Song Boundary Value Problems 2014, 2014:191 0 BOU nda ry Va | ue PrOblemS

http://www.boundaryvalueproblems.com/content/2014/1/191 a SpringerOpen Journal

RESEARCH Open Access

A nonlinear boundary value problem for
fourth-order elastic beam equations

Yuanping Song’

“Correspondence:
ypsong2014@163.com Abstract

School of Science, Shandong B . infinitel itical . h dv th . finfinitel
University of Technology, Zibo, y using an infinitely many critical points theorem, we study tne existence or infinitely

255049, PR. China many solutions for a fourth-order nonlinear boundary value problem, depending on
two real parameters. No symmetric condition on the nonlinear term is assumed.
Some recent results are improved and extended.

1 Introduction

In this paper, we consider a beam equation with nonlinear boundary conditions of the
type:

u® = Af(x,u) + ph(x,u), 0<x<l,
u(0) =#/(0) =0, 1.1)
(1) =0, u" (1) = g(u(1)),

where A, 1 are two positive parameters, f, & are two L!-Carathéodory functions, and
g € C(R) is real function. This kind of problem arises in the study of deflections of elastic
beams on nonlinear elastic foundations. The problem has the following physical descrip-
tion: a thin flexible elastic beam of length 1 is clamped at its left end x = 0 and resting on
an elastic device at its right end x = 1, which is given by g. Then the problem models the
static equilibrium of the beam under a load, along its length, characterized by f and 4. The
derivation of the model can be found in [1, 2].

Fourth-order boundary value problems modeling bending equilibria of elastic beams
have been considered in several papers. Most of them are concerned with nonlinear
equations with null boundary conditions; see [3—6]. When the boundary conditions are
nonzero or nonlinear, fourth-order equations can model beams resting on elastic bear-
ings located in their extremities; see for instance [1, 2, 7-11] and the references therein.
More precisely, in [10], using variant fountain theorems, the author obtains the existence
of infinitely many solutions for problem (1.1) with A =1 and x = 0 under the symmetric
condition and some other suitable assumptions of the nonlinear term f.

Motivated by the above works, in the present paper we establish some multiplicity re-
sults for problem (1.1) under rather different assumptions on the functions f, # and g. It
is worth noticing that in our results neither the symmetric nor the monotonic condition
on the nonlinear term is assumed. We require that f has a suitable oscillating behavior ei-
ther at infinity or at zero. In the first case, we obtain an unbounded sequence of solutions
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(Theorem 3.1); in the second case, we obtain a sequence of nonzero solutions strongly
converging at zero (Theorem 3.4), which improve and extend the results in [10].
The remainder of this paper is organized as follows. In Section 2, some preliminary

results are presented. In Section 3, we give the proofs of our main results.

2 Variational setting and preliminaries

We prove our results applying the following smooth version of Theorem 2.1 of Bonanno
and Bisci [12], which is a more precise version of Ricceri’s variational principle [13, Lem-
ma 2.5].

Theorem 2.1 Let E be a reflexive real Banach space, let &,V : E — R be two Gdteaux
differentiable functionals such that ® is sequentially weakly lower semicontinuous, strongly
continuous and coercive, and V is sequentially weakly upper semicontinuous. For every
r > infg @, let

. (Supuedfl(—oo,r) "IJ(V)) - \Ij(u)
o(r):= inf
ued-1(-o0,r) r— ®(u)

’

y:=liminfo(r) and §&:= liminf @(r).
r—>+00 r—(infg ®)*
Then the following properties hold:
(a) Foreveryr>infg ® and every X € (0,1/¢(r)); the restriction of the functional

IA =0 — AV

to ®~Y(~o00,r) admits a global minimum, which is a critical point (local minimum) of
I, inE.

(b) Ify < +o0; then for each A € (0,1/y), the following alternative holds: either
(bl) I, possesses a global minimum, or

(b2) there is a sequence {u,} of critical points (local minima) of I, such that

lim ®(u,) = +00.
n—+00

(c) If 8 < +o0; then for each X\ € (0,1/8), the following alternative holds: either
(cl) there is a global minimum of ® which is a local minimum of I, or
(c2) there is a sequence {u,} of pairwise distinct critical points (local minima) of I,

that converges weakly to a global minimum of ®.

Let E be the Hilbert space
E = {ue H*(0,1);u(0) = 4'(0) = 0}

with the inner product and norm

» 2.1)

1
(4, v) = / W@V (@) dx, |l = |
0
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where H2(0,1) is the Sobolev space of all functions x : [0,1] — R such that z and its distri-
butional derivative %’ are absolutely continuous and #” belongs to L*([0,1]), and | - ||, de-
notes the standard L” norm. In addition, E is compactly embedded in the spaces L([0,1])
and C([0,1]), and therefore, there exist immersion constants Sy, S > 0, such that

lully < Sallull and  flulloo < Sllull. (2.2)

We recall that f : [0,1] x R — R is an L!-Carathéodory function if
(a) the mapping x — f(x, u) is measurable for every u € R;

(b) the mapping u > f(x,u) is continuous for almost every x € [0, 1];
(c) for every p > 0 there exists a function [, € L'([0,1]) such that

sup V(x, u)| <l,(x),

lul=p

for almost every x € [0,1].
Define the functions F, H : [0,1] x R — R as follows:

F(x,u):/uf(x,s)ds and H(x,u):/uh(x,s)ds,
0 0

forall (x,u) € [0,1] x R,and G(¢) = fotg(x) dx. Thus we define the functional I, , € C'(E,R)
by

1 1 1
Lou(u) = §||u||2—k/ F(x,u)dx—pc/ H(x,u)dx+G(u(1)), forallu e E.
0 0

Definition 2.1 We say that a function « € E is a weak solution of problem (1.1) if

1 1 1
/ u (x)V' (x) dx — A/ fx,u)vdx - u/ h(x, u)vdx + g(u(1))v(1) = 0
0 0 0
holds for any v € E.

3 Main results

In this section we establish the main abstract results of this paper. Let

1
. Jy maxy,<¢ F(x,u) dx
A:=1 20 ,

b
max, <¢ F(x, u) dx
B :=limsup f“ st F )

£—+00 52 ’
o
Aci=—+ F_ o
c o+1
and
a 1
d"1Pdx+ [, ") dx 1
AI;:I‘)' | Iy 1€"] , .

2B T 254

where «, § are given by (Al), ¢ is a positive constant, and d(x), e(x) are given by (A3).
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Theorem 3.1 Let f: [0,1] x R — R be an L'-Carathéodory function and 0 <a < b < 1.
Assume that
(Al) there exist constants a, 8 >0 and o € [0,1) such that

lgw)| <o+ Blul’, foralluecR;

(A2) F(x,u)> 0 forall (x,u) € ([0,a] U [b,1]) x R;
(A3) there exist two functions d € C*([0,a]) and e € C*([b,1]) satisfying

d0)=d(0)=0, da@=e®)=1, da)=ebB)=0

and

a 1
/0|d”|2dx+/b ' dx 70,

such that

a 1
SAI:/ |d”‘2dx +/ ’e”‘zdx:| <B. (3.1)
0 b

Then, for every ) € (A1, Ay) and for any L}-Carathéodory function h:[0,1] x R — R,
whose potential H(x,u) = fouh(x, s)ds for all (x,u) € [0,1] x R, is a nonnegative function
satisfying the condition

[ max <z Hx, u) dx

Hy, :=limsup < 400, (3.2)

E—+00 %_2
if we put

N (1-2824)
MH = 2§H )

oo

where |L; = +00 when Hy, = 0, for every u € [0, iy ;) problem (1.1) has an unbounded
sequence of weak solutions in E.

Proof Obviously, it follows from (A3) that A; < A. Fix X € (A1, 12). Since A < Ay, we have
1 (1-2824)>0
T = —= — > V.
M5 2SH.
Now fix ji € (0, 1y ;) and set
J(x,u) = F(x, ) + %H(x, u), forall (x,u) € [0,1] x R.
Let the functionals ®, ¥ : E — R be defined by

1
®(u) = = ||lu|?,
(u) 5 lul

1
W (u) :/ J(x, u)dx — %G(u(l)),
0
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where G(t) = [, g(x) dx. Put
I (u) = ®(u) - AW (u), forallueE.

Using the property of f, # and the continuity of g, we obtain ®, ¥ € C!(E,R) and for any
v € E, we have

1
(®'(u),v) = /0 u"(x)V' (x) dx

and

1 - el
(W’(u),v) = /0 f(x,u(x))v(x) dx + % /0 h(x,u(x))v(x) dx — %g(u(l))v(l).

So, with standard arguments, we deduce that the critical points of the functional [; ; are
the weak solutions of problem (1.1) and so they are classical. We first observe that the
functionals ® and W satisfy the regularity assumptions of Theorem 2.1.

First of all, we show that A < % Let {&,} be a sequence of positive numbers such that

lim,,_, ;00 &, = +00 and

[ max ) <g, F(x, u) dx

lim

n—>+00 53

=A.
Setr, := 2—155-‘3 for all n € N. Then, for all v € E with ®(v) < r,,, taking (2.2) into account, one
has ||V||oo < &,. Note that ®(0) = ¥(0) = 0. Then, forall # € N,

o(rs) = inf (SUPyeg-1 (oo, W (V) — W(u)
' ued=l(-orm) ry — O(u)

Supu€¢’1(—oo,r,,) v (M)

I'n

1
- Jo maxy <z, J (x, 1) dx + %(af,, + %éj{“)
< T
255n
Jy max<s, F,u)dx i [y maxy<e, Ho,w)dx 1 ]
: .

= 23[ g2 * g2

Since lim,,_, o0 Ag, = 0, from the assumption (A3) and the condition (3.2), we have

y <liminf(r,) < ZS(A +

n—+00

>—'||7g|

Hoc> < +00,

and combining the assumption i € (0, 11;), we obtain

o < i . 1-28:A
y <liminfe(r,) <25 A + XHOO <2SA + —5
This implies that
-1
A< —.

v
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Let A be fixed. We claim that the functional I; ; is unbounded from below. Since

1 2B
=< ]
AR dx + ) e dx

there exist a sequence {7, } of positive numbers and t > 0 such that lim,,_, ;» 1, = +00 and

2 [? F(x,n,) dx
=< T< )
X n2[fo1d" 2 dx + [, e"|? dx]

for each n € N large enough. For all # € N we define v, by

dx)n,, x€][0,al,
vu(x) =1 n,, x € (a,b], (3.3)
e®)n, xe(b1].

From the condition (A3), it is easy to verify that v, € E. For any n € N, one has

1 2 nﬁ “ //2 ! //2
() = 5 Il = 22 / | dx+/ e .
0 b

On the other hand, by (A2) and since H is nonnegative, from the definition of W, we infer

(3.4)

b
1
Y(v,) Z/ F(x,n,)dx — i”ﬁA(inn)‘
a

By (3.3) and (3.4), we have

2 a 1 b
n 2 /12 -
Lai(v) < 7”[/ |d”| dx+/ |e/ | dx] —A/ F(x,n,)dx + nﬁA(gnn)
0 b a
772 a 9 1 9 B
< 7”[/ |d"| dx+/ le”| dx](l = 2T) + A5y
0 b
for every n € N large enough. Since o <1, At > 1 and lim,,_, o, 1, = +00, we have

lim I ;(v,) = —00.
n—+00

Page 6 of 11

Then the functional J; ; is unbounded from below, and it follows that I; ; has no global
minimum. Therefore, by Theorem 2.1(b), there exists a sequence {u,} of critical points of

I; ; such that
lim |ju,| = +oo,
n—+00

and the conclusion is achieved.

d

Remark 3.1 Indeed, it is not difficult to find such functions d(x) and e(x) satisfying the

condition (A3). For example, let a = % and b = % We can choose

d(x) = —54x2< - l), X € [0, li|
2 3
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and

3 2
e(x):—Sx(—x—l), x € |:—,1:|.
4 3

Remark 3.2 Under the conditions A = 0 and B = +00, from Theorem 3.1 we see that for

every A > 0 and for each u € [0, 25%), problem (1.1) admits a sequence of classical solu-
tions which is unbounded in E. Moreover, if Hy, = 0, the result holds for every A > 0 and

wn>0.

Corollary 3.2 Let f : R — R be an L'-Carathéodory function and 0 < a < b < 1. Suppose
that hypotheses (A1)-(A2) hold. Moreover, the condition (A3) is satisfied if (3.1) is replaced
by

a 1
/ |d”|2dx+/ |e”|2dx<2B, 28A <1.
0 b

Then, for any L*-Carathéodory function h : [0,1] x R — R, whose potential H(x,u) :=
fou h(x,s) ds for all (x,u) € [0,1] X R, is a nonnegative function satisfying the condition (3.2),
if we put

- (1-284)
HH = S SH ’

where [y = +00 when Ho, = 0, the problem

u® = f(x,u) + ph(x,u), O0<x<l,
u(0) = 4/(0) =0,
u"(1) =0, u” (1) = g(u(1)),

has an unbounded sequence of weak solutions for every u € [0, uy) in E.

Corollary 3.3 Under the assumptions of Corollary 3.2, for any nonnegative continuous
function h:[0,1] — R, the problem

u® = f(x,u) + h(x), O<x<l,
u(0) =4/(0) =0,
u"(1) =0, u"” (1) = g(u(1)),

has infinitely many distinct weak solutions in E.

Now, let
1
A .= liminf Jo maxju<¢ F(x, u) dx
T oot £2 ’
b
B:=limsup J, maxjy<¢ F(x, u) dx
£§—0* &2

u(1)
®, := min / gx)dx, forallc>0
0

lul<c
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and

a 1
- d'*dx+ [, |e"> dx _
)\1 = fO | | _fb | | ) )\2 =—_

2B 2S8A

Theorem 3.4 Let f:[0,1] x R — R be an L'-Carathéodory function and 0 < a < b < 1.
Moreover, assume that (A2) and

(A1) g(u) <0 forall u € R and lim,_, o+ W =0;
(A3)' there exist two functions d € C*([0,a]) and e € C*([b, 1)) satisfying

d(0)=4d'(0) =0, d(a) =e(b) =1, d'(a)=¢€(b) =0, e(1)>0

and

a 1
/ |d”|2dx+/ |e”|2dx710,
0 b

such that

a 1
SA[/ @ dx | |e”|2dx]<B,
0 b

are satisfied. Then, for every ) € (A1, Ay) and for any L'-Carathéodory function h :
[0,1] x R — R, whose potential H(x,u) := fouh(x, s)ds for all (x,u) € [0,1] xR, isa
nonnegative function satisfying the condition

[ max <z Hx, u) dx

Hy :=limsup < +00,
E—>0t 52
if we put
i = — (1-251A)
MHp = ZSHO ,

where [Ly,; = +00 when Hy = 0, for every j € [0, jiy,,) problem (1.1) has a sequence of
weak solutions, which strongly converges to zero in E.

Proof It follows from (A3)’ that A; < A. Fix A € (A1, 5). Since A < A5, we have

(1-2514) > 0.

:u/H,X = ZSH()
Now fix i € (0, iy 7) and set

J(x, 1) := F(x, u) + %H(x, u), forall (x,u) €[0,1] x R.

We take @, W, and I3 ; as in the proof of Theorem 3.1. Now, as has been pointed out before,

the functionals ® and W satisfy the regularity assumptions required in Theorem 2.1. As
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first step, we will prove that A < 1/8. Let {,} be a sequence of positive numbers such that
lim,,_, ,00 & = 0 and

fol max y<g, F(x, ) dx

lim =A.

n— +00 52
By the fact that inf,cx ®(u) = 0 and the definition of §, we have § = liminf,_, ¢+ ¢(r). Set
Iy = 21—553 for all n € N. Then, for all v € E with ®(v) < r,, taking (2.2) into account, one
has ||v||oo < &,. Note that ®(0) = ¥(0) = 0. Then, forall n € N,

) (SUPycp-1(Looy,) Y (V) — W (1)
(P(Vn) = inf
ue®1(=00,r,) 7y — ®(u)
1
< SUP e -1 (—c0,ry) U (u) < fO max,|<g, J (%, u) dx — %®§n

= = 1
T % g2

_ 2§|:f01 max|y <g, F(x, u) dx . P fol maxy <g, H(x, u) dx ~ 1 ®$n:|
= £2 y £2 rE ]
It follows from (A1)’ that lim,,_, ;oo 9% _ (). Then we have

&

8 <liminfe(r,) < 23(21 + %H()) < +00.

n—+00
From i € (0, j15), we obtain
(- I .- 1-28A
§<2S|A+=Hy ) <2S5A + ——,
A A
which implies that

A<

(SR

Let A be fixed. We claim that the functional I; ; does not have a local minimum at zero.
Since
2B
S Ta 1712 Ly o2 ’
Jo 1d" 2 dx + [, |e"|? dx

>0 =

there exist a sequence {1, } of positive numbers and t > 0 such that lim,_, ,, 1, = 0 and

1 2 [* F(x,n,,) dx

- <1< - : ,
A n2[fy 1d" > dx + [, |e”|? dx]

for each n € N large enough. For all # € N, let v, be defined by (3.3) with the above 7,.
Note that A7 > 1. Then, since g(u) < 0 for all # € R and e(1) > 0, we obtain

772 a 9 1 9 B b v (1)
L (ve) < —”|:f |d"| dx+/ e’ dx:| —A/ Fl(x, r]n)dx+/ g(x)dx
2 0 b a 0

772 a 9 1 9 _
<—”|:/ |d"| dx+/ " dx:|(1—kt)<0,
2 1Jo b


http://www.boundaryvalueproblems.com/content/2014/1/191

Song Boundary Value Problems 2014, 2014:191
http://www.boundaryvalueproblems.com/content/2014/1/191

for every n € N large enough. Thus, since

nl_i)rpooli,,z(vn) =1;;(0)=0,
we see that zero is not a local minimum of I3 ;. This, together with the fact that zero is
the only global minimum of @, we deduce that the energy functional /; ; does not have a
local minimum at the unique global minimum of ®. Therefore, by Theorem 2.1(c), there
exists a sequence {u,} of critical points of J5 ;, which converges weakly to zero. In view
of the fact that the embedding E < C([0,1]) is compact, we know that the critical points
converge strongly to zero, and the proof is complete. d

Remark 3.3 Applications similar to Corollaries 3.2 and 3.3 can also be made to Theo-
rem 3.4. Now we give an example illustrating Theorem 3.4. Consider the problem

u® = Af(x,u), O0<x<l,
u(0) =4/'(0) =0, (3.5)
u"(1) =0, u” (1) = g(u(1)),

where f(x, u) = |u|. Obviously, A = B = % Leta=zand b= %, and choose

1
3

and

e(x) = - X (Ex—l) xe[%l}
© 12/5\4 ' 37

1 _
By C(illculating, we have [* |d"|>dx + f%I le"|?dx = %(i + 4X1362). Thus, A1 = %(% + @)
and A = é Furthermore, the conditions (A2) and (A3)’ are satisfied. Let g(u) = —u%. Then
(A1) holds. Therefore, by Theorem 3.4, we find that problem (3.5) has a sequence of weak

solutions which strongly converges to zero in E for all A € (A1, Ay).
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