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Abstract
This paper discusses nonlinear boundary value problems for causal differential
equations where the right-hand side is the sum of two monotone functions. We
develop the monotone iterative technique and establish the existence results of the
extremal solutions. The results obtained include several special cases and extend
previous results; two examples satisfying the assumptions are also presented.
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1 Introduction
As we all know, the monotone iterative technique is an effective and a flexible method,
and it provides a useful mechanism to prove existence results for nonlinear differential
equations, for detail see for monographs [], papers [–], and the references therein.
The basic idea of this method is that using the upper and lower solutions as an initial
iteration, one can construct monotone sequences from a corresponding linear equations,
and these sequences convergemonotonically to theminimal andmaximal solutions of the
nonlinear equations.
In , West [] developed this method, considered the generalized monotone iter-

ative method for initial value problems, obtained the existence of extremal solutions for
differential equations where the forcing function is the sum of two monotone functions,
one of which is monotone non-decreasing and the other is non-increasing.
Recently, this method has been extended to causal differential equations. Its theory has

the powerful quality of unifying ordinary differential equations, integro differential equa-
tions, differential equations with finite or infinite delay, Volterra integral equations and
neutral equations. We refer to the monograph by Lakshmikantham [] and papers [,
].
In , Lakshmikantham discussed in [] the following problem with causal oper-

ators: x′(t) = (Px)(t) + (Qx)(t), x() = x, where t ∈ J = [,T], P,Q : E → E = C(J ,R) are
causal operators. However, we notice that the results are only valid for initial value prob-
lems. Motivated by the above excellent work, we extend the notion of casual operators to
nonlinear boundary value problems and develop the monotone iterative technique.
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In this paper, we deal with the following causal differential equation:

⎧
⎨

⎩

u′(t) = (Qu)(t) + (Su)(t), t ∈ J = [,T],

g(u(),u(T)) = ,
(.)

where Q,S : E → E = C(J ,R) are causal operators.
Note that the nonlinear boundary value problem (.) reduce to periodic boundary value

problems for g(u(),u(T)) = u() – u(T), initial value problems for g(u(),u(T)) = u() –
u which has been studied in [] and other general conditions such as g(u(),u(T)) =
h(u()) – u(T). Thus problem (.) can be regarded as a generalization of the boundary
value problems mentioned above.
The rest of this paper is organized as follows. In Section , we develop the monotone

technique for (.); four theorems and several special cases are given. In Section , we
give two examples to illustrate the results obtained. Finally, a brief summary is given in
Section .

2 Main results
Let J = [,T],Q,S : E → E = C(J ,R). In order to prove general results, we need the follow-
ing definitions.

Definition . For (.), the functions y, z ∈ C[J ,R] are said to be
() natural lower and upper solutions if

⎧
⎨

⎩

y′
(t)≤ (Qy)(t) + (Sy)(t), g(y(), y(T))≤ ,

z′
(t) ≥ (Qz)(t) + (Sz)(t), g(z(), z(T))≥ ;

() coupled lower and upper solutions of type I, if

⎧
⎨

⎩

y′
(t)≤ (Qy)(t) + (Sz)(t), g(y(), y(T)) ≤ ,

z′
(t) ≥ (Qz)(t) + (Sy)(t), g(z(), z(T))≥ ;

() coupled lower and upper solutions of type II, if

⎧
⎨

⎩

y′
(t)≤ (Qz)(t) + (Sy)(t), g(y(), y(T)) ≤ ,

z′
(t) ≥ (Qy)(t) + (Sz)(t), g(z(), z(T)) ≥ ;

() coupled lower and upper solutions of type III, if

⎧
⎨

⎩

y′
(t)≤ (Qz)(t) + (Sz)(t), g(y(), y(T))≤ ,

z′
(t) ≥ (Qy)(t) + (Sy)(t), g(z(), z(T)) ≥ .

If we set y(t) ≤ z(t), t ∈ J , (Qu) is non-decreasing and (Su) is non-increasing, then the
natural lower and upper solutions and the coupled lower and upper solutions of type III
satisfy type II. Thus, we only need to consider the case of the coupled lower and upper
solutions of type I and II for (.).

http://www.boundaryvalueproblems.com/content/2014/1/192
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Definition . Relative to the causal differential equation (.):
() A function U ∈ C[J ,R] is said to be a natural solution if it satisfies (.).
() U ,V ∈ C[J ,R] are said to be coupled solutions of type I, if

⎧
⎨

⎩

U ′(t) = (QU)(t) + (SV )(t), g(U(),U(T)) = ,

V ′(t) = (QV )(t) + (SU)(t), g(V (),V (T)) = .

() U , V are said to be coupled solutions of type II, if

⎧
⎨

⎩

U ′(t) = (QV )(t) + (SU)(t), g(U(),U(T)) = ,

V ′(t) = (QU)(t) + (SV )(t), g(V (),V (T)) = .

() U , V are said to be coupled solutions of type III, if

⎧
⎨

⎩

U ′(t) = (QV )(t) + (SV )(t), g(U(),U(T)) = ,

V ′(t) = (QU)(t) + (SU)(t), g(V (),V (T)) = .

Definition . Coupled solutions ρ, r ∈ C[J ,R], are said to be couple minimal and max-
imal solutions of (.), if for any coupled solutions U , V , we have ρ ≤ U ,V ≤ r.

Theorem . We suppose that the following hypotheses hold:

H y, z ∈ C(J ,R) are the coupled lower and upper solutions of type I for (.) with y(t) ≤
z(t) on J ;

H the operators Q, S in (.) are such that Q,S : E → E, (Qu) is non-decreasing in u and
(Su) is non-increasing in u;

H the function g(u, v) ∈ C(R,R) is non-increasing in the second variable and there exists
a constantM >  such that

g(u, v) – g(u, v)≤ M(u – u),

for y()≤ u ≤ u ≤ z(), y(T) ≤ v≤ z(T).

Then there exist two monotone sequences {yn(t)}, {zn(t)} such that limn→∞ yn(t) = ρ(t),
limn→∞ zn(t) = r(t) uniformly and monotonically on J and that ρ , r are coupled minimal
and maximal solutions of type I for (.). Furthermore, if u is any natural solution of (.)
such that y ≤ u ≤ z on J , then ρ ≤ u ≤ r on J .

Proof We consider the following linear problem:

⎧
⎨

⎩

y′
n+(t) = (Qyn)(t) + (Szn)(t),

yn+() = yn() – 
Mg(yn(), yn(T)),

(.)

⎧
⎨

⎩

z′
n+(t) = (Qzn)(t) + (Syn)(t),

zn+() = zn() – 
Mg(zn(), zn(T)).

(.)

http://www.boundaryvalueproblems.com/content/2014/1/192
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This is an adequate definition since by general results on the initial value problem of causal
differential equations [] the existence and uniqueness of solution for (.) and (.) are
guaranteed.
First, we show that y ≤ y ≤ z ≤ z, putting n =  in (.) and setting p = y – y, we

acquire

p() = y() – y() +

M

g
(
y(), y(T)

) ≤ ,

p′ = y′
 – y′

 ≤ (Qy)(t) + (Sz)(t) – (Qy)(t) – (Sz)(t) = .

It follows that p(t) ≤  on J , which implies y ≤ y on J . Similarly, we may obtain z ≤ z
on J .
Next, take p = y – z, then from the hypotheses H, H, and the fact y ≤ z, one attains

p() = y() – z()

= y() – z() +

M

(
g
(
z(), z(T)

)
– g

(
y(), y(T)

))

≤ ,

p′ = y′
 – z′

 = (Qy)(t) + (Sz)(t) – (Qz)(t) – (Sy)(t)≤ .

This implies that p(t) ≤  on J , and y ≤ z.
In the following, we shall show that y, z are the coupled lower and upper solutions of

type I for (.). Following H and y ≤ y, z ≤ z, we obtain

y′
(t) = (Qy)(t) + (Sz)(t) ≤ (Qy)(t) + (Sz)(t), (.)

and by means of the facts that y ≤ y, z ≤ z, H, and H, we have

g
(
y(), y(T)

)
= g

(
y(), y(T)

)
– g

(
y(), y(T)

)
–My() +My()

≤ M
(
y() – y()

)
–M

(
y() – y()

)
= . (.)

Similarly, we can get

z′
(t)≥ (Qz)(t) + (Sy)(t), g

(
z(), z(T)

) ≥ , (.)

from (.)-(.), we show that y, z are coupled lower and upper solutions of type I for
(.).
Now employing the mathematical induction, assume that, for some integer k > ,

yk– ≤ yk ≤ zk ≤ zk– on J .

We need to show that

yk ≤ yk+ ≤ zk+ ≤ zk on J .

http://www.boundaryvalueproblems.com/content/2014/1/192
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For this purpose, let p = yk – yk+ and use H, H; we note that

p() = yk() – yk+() = yk() – yk() +

M

g
(
yk(), yk(T)

) ≤ ,

p′ = y′
k – y′

k+ = (Qyk–)(t) + (Szk–)(t) – (Qyk)(t) – (Szk)(t)≤ .

This implies yk ≤ yk+ on J . Similarly, we can prove that zk+ ≤ zk on J by using (.) and
H, H. To prove yk+ ≤ zk+, set p = yk+ – zk+, then by using H, H, and the fact that
yk ≤ zk , we get

p() = yk+() – zk+()

= yk() – zk() +

M

(
g
(
zk(), zk(T)

)
– g

(
yk(), yk(T)

))

≤ ,

p′ = y′
k+ – z′

k+ = (Qyk)(t) + (Szk)(t) – (Qzk)(t) – (Syk)(t) ≤ .

That yields p(t) ≤ , i.e. yk+ ≤ zk+. From the above discussion, we have

y ≤ y ≤ · · · ≤ yn ≤ zn ≤ · · · ≤ z ≤ z.

Obviously, the constructed sequences {yn}, {zn} are equicontinuous and uniformbounded.
Thus, by the Ascoli-Arzela theorem, we have {yn} → ρ , {zn} → r on J . Since the sequences
{yn}, {zn} are monotone, the entire sequences converge uniformly andmonotonically to ρ ,
r on J , respectively.
Using the definition of (.), (.), and passing to the limit when n → ∞, we obtain the

result that ρ , r are coupled solutions of type I for (.).
It remains to show that ρ , r are coupled minimal and maximal solutions of type I for

(.). Let u,u ∈ [y, z] be any coupled solutions of type I for (.). Assume that there
exists a positive integer k such that yk ≤ u,u ≤ zk on J . Then, putting p = yk+ – u, and
employing H and H, we arrive at

p() = yk+() – u()

= yk() – u() +

M

(
g
(
u(),u(T)

)
– g

(
yk(), yk(T)

))

≤ ,

p′ = y′
k+ – u′

 = (Qyk)(t) + (Szk)(t) – (Qu)(t) – (Su)(t)≤ .

That implies p(t) ≤ , which proves yk+ ≤ u on J . Using similar arguments we can
conclude yk+ ≤ u,u ≤ zk+ on J . Since y ≤ u,u ≤ z, by the principle of induction,
yn ≤ u,u ≤ zn holds for all n. Taking the limit as n → ∞, we have ρ ≤ u,u ≤ r on J
proving ρ , r are coupled minimal and maximal solutions of type I for (.). Since any nat-
ural solution u of (.) can be considered as (u,u) coupled solutions of type I, we also have
ρ ≤ u≤ r on J . This completes the proof. �

http://www.boundaryvalueproblems.com/content/2014/1/192
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Theorem . Let the hypotheses of Theorem . hold. Then, for any natural solution u of
(.) with y ≤ u ≤ z, there exist alternating sequences {yn, zn+} → ρ , {zn, yn+} → r
uniformly on J with y ≤ z ≤ · · · ≤ yn ≤ zn+ ≤ u ≤ yn+ ≤ zn ≤ · · · ≤ y ≤ z. Here ρ , r
are the coupled minimal and maximal solutions of type I for (.). Also, ρ ≤ u≤ r on J .

Proof Consider the following initial problem:

y′
n+(t) = (Qzn)(t) + (Syn)(t), yn+() = zn() – 

Mg(zn(), zn(T)),

z′
n+(t) = (Qyn)(t) + (Szn)(t), zn+() = yn() – 

Mg(yn(), yn(T)).

⎫
⎬

⎭
(.)

First we show that y ≤ y and z ≤ z.
Set p = y – y, following (.) and the hypotheses of Theorem ., we obtain

p() = y() – y() ≤ y() – z() +

M

g
(
z(), z(T)

)

≤ 
M

g
(
y(), y(T)

) ≤ ,

p′ = y′
 – y′

 = (Qy)(t) + (Sz)(t) – (Qz)(t) – (Sy)(t) ≤ .

Thus we prove p(t) ≤ , which gives y ≤ y on J . Similarly, we can show z ≤ z.
Now we wish to prove that

y ≤ z ≤ y ≤ z ≤ u≤ y ≤ z ≤ y ≤ z. (.)

Setting p = u – y, we get

p′ = u′ – y′
 = (Qu)(t) + (Su)(t) – (Qz)(t) – (Sy)(t)≤ ,

using the monotone nature of the operators Q, S, and the fact y ≤ u ≤ z on J , u being
any natural solution of (.). Also, by using H, we have

p() = u() – y()

= u() – z() +

M

(
g
(
z(), z(T)

)
– g

(
u(),u(T)

))

≤ .

Hence p(t) ≤  on J , i.e., u ≤ y on J . A similar argument yields z ≤ u. In order to avoid
repetition, we can prove each of the following: y ≤ u, u≤ z, u ≤ y, and z ≤ u.
Now we shall show that y ≤ z ≤ y ≤ z and y ≤ z ≤ y ≤ z. Take p = y – z, and one

attains

p′ = y′
 – z′

 ≤ (Qy)(t) + (Sz)(t) – (Qy)(t) – (Sz)(t) = ,

p() = y() – z() = y() – y() +

M

g
(
y(), y(T)

) ≤ .

Then p(t) ≤  on J , thus y ≤ z. Similarly, we can obtain y ≤ z on J .

http://www.boundaryvalueproblems.com/content/2014/1/192
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Next, take p = z – y, by H and H, we derive

p′ = z′
 – y′

 = (Qy)(t) + (Sz)(t) – (Qz)(t) – (Sy)(t)≤ ,

p() = z() – y() = y() – z() +

M

(
g
(
z(), z(T)

)
– g

(
y(), y(T)

)) ≤ .

This implies that p(t) ≤  on J , i.e., z ≤ y on J . Using similar arguments we can show
y ≤ z, y ≤ z, z ≤ y. Combining all these arguments, we now have the desired relations
(.).
Now, suppose there exists an integer k ≥  such that zk– ≤ yk ≤ zk+ ≤ u ≤ yk+ ≤

zk ≤ yk– on J . Thus, we need to show

zk+ ≤ yk+ ≤ zk+ ≤ u ≤ yk+ ≤ zk+ ≤ yk+ on J .

Setting p = zk+ – yk+, then for t ∈ J and utilizing the hypotheses yk ≤ zk+ and H, H,
we may get

p() = zk+() – yk+()

= yk() – zk+() +

M

(
g
(
zk+(), zk+(T)

)
– g

(
yk(), yk(T)

))

≤ ,

p′ = z′
k+ – y′

k+ = (Qyk)(t) + (Szk)(t) – (Qzk+)(t) – (Syk+)(t)≤ .

This implies that p ≤  and zk+ ≤ yk+. Similarly, we obtain zk+ ≤ yk+, yk+ ≤ zk+,
and yk+ ≤ zk+.
To prove yk+ ≤ u, by using H, H, and the inequalities zk+ ≤ u, consider the relations

p′ = y′
k+ – u′ = (Qzk+)(t) + (Syk+)(t) – (Qu)(t) – (Su)(t) ≤ 

and

p() = yk+() – u()

= zk+() – u() +

M

(
g
(
u(),u(T)

)
– g

(
zk+(), zk+(T)

))

≤ ,

one attains p ≤  on J , i.e. yk+ ≤ u. Hence, as before, we can conclude that u ≤ zk+,
zk+ ≤ u, and u≤ yk+ on J . Now, with the principle of induction, we have

y ≤ z ≤ · · · ≤ yn ≤ zn+ ≤ u≤ yn+ ≤ zn ≤ · · · ≤ y ≤ z.

By employing a reasoning similar to that of Theorem ., we get the sequences
{yn, zn+}, {zn, yn+} which converge uniformly and monotonically to ρ , r on J , respec-
tively. Thus, ρ , r are coupled solutions of type I for (.).
Finally, to prove that ρ , r are coupledminimal andmaximal solutions of (.), let u,u ∈

[y, z] be any coupled solutions of type I for (.). Similar to the proof of the above, if

http://www.boundaryvalueproblems.com/content/2014/1/192
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zk– ≤ yk ≤ zk+ ≤ u,u ≤ yk+ ≤ zk ≤ yk– for some positive integer k, we can easily
see that zk+ ≤ yk+ ≤ zk+ ≤ u,u ≤ yk+ ≤ zk+ ≤ yk+ on J , by the induction, one
has yn ≤ zn+ ≤ u,u ≤ yn+ ≤ zn holds on J for all n. Taking the limit as n → ∞, we
have ρ ≤ u,u ≤ r on J proving ρ , r are coupled minimal and maximal solutions of type
I for (.). Since we have already shown that yn ≤ zn+ ≤ u ≤ yn+ ≤ zn holds on J for
all n. Now taking the limit as n → ∞, we get ρ ≤ u ≤ r on J . This completes the proof.

�

Corollary . Under the hypotheses of Theorem ., let (Su) ≡ , then y, z are natural
lower and upper solutions of (.), and we can get the following results:

(i) There exist two monotone sequences {yn}, {zn} such that
y ≤ y ≤ · · · ≤ yn ≤ zn ≤ · · · ≤ z ≤ z which converge uniformly to the minimal and
maximal solutions of (.), respectively.

(ii) There exist alternating sequences {yn, zn+}, {zn, yn+} such that
y ≤ z ≤ · · · ≤ yn ≤ zn+ ≤ yn+ ≤ zn ≤ · · · ≤ y ≤ z which converge uniformly to
the minimal and maximal solutions of (.), respectively.

Corollary . If (Su) ≡  and (Qu) is not non-decreasing, then (Q̃u) = (Qu) + Lu is non-
decreasing for some L > , and we can consider the following problem:

u′(t) = (Qu)(t) = (Q̃u)(t) – Lu(t), g
(
u(),u(T)

)
= ,

we see that it can be seen as (.) with (Qu) replaced by Q̃u and (Su) replaced by –Lu. Thus
we get the same conclusions as for Theorem . and Theorem ..

Corollary . Under the hypotheses of Theorem ., let (Qu) ≡ , if u is any natural solu-
tion of (.) such that y ≤ u≤ z on J , then we have

(i) there exist the monotone sequences {yn}, {zn} converging to ρ and r, where (ρ, r) are
coupled minimal and maximal solutions of (.), respectively, satisfying

⎧
⎨

⎩

ρ ′(t) = (Sr)(t), g(ρ(),ρ(T)) = ,

r′(t) = (Sρ)(t), g(r(), r(T)) = ,

for t ∈ J and ρ ≤ u≤ r;
(ii) there exist alternating sequences {yn, zn+} converging to ρ , {zn, yn+} converging to

r, where (ρ, r) are coupled minimal and maximal solutions of (.), respectively,
satisfying

⎧
⎨

⎩

ρ ′(t) = (Sr)(t), g(ρ(),ρ(T)) = ,

r′(t) = (Sρ)(t), g(r(), r(T)) = ,

for t ∈ J and ρ ≤ u≤ r.

Corollary . If (Qu) ≡  and (Su) is not non-increasing, then (̃Su) = (Su) – Nu is non-
increasing for some N > , we can consider the following problem:

u′(t) = (Su)(t) = (̃Su)(t) +Nu(t), g
(
u(),u(T)

)
= ,

http://www.boundaryvalueproblems.com/content/2014/1/192
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which is the same as (.) with (Qu) replaced by Nu and (Su) replaced by (̃Su). Hence the
conclusions of Theorem . and Theorem . remain valid.

Corollary . Suppose (Qu) is non-decreasing but (Su) is not non-increasing, then (Q̃u) =
(Qu) +Nu is non-decreasing and (̃Su) = (Su) –Nu is non-increasing for some N > , we can
consider the following problem:

u′(t) = (Qu) + (Su)(t) = (Q̃u)(t) + (̃Su)(t), g
(
u(),u(T)

)
= ,

which is the same as (.) with (Qu) replaced by (Q̃u) and (Su) replaced by (̃Su) and the
conclusions of Theorem . and Theorem . hold.

Corollary . If (Qu) is not non-decreasing but (Su) is non-increasing, then (Q̃u) = (Qu) +
Lu is non-decreasing and (̃Su) = (Su) –Lu is non-increasing for some L > ,we can consider
the following problem:

u′(t) = (Qu) + (Su)(t) = (Q̃u)(t) + (̃Su)(t), g
(
u(),u(T)

)
= ,

which is the same as (.) with (Qu) replaced by (Q̃u) and (Su) replaced by (̃Su) and the
conclusions of Theorem . and Theorem . hold.

Corollary . If (Qu) is not non-decreasing and (Su) is not non-increasing, then for some
L > , such that (Q̃u) = (Qu) + Lu is non-decreasing and (̃Su) = (Su) – Lu is non-increasing,
we can get the conclusions of Theorem . and Theorem .with (Qu) replaced by (Q̃u) and
(Su) replaced by (̃Su).

We can always construct coupled upper and lower solutions of type II as in this paper. To
avoid repetition, we will merely state the next two theorems without proof since it follows
along the same lines as Theorems . and ..

Theorem . Assume conditions H, H of Theorem . hold, let y, z ∈ C(J ,R) be the
coupled lower and upper solutions of type II with y(t) ≤ z(t) on J , we have the iterates
{yn}, {zn} satisfying

y ≤ y ≤ · · · ≤ yn ≤ zn ≤ zn– ≤ · · · ≤ z ≤ z,

provided y ≤ y and z ≤ z on J , where the iterates are developed by

y′
n+(t) = (Qyn)(t) + (Szn)(t), yn+() = yn() –


M

g
(
yn(), yn(T)

)
,

z′
n+(t) = (Qzn)(t) + (Syn)(t), zn+() = zn() –


M

g
(
zn(), zn(T)

)
.

Moreover, the monotone sequences {yn}, {zn} converge uniformly to ρ and r, respectively,
where (ρ, r) are coupled minimal and maximal solutions of type II for (.), they satisfy the
coupled system

⎧
⎨

⎩

ρ ′(t) = (Qρ)(t) + (Sr)(t), g(ρ(),ρ(T)) = ,

r′(t) = (Qr)(t) + (Sρ)(t), g(r(), r(T)) = ,

http://www.boundaryvalueproblems.com/content/2014/1/192
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for t ∈ J and if u is any natural solution of (.) such that y ≤ u ≤ z on J , then ρ ≤ u ≤ r
on J .

Theorem . Assume the hypotheses H, H of Theorem . to hold, and let y, z ∈
C(J ,R) be the coupled lower and upper solutions of type II with y(t) ≤ z(t) on J , then
for any natural solution u of (.) with y ≤ u ≤ z on J , we get the alternating sequences
{yn, zn+}, {zn, yn+} satisfying

y ≤ z ≤ · · · ≤ yn ≤ zn+ ≤ u≤ yn+ ≤ zn ≤ · · · ≤ y ≤ z,

provided y ≤ y and z ≤ z on J , for every n ≥ , where the iterative schemes are con-
structed by

y′
n+(t) = (Qzn)(t) + (Syn)(t), yn+() = zn() –


M

g
(
zn(), zn(T)

)
,

z′
n+(t) = (Qyn)(t) + (Szn)(t), zn+() = yn() –


M

g
(
yn(), yn(T)

)
.

Moreover, the monotone sequences {yn, zn+} converge to ρ and {zn, yn+} converge to r on
J , where (ρ, r) are coupled minimal and maximal solutions of type I for (.), respectively,
satisfying the coupled system

⎧
⎨

⎩

ρ ′(t) = (Qρ)(t) + (Sr)(t), g(ρ(),ρ(T)) = ,

r′(t) = (Qr)(t) + (Sρ)(t), g(r(), r(T)) = ,

for t ∈ J and ρ ≤ u ≤ r on J .

3 Examples
In this section, we give two simple but illustrative examples, thereby validating the pro-
posed theorems.

Example . Consider the following problem:

⎧
⎨

⎩

u′(t) = (sin t)u(t) + 
e

–u(t), t ∈ J = [, ],

g(u(),u()) = u() – 
u() –


e = .

(.)

We construct a pair of coupled upper and lower solutions of type I for (.),

y(t) = , z(t) = t +



, t ∈ J .

Obviously, y(t)≤ z(t), and

⎧
⎨

⎩

y′
(t) =  ≤ (sin t)y(t) + 

e
–z(t) = 

e
–t– 

 ,

g(y(), y()) = – 
e < ,

⎧
⎨

⎩

z′
(t) = ≥ (sin t)z(t) + 

e
–y(t) = (sin t)(t + 

 ) +

 ,

g(z(), z()) = 
 –


 ( +


 ) –


e > .
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It proves that y(t), z(t) are coupled lower and upper solutions of problem (.). Then
assumptions H, H, and H hold withM = . By Theorem ., we obtain the existence of
monotone sequences that approximate the extremal solutions of (.) in the sector [, t +

 ]. By Theorem ., we obtain the existence of alternating sequences that also converge
to the extremal solutions.

Example . Consider the following problem:

⎧
⎨

⎩

u′(t) = u(t) – tu(t), t ∈ J = [, ],

g(u(),u()) = u() – u() + 
 = .

(.)

Put y(t) = –, z(t) = , t ∈ J . Obviously, y(t) ≤ z(t), then

⎧
⎨

⎩

y′
(t) =  ≤ z(t) – ty(t) =  + t,

g(y(), y()) = – – (–) + / < ,
⎧
⎨

⎩

z′
(t) =  ≥ y(t) – tz(t) = – – t,

g(z(), z()) = / > .

Functions y(t), z(t) are coupled lower and upper solutions of type II for problem (.).
It is easy to see that H, H, and H hold with M = . Consider the function y(t) = – t

 ,
z(t) = t

 satisfy y ≤ y, z ≤ z, respectively. Therefore, applying Theorem ., by using
(.) and (.), we obtain the existence of monotone sequences that approximate the ex-
tremal solutions of (.) in the sector [–, ]. From Theorem ., we obtain the existence
of alternating sequences that also converge to the extremal solutions.

4 Conclusions
In this paper, we have developed monotone iterative method for casual differential equa-
tions with nonlinear boundary conditions. The method is based on the new concepts of
lower and upper solutions (resp. coupled lower and upper solutions).We have constructed
monotone sequences and alternating sequences from a corresponding linear equations. It
was proven that these sequences converge uniformly to the coupledminimal andmaximal
solutions of the problems.
The condition on the function g(u, v) was necessary to carry out the proofs. A fu-

ture research direction would be to consider this method for nonlinear conditions of
B(u(),u) =  or B(u,u(T)) = . Also, since the theory of causal differential equations has
recently gained more attention, much work can be done on its theoretical research.
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