ξ )| is uniformly convergent on a compact neigh-

bourhood of ξ = [z, t].
Hence

∑∞
k= [Mk(η, ξ ) –Hk(η, ξ )] is absolutely and uniformly convergent on compact

neighbourhoods of ξ (for η �= ξ ).
We have

∣∣Vk(η, ξ )
∣∣ = ∣∣Rkn∣∣∣∣Rk|z| + |ς | + i

(
Rkt – τ

)∣∣–n
∣∣∣∣F

(
n

,
n

;n;

uk,
vk,

)∣∣∣∣
≤ [


(
 + |z||ς | + |tτ |)] –n

 · E · ∣∣Rkn∣∣.

Since R < , the series
∑∞

k= Rkn is convergent and so
∑∞

k= |Vk(η, ξ )| is uniformly conver-
gent on compact neighbourhood of ξ = [z, t].
Similar estimates show that

∑∞
k= |Uk(η, ξ )| is uniformly convergent on a compact neigh-

bourhood of ξ = [z, t].
Hence

∑∞
k= [Vk(η, ξ ) –Uk(η, ξ )] is absolutely and uniformly convergent on compact

neighbourhoods of ξ (for η �= ξ ). �

Lemma . For each η ∈D and k ≥ ,

lim
N(ξ )→

(
Mk(η, ξ ) –Hk(η, ξ )

)
=  and lim

N(ξ )→

(
Vk(η, ξ ) –Uk(η, ξ )

)
= .

http://www.boundaryvalueproblems.com/content/2014/1/182
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Also,

lim
N(ξ )→R

(
Mk+(η, ξ ) –Hk(η, ξ )

)
=  and lim

N(ξ )→R

(
Vk(η, ξ ) –Uk+(η, ξ )

)
= .

Proof By using () and (), we get

lim
N(ξ )→

Mk(η, ξ ) = R(k–)n( + R(k–)(|ς | + τ ) + R(k–)(|z||ς | – tτ
))– n



× F
(
n

,
n

;n;

R(k–)|z||ς |
 + R(k–)(|ς | + τ ) + R(k–)(|z||ς | – tτ )

)

= lim
N(ξ )→

Hk(η, ξ ).

So, limN(ξ )→(Mk(η, ξ ) – Hk(η, ξ )) = . Similarly, by using () and (), we can prove that
limN(ξ )→(Vk(η, ξ ) –Uk(η, ξ )) = .
Now we have

Mk+(η, ξ ) = Rkn∣∣|z| + Rk|ς | + i
(
t – Rkτ

)∣∣–nF
(
n

,
n

;n;

uk+,
vk+,

)
,

where

uk+,
vk+,

=
Rk|z||ς |

(|z| + t) + R.k(|ς | + τ ) + Rk(|z||ς | – tτ )
,

lim
N(ξ )→R

Mk+(η, ξ ) = Rkn(R + R.k(|ς | + τ ) + Rk(|z||ς | – tτ
))– n



× F
(
n

,
n

;n;

Rk|z||ς |
R + R.k(|ς | + τ ) + Rk(|z||ς | – tτ )

)

= lim
N(ξ )→R

Hk(η, ξ ).

So, limN(ξ )→R(Mk+(η, ξ ) –Hk(η, ξ )) = . Similarly, by using () and (), we can prove that
limN(ξ )→R(Vk(η, ξ ) –Uk+(η, ξ )) = . �

Proof of Theorem . First note that Hk(η, ξ ), Mk(η, ξ ), k > , Uk(η, ξ ) and Vk(η, ξ ) are all
harmonic functions on D (this follows from the definition of these functions and proper-
ties of the Kelvin transforms K and KR). We first apply term by term the Laplacian to the
series () and we have

∞∑
k=

L
[
Mk(η, ξ ) –Hk(η, ξ )

]
+

∞∑
k=

L
[
Vk(η, ξ ) –Uk(η, ξ )

]
= LM(η, ξ )

= Lḡη(ξ ).

Since the series obtained, after applying the Laplacian term by term, is a single term it
is uniformly convergent on compact sets away from η. We conclude that the limit of the
series () is a C function and we can actually apply the Laplacian to the series () term by
term and we get

LG(η, ξ ) = Lḡη(ξ ) = δη.
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From Lemma . we get

lim
N(ξ )→

( ∞∑
k=

[
Mk(η, ξ ) –Hk(η, ξ )

]
+

∞∑
k=

[
Vk(η, ξ ) –Uk(η, ξ )

])
= .

Also,

lim
N(ξ )→R

( ∞∑
k=

[
Mk(η, ξ ) –Hk(η, ξ )

]
+

∞∑
k=

[
Vk(η, ξ ) –Uk(η, ξ )

])

= lim
N(ξ )→R

((
M(η, ξ ) –U(η, ξ )

)
+

∞∑
k=

(
Mk+(η, ξ ) –Hk(η, ξ )

)

+
∞∑
k=

(
Vk(η, ξ ) –Uk+(η, ξ )

))

= lim
N(ξ )→R

(
M(η, ξ ) –U(η, ξ )

)

+
∞∑
k=

(
lim

N(ξ )→R

(
Mk+(η, ξ ) –Hk(η, ξ )

))

+
∞∑
k=

(
lim

N(ξ )→R

(
Vk(η, ξ ) –Uk+(η, ξ )

))
.

We haveM(η, ξ ) = ḡη(ξ ) and U(η, ξ ) = KR(ḡη)(–ξ ).
Since gη(ξ ) is circular, therefore, by (), M(η, ξ ) –U(η, ξ ) =  and from Lemma . we

get

lim
N(ξ )→R

( ∞∑
k=

[
Mk(η, ξ ) –Hk(η, ξ )

]
+

∞∑
k=

[
Vk(η, ξ ) –Uk(η, ξ )

])
= .

Hence the theorem. �

The Poisson kernel is the normal derivative of the Green’s function and, from [], is
given by

P(η, ξ ) = –



∂

∂n
G(η, ξ ), ξ ∈ ∂D,

where

∂

∂n
=

⎧⎨
⎩


|z| (ĀE +AĒ) at (∂D) i.e. at the boundary {ξ ∈Hn :N(ξ ) = },
–

R|z| (ĀE +AĒ) at (∂D) i.e. at the boundary {ξ ∈Hn :N(ξ ) = R},

A = |z| – it and E =
∑

zjZj.

Making use of the identity

F
(
n

,
n

;n;x

)
+

n
xF ′

(
n

,
n

;n;x

)
= F

(
n

+ ,

n

;n;x

)
,

http://www.boundaryvalueproblems.com/content/2014/1/182
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which is obvious from the Euler integral representation, a computation gives P(η, ξ ) at
(∂D) by

P(η, ξ ) =
∑
i=

∞∑
k=

Rkn|z|n

(vk;i)–

n
 –F

(
n

+ ,

n

;n;

uk,i
vk,i

)

×
[
R–n(N(ξ )

)–n( |z| + t

(|z| + t)
(
 + R(k–)(|z||ς | – tτ

))

–
R(k–)

|z| + t
(
|ς | – tτ

))
δi + R–n((|z| + t

)

+ R(k–)(|ς | – tτ
))

δi + Rk(N(ξ )
)–n

×
(

|z| + t

(|z| + t)
(
Rk + 

(|z||ς | – tτ
))

–


|z| + t
(
|ς | – tτ

))
δi

+ Rk(Rk(|z| + t
)
+

(
|ς | – tτ

))
δi

]
,

where δai denotes the Kronecker delta function of the indices a and i. The Poisson kernel
P(η, ξ ) at (∂D) is given by

P(η, ξ ) =
∑
i=

∞∑
k=

–R(kn–)|z|n

(vk;i)–

n
 –F

(
n

+ ,

n

;n;

uk,i
vk,i

)

×
[
R–n(N(ξ )

)–n( |z| + t

(|z| + t)
(
 + R(k–)(|z||ς | – tτ

))

–
R(k–)

|z| + t
(
|ς | – tτ

))
δi + R–n((|z| + t

)

+ R(k–)(|ς | – tτ
))

δi + Rk(N(ξ )
)–n

×
(

|z| + t

(|z| + t)
(
Rk + 

(|z||ς | – tτ
))

–


|z| + t
(
|ς | – tτ

))
δi

+ Rk(Rk(|z| + t
)
+

(
|ς | – tτ

))
δi

]
.

Theorem . The Green’s function and Poisson kernel which we have obtained above
solves the Dirichlet boundary value problem for D and the solution for BVP

Lu = f in D,

u = h on ∂D,

is given by

u(η) =
∫
D
G(η, ξ )f (ξ )dv(ξ ) +

∫
(∂D)

P(η, ξ )h(ξ )dσ (ξ ) +
∫
(∂D)

P(η, ξ )h(ξ )dσ (ξ ),

where f and h are circular functions.

http://www.boundaryvalueproblems.com/content/2014/1/182
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4 Green’s function for infinite strip
In this section, I will denote the infinite strip {ξ = [z′, t′] ∈ Hn :  < t′ < }. Denote, by H(t)
the function of (η, ξ ),

H(t) = a|Ct|–nF
(
n

,
n

;n;

|P|
|Ct|

)
,

where C±t and P are defined as follows:

C±t = |z| + ∣∣z′∣∣ + i
(
t′ ± t

)
,

P = z · z̄′,

for ξ = [z′, t′] ∈ Hn, η = [z, t] ∈ Hn. A differential operator, whenever applied to function
H(t) will be with respect to the variable ξ .
Consider the series

∞∑
m=

H(m – t),
∞∑
m=

H(m + t),
∞∑
m=

H(–m – t),
∞∑
m=

H(–m + t).

We first show that the four series are uniformly convergent on compact neighbourhoods
of ξ . For this firstly we show that the sequences of functions

F
(
n

,
n

;n;

|P|
|Cm–t|

)
, F

(
n

,
n

;n;

|P|
|Cm+t|

)
,

F
(
n

,
n

;n;

|P|
|C–m–t|

)
, F

(
n

,
n

;n;

|P|
|C–m+t|

)

are uniformly bounded.
Consider the argument um, of the hypergeometric function F( n ,

n
 ;n;

|P|
|Cm–t | ) i.e.

|um,| =
∣∣∣∣ |P|
|Cm–t|

∣∣∣∣ = |z||z′|
||z| + |z′| + i(t′ + m – t)|

=
|z||z′|

|z| + |z′| + |z||z′| + (t′ + m – t)

≤ |z||z′|
|z| + |z′| + |z||z′| .

So,

 –
∣∣∣∣ |P|
|Cm–t|

∣∣∣∣ ≥  –
|z||z′|

|z| + |z′| + |z||z′|

=
|z| + |z′| – |z||z′|
|z| + |z′| + |z||z′|

=
(|z| – |z′|)

|z| + |z′| + |z||z′| .
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We can choose a suitable compact neighbourhood of ξ such that |z| – |z′| > ε for some
ε > . So, we have

 –
|P|

|Cm–t| ≥ ε

|z| + |z′| + |z||z′| > ε,

for some ε > .
This implies that |P|

|Cm–t | <  – ε i.e. the argument um, of the hypergeometric func-
tion F( n ,

n
 ;n;um,) is bounded away from . Therefore, {F( n , n ;n;um,)}∞m= is uniformly

bounded, say
∣∣∣∣F

(
n

,
n

;n;um,

)∣∣∣∣ < S.

Similarly, it can be shown that

{
F
(
n

,
n

;n; |um,i|

)}∞

m=
, i = , , ,

are uniformly bounded, where um, = |P|
|Cm+t | , um, = |P|

|C–m–t | and um, = |P|
|C–m+t | .

Next, consider the term |Cm–t|–n, n > .

|Cm–t|–n =
∣∣|z| + ∣∣z′∣∣ + i

(
t′ + m – t

)∣∣–n

= (m)–n
∣∣∣∣ |z|

 + |z′|
m

+ i
(
t′ – t
m

+ 
)∣∣∣∣

–n

≤ (m)–n for sufficiently largem

on any compact neighbourhood of ξ = [z, t], for fixed η = [z′, t′].
Consider

∣∣H(m – t)
∣∣ =

∣∣∣∣F
(
n

,
n

;n;

|Q|
|Cm–t|

)
· a|Cm–t|–n

∣∣∣∣
≤ S · |a|(m)–n,

on compact neighbourhood of ξ for fixed η. Sincem > , the series
∑∞

m= (m)–n is conver-
gent and therefore,

∑∞
m=H(m – t) is uniformly convergent on compact neighbourhoods

of ξ .
Similarly,

∑∞
m=H(m + t),

∑∞
m=H(–m – t),

∑∞
m=H(–m + t) are uniformly conver-

gent on compact neighbourhoods of ξ .
Define

GI(η, ξ ) =
∞∑
m=

[
H(m – t) –H(m + t)

]
+

∞∑
m=

[
H(–m – t) –H(–m + t)

]
. ()

For each η, GI(η, ξ ) is a well-defined function. Now, we claim that GI(η, ξ ) works as a
Green’s function for the domain I when applied to circular functions.

Theorem. The function GI(η, ξ ) is a smooth function on I = {ξ = [z′, t′] ∈Hn :  < t′ < }
and satisfies the following.
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(i) LGI(η, ξ ) = δη .
(ii) The limits of the function GI(η, ξ ) vanish at the boundaries of infinite strip i.e. at

t′ =  and t′ = .

Proof First note that for m > , H(m + t), H(m – t), H(–m – t) and H(–m + t) are all
harmonic functions on I and H(t) is also harmonic. We first apply the Laplacian term by
term to the series ()

LGI(η, ξ ) = LH(–t) = δη.

It can easily be seen that for t′ = , |C–m+t| = |Cm–t|.
So H(–m + t) = H(m – t) for m = , , . . . . Similarly H(m + t) = H(–m – t) for m =

, , . . . and H(t) =H(–t). Therefore,

lim
t′→

( ∞∑
m=

[
H(m – t) –H(m + t)

]
+

∞∑
m=

[
H(–m – t) –H(–m + t)

])
= .

Moreover,

lim
t′→

( ∞∑
m=

[
H(m – t) –H(m + t)

]
+

∞∑
m=

[
H(–m – t) –H(–m + t)

])

= lim
t′→

((
H(– – t) –H(t)

)
+

∞∑
m=

[
H(m – t) –H

(
–(m + ) + t

)]

+
∞∑
m=

[
H

(
–(m + ) – t

)
–H(m + t)

])

=

(
lim
t′→

(
H(– – t) –H(t)

)
+

∞∑
m=

lim
t′→

[
H(m – t) –H

(
–(m + ) + t

)]

+
∞∑
m=

lim
t′→

[
H

(
–(m + ) – t

)
–H(m + t)

])
.

It can easily be seen that for t′ = , H(t) = H(– – t), H(m – t) = H(–(m + ) + t) for
m = , , . . . and H(m + t) =H(–(m + ) – t) form = , , . . . .
Therefore,

lim
t′→

( ∞∑
m=

[
H(m – t) –H(m + t)

]
+

∞∑
m=

[
H(–m – t) –H(–m + t)

])
= .

Hence the theorem. �

The Dirichlet BVP for circular data similar to that in Theorem . on I can be solved by
obtaining a Poisson kernel on I .
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