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Abstract
In the present paper, we study the following fourth-order elliptic equations:
�2u –�u + V(x)u = f (x,u), for x ∈ RN , u(x) ∈ H2(RN), where V ∈ C(RN ,R), f ∈ C(RN × R,R).
Under more relaxed assumptions on f (x,u), by using some special techniques, a new
existence result of high energy solutions is obtained via the symmetric mountain pass
theorem.
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1 Introduction andmain results
In this paper, we consider the following fourth-order elliptic equations:

{
�u –�u +V (x)u = f (x,u), for x ∈ RN ,
u(x) ∈H(RN ),

(.)

where� :=�(�) is the biharmonic operator, V ∈ C(RN ,R), f ∈ C(RN ×R,R) satisfy some
further conditions.
When � is a smooth bounded domain in RN , the problem

{
�u + c�u = f (x,u), in �,
u = �u = , on ∂�,

(.)

arises in many applications from mathematical physics, which is usually used to describe
some phenomena appearing in various physical, engineering, and other sciences. In [, ],
Lazer andMckenna firstly proposed and studied the problem (.) of periodic oscillations
and traveling waves in a suspension bridge. It was pointed out in [–] that the problem
(.) furnishes a good model to the study of the static deflection of an elastic plate in a
fluid. Moreover, Ahmed and Harbi presented that the problem (.) can also be applied to
engineering, such as communication satellites, space shuttles and space stations equipped
with large antennas mounted on long flexible beams in []. Further, there is a large quan-
tity of studies on the existence and multiplicity of solutions in the literature, we refer the
readers to [–] and the references therein.
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Recently, Lü [] considered a class of biharmonic elliptic systems with Sobolev critical
exponent on a bounded domain

⎧⎪⎨
⎪⎩

�u = Fu(u, v) + λ|u|q–u, x in �;
�v = Fv(u, v) + δ|v|q–v, x in �;
u = ∂u

∂n , v = ∂v
∂n , x on ∂�;

(.)

where � ⊂ RN (N ≥ ) is a bounded domain with smooth boundary ∂�,  ∈ �, F ∈
C(R,R+) is homogeneous of degree ∗ (∗ = N

N– denotes the Sobolev critical exponent).
The existence and multiplicity results of nontrivial solutions for the system (.) were ob-
tained by using the variational methods and the Nehari manifold.
The above mentioned interesting studies for the fourth-order elliptic equations are

based on boundness of � ⊂ RN . Some authors had studied the fourth-order elliptic equa-
tions in the whole space RN . In [], Chabrowski andMarcos do Ó considered the follow-
ing fourth-order elliptic problems in RN :

{
�u – λg(x)u = f (x)|u|p–u, in RN ;
u ∈D,(RN ) – {}, (.)

where λ >  and p = N
N– the Sobolev critical exponent. By employing the mountain pass

theorem and the constrainedminimization together with the concentration-compactness
principle, the existence of two solutions were obtained. In [], Pimenta and Soares con-
sidered the following superlinear fourth-order elliptic equations:

{
ε�u +V (x)u = f (u), in RN ;
u ∈H(RN ),

(.)

where ε > , N ≥ , and f , and V satisfy some certain assumptions. Under a weak version
of the Ambrosetti-Rabinowitz condition, by means of variational methods, a family of
solutions was proved to exist and to concentrate at a point in the limit. Very recently,
some authors studied the following fourth-order elliptic equations in RN :

{
�u –�u + λV (x)u = f (x,u), in RN ;
u ∈H(RN ),

(.)

where λ ≥  is a parameter and f ∈ C(RN ,R). For the potential V (x), they usually assumed
one of the following assumptions.

(V) V ∈ C(RN ,R) satisfies infV (x) ≥ V >  and for each M > , meas{x ∈ RN : V (x) ≤
M} < +∞, where V is a constant and meas denote the Lebesgue measure in RN .

(V′
) V ∈ C(RN ,R) satisfies infV (x) ≥ V >  and there exists a constant b >  such that the

set {x ∈ RN : V (x) ≤ b} is nonempty and meas{x ∈ RN : V (x) ≤ b} < +∞, where V is a
constant and meas denote the Lebesgue measure in RN .

Yin and Wu [] obtained three new results of the existence of infinitely many high
energy solutions for the equation (.) with λ =  and V satisfying (V). Soon after, Ye and
Tang [] unified and improved their results by means of fountain theorem. To be precise,
they assumed the following assumptions.
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(f) There exist C >  and p ∈ (, ∗) such that

∣∣f (x, t)∣∣ ≤ C
(|t| + |t|p–), ∀(x, t) ∈ RN × R,

where ∗ = N
N– , if N > ; ∗ = +∞, if N ≤ .

(f ′) There exists L >  such that infx∈RN ,|t|=L F(x, t) > , where F(x, t) =
∫ t
 f (x, s)ds.

(f ′) There exists μ >  such that

μF(x, t)≤ f (x, t)t, for a.e. x ∈ RN and ∀|t| ≥ L.

(f) f (x, –t) = –f (x, t) for all (x, t) ∈ RN × R.

We restate the corresponding result in [] as follows.

Theorem A (see [, Theorem .]) Assume that (V), (f), (f ′)-(f ′), and (f) hold. Then
the problem (.) possesses infinitely many solutions {uk} such that




∫
RN

(|�uk| + |∇uk| +V (x)uk
)
dx –

∫
RN

F(x,uk)dx → +∞, as k → ∞.

More recently, Liu et al. in [] studied the existence and multiplicity of nontrivial solu-
tions of (.) for large λ andV satisfying (V′

). These results had been subsequently unified
and improved by Ye and Tang in []. For the sublinear case of the fourth-order elliptic
equation (.), by using the genus properties in critical point theory, infinitely many small
negative energy solutions were also established; we refer the readers to [, , ].

Remark  The condition (V), which contains the coercivity condition: V (x) → ∞ as
|x| → ∞, was first introduced by Bartsch and Wang in [] to ensure the compactness
of embedding of the working space. Furthermore, when replacing (V) by the weaker con-
dition (V′

), this situation becomesmore delicate due to the lack of compactness. Although
the compactness of embedding of the working space fails, thanks to the fact that the pa-
rameter λ can be taken sufficiently large, two main theorems as regards the existence and
multiplicity of nontrivial solutions of (.) were obtained via variational methods success-
fully.

Motivated by the spirit of [–], we shall consider the fourth-order elliptic equations
with Bartsch type potential (that is, V satisfies the condition (V)) and superlinear non-
linearity case in the whole space RN , and we are interested in high energy solutions of the
problem (.). Under more relaxed assumptions on the nonlinear term f , we will present
a new proof technique to construct high energy solutions for the problem (.).
Next, we give some notations. Define the function space

H(RN)
:=

{
u ∈ L

(
RN)

: |∇u|,�u ∈ L
(
RN)}

with the standard inner product and the norm

〈u, v〉H =
∫
RN

(�u�v +∇u∇v + uv)dx, ‖u‖H = 〈u,u〉 

H

http://www.boundaryvalueproblems.com/content/2014/1/199
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whenever u, v ∈H(RN ). Let

E :=
{
u ∈ L

(
RN)

:
∫
RN

(
(�u) + |∇u| +V (x)u

)
dx < +∞

}
.

Then E is a Hilbert space with the inner product and the norm

〈u, v〉E =
∫
RN

(
�u�v +∇u∇v +V (x)u

)
dx, ‖u‖E = 〈u,u〉 


E .

Obviously, the embedding

E ↪→ Ls
(
RN)

, ≤ s ≤ ∗

is continuous. Hence, for any s ∈ [, ∗], there is a constant as >  such that

‖u‖Ls ≤ as‖u‖E . (.)

It is well known that a weak solution for the problem (.) is a critical point of the fol-
lowing functional I defined on E:

I(u) =



∫
RN

(|�u| + |∇u| +V (x)u
)
dx –

∫
RN

F(x,u)dx, ∀u ∈ E. (.)

We say that a weak solutions sequence {un} ⊂ E for the problem (.) is a sequence of high
energy solutions if the energy I(un) → +∞ as n→ ∞.
In order to reduce the statements of our result, we make the following assumptions.

(f) There exists  < θ < ∗ such that lim inf|t|→+∞ F(x,t)
|t|θ >  uniformly in x ∈ RN .

(f) There exist μ > , L > , and a ∈ [, (μ–)V
 ) such that

μF(x, t) – f (x, t)t ≤ a|t|, for a.e. x ∈ RN and ∀|t| ≥ L.

Now, we can state our result about the existence of a sequence of high energy solutions
for the fourth-order elliptic equations (.) in RN .

Theorem . Assume that (V), (f)-(f) hold. Then the problem (.) possesses a sequence
of high energy solutions in E.

Remark  From Remark . in [], we know that the condition (f) is much weaker than
the combination of the usual subcritical condition and the asymptotically linear condition
near zero. Furthermore, conditions (f)-(f) aremuchweaker than (f ′)-(f ′). Indeed, for any
x ∈ RN , z ∈ R, define

h(t) := F
(
x, t–z

)
tμ , ∀t ∈ [, +∞).

Then, for |z| ≥ L and t ∈ [, |z|
L
], (f ′) implies that

h′(t) = tμ–
[
μF

(
x, t–z

)
– t–zf

(
x, t–z

)] ≤ .

http://www.boundaryvalueproblems.com/content/2014/1/199
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Hence, h()≥ h( |z|
L
). Therefore, it follows from (f ′) that

F(x, z)≥ F
(
x,
Lz
|z|

)( |z|
L

)μ

≥ c|z|μ , ∀x ∈ RN and |z| ≥ L, (.)

where c = ( 
L
)μ infx∈RN ,|t|=L F(x, t) > . Hence, (.) implies that (f) holds by taking

θ = μ. Further, it follows from (f ′) that (f) holds by taking L = L, μ = μ. Consequently,
(f)-(f) are much weaker than (f ′)-(f ′). Thus, Theorem . sharply improves Theorem A
and, of course, unites and improves the results of [].

2 Some lemmas
In order to apply variational techniques, we first state the key compactness result.

Lemma . (Lemma . in []) Under the assumption (V), the embedding

E ↪→ Ls
(
RN)

, ≤ s < ∗

is compact.

The following lemma was proved by [, Lemma .].

Lemma . Assume that (V) and (f) hold. Then I is well defined on E, I ∈ C(E,R), and
for any u, v ∈ E,

〈
I ′(u), v

〉
=

∫
RN

(
�u�v +∇u∇v +V (x)uv

)
dx –

∫
RN

f (x,u)vdx. (.)

Moreover, 
 ′ : E → E∗ is compact, where 
(u) =
∫
RN F(x,u)dx.

Recall that we say I satisfies the (PS) condition at the level c ∈ R ((PS)c condition for
short) if any sequence {un} ⊂ E along with I(un) → c and I ′(un) →  as n → ∞ possesses
a convergent subsequence. If I satisfies the (PS)c condition for each c ∈ R, then we say that
I satisfies the (PS) condition.

Lemma . Let assumption (V) and (f) hold. Then any bounded Palais-Smale sequence
of I has a strongly convergent subsequence in E.

Proof Let {un} ⊂ E be any boundedPalais-Smale sequence of I . Then, up to a subsequence,
there exists c ∈ R such that

I(un) → c, I ′(un) →  and sup
n

‖un‖E < +∞. (.)

Since the embedding

E ↪→ Ls
(
RN)

, ≤ s < ∗

http://www.boundaryvalueproblems.com/content/2014/1/199
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is compact, going if necessary to a subsequence, we can assume that there is a u ∈ E such
that ⎧⎪⎨

⎪⎩
un ⇀ u, weakly in E;
un → u, strongly in Ls(RN );
un(x)→ u(x), a.e. in RN .

(.)

In view of (.), one has

〈
I ′(un) – I ′(u),un – u

〉
=

∫
RN

(
�un�(un – u) +∇un∇(un – u) +V (x)un(un – u)

)
dx

–
∫
RN

f (x,un)(un – u)dx

–
∫
RN

(
�u�(un – u) –∇u∇(un – u) –V (x)u(un – u)

)
dx

+
∫
RN

f (x,u)(un – u)dx

= ‖un – u‖E –
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx. (.)

By (f), using the Hölder inequality, we can conclude
∣∣∣∣
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx

∣∣∣∣ ≤ C

∫
RN

[|un| + |u| + |un|p– + |u|p–]|un – u|dx

≤ C
(‖un‖L + ‖u‖L

)‖un – u‖L
+C

(‖un‖p–Lp + ‖u‖p–Lp
)‖un – u‖Lp .

Therefore, it follows from (.) that
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx → , as n→ ∞. (.)

Moreover, combining (.) with (.), then

〈
I ′(un) – I ′(u),un – u

〉 → , as n→ ∞. (.)

Consequently, (.), (.) together with (.) imply that

un → u, strongly in E as n→ ∞.

This completes the proof. �

Lemma . Let assumptions (V), (f), and (f) hold. Then any Palais-Smale sequence of
I is bounded.

Proof Let {un} ⊂ E be any Palais-Smale sequence of I , then, up to a subsequence, there
exists c ∈ R such that

I(un) → c, and I ′(un) → . (.)

http://www.boundaryvalueproblems.com/content/2014/1/199
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The combination of (.), (.), (.), (.), (V) with (f) implies

c +  + ‖un‖E

≥ I(un) –

μ

〈
I ′(un),un

〉

=
μ – 
μ

∫
RN

(
|�un| + |∇un| dx +

∫
RN

V (x)un

)
dx +

∫
RN

F̃(x,un)dx

≥ μ – 
μ

∫
RN

(
|�un| + |∇un| dx +

∫
RN

V (x)un

)
dx

–
a
μ

∫
RN

un dx +
∫
An

F̃(x,un)dx

≥ μ – 
μ

∫
RN

(
|�un| + |∇un| dx +

∫
RN

V (x)un

)
dx

–
a

μV

∫
RN

V (x)un dx +
∫
An

F̃(x,un)dx

≥ μ – 
μ

‖un‖E +
(

μ – 
μ

–
a

μV

)∫
RN

V (x)un dx +
∫
An

F̃(x,un)dx

=
μ – 
μ

‖un‖E +
(μ – )V – a

μV

∫
RN

V (x)un dx +
∫
An

F̃(x,un)dx, (.)

where F̃(x,un) = 
μ
f (x,un)un – F(x,un) and An = {x ∈ RN : |un| ≤ L}. For x ∈ RN and

|un| ≤ L, by (f), one has

∣∣̃F(x,un)∣∣ ≤ 
μ

∣∣f (x,un)∣∣|un| + ∣∣F(x,un)∣∣
≤ 

μ
C

(|un| + |un|p
)
+C

(


|un| + 

p
|un|p

)

≤ C
(
 + |un|p–

)|un|
≤ C

(
 + Lp–

)|un|.
TakeM > max{ C(+Lp–)μV

(μ–)V–a
,V}, then

F̃(x,un) ≥ –
(μ – )V – a

μV
M|un|, ∀x ∈ RN , |un| ≤ L. (.)

Let Ã = {x ∈ RN : V (x) ≤ M}, R(n) = (μ–)V–a
μV

∫
RN V (x)un dx +

∫
An

F̃(x,un)dx. By (V) and
(.), we can conclude

R(n) ≥ (μ – )V – a
μV

∫
|un|≤L

(
V (x) –M

)|un| dx
≥ (μ – )V – a

μV

∫
Ã∩An

(
V (x) –M

)
L dx

≥ (μ – )V – a
μV

(V –M)L meas(Ã∩An)

≥ (μ – )V – a
μV

(V –M)L meas(Ã). (.)

http://www.boundaryvalueproblems.com/content/2014/1/199
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Note that meas(Ã) < +∞ due to (V), and it follows from (.) and (.) that

c +  + ‖un‖E ≥ μ – 
μ

‖un‖E + R(n)

≥ μ – 
μ

‖un‖E +
(μ – )V – a

μV
(V –M)L meas(Ã),

which implies {un} ⊂ E is bounded in E. Hence the proof is completed. �

Remark  We present a new proof technique to verify the boundedness of Palais-Smale
sequences, which is much clearer and simpler than the previous literature.

3 Proof of Theorem 1.1
In this section we will use the classical symmetric mountain pass theorem of Rabinowitz
instead of the fountain theorem in [] to obtain high energy solutions for the problem
(.) and prove Theorem .. First of all, we present some notations.
In view of E ↪→ L(RN ) and L(RN ) being a separable Hilbert space, E has a countable

orthogonal basis {ej}∞j=. Let

Ek =
k⊕
j=

Xj, Zk = E⊥
k ,

where Xj = span{ej}. Thus, E = Ek ⊕ Zk and Ek is finite dimensional.

Lemma . Let the assumption (V) hold. Define

η(k) := sup
u∈Zk ,‖u‖E=

‖u‖L , k ∈N ,

then there exists k ∈N such that  < η(k)≤ ( 
C

)  .

Proof Firstly, η(k) is convergent since η(k) ≥  and η(k) is decreasing in k. Furthermore,
for any k ∈N , by the definition of η(k), there exists uk ∈ Zk such that

‖uk‖E =  and ‖uk‖L > η(k)


. (.)

For any v ∈ E, v =
∑∞

n= anen, it has

∣∣〈uk , v〉E∣∣ =
∣∣∣∣∣
〈
uk ,

∞∑
n=

anen

〉
E

∣∣∣∣∣ ≤ ‖uk‖E
∥∥∥∥∥

∞∑
n=k+

anen

∥∥∥∥∥
E

≤
∥∥∥∥∥

∞∑
n=k+

anen

∥∥∥∥∥
E

→ 

as k → ∞, which implies that uk ⇀ weakly in E. By virtue of Lemma., we can conclude

uk →  strongly in L
(
RN)

. (.)

http://www.boundaryvalueproblems.com/content/2014/1/199
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The combination (.) with (.) implies that η(k)→ , as k → ∞. Then there exists k ∈
N such that  < η(k) ≤ ( 

C
)  . Hence the proof is completed. �

Lemma . Let assumptions (V) and (f) hold, then there exist some constants ρ , α such
that I(u) ≥ α whenever u ∈ Zk with ‖u‖E = ρ .

Proof For any u ∈ Zk , by Lemma ., we have

‖u‖L ≤ η(k)‖u‖E and  < η(k)≤
(


C

) 

. (.)

By (.), (.), (f), (.), and the Hölder inequality, one has

I(u) =


‖u‖E –

∫
RN

F(x,u)dx

≥ 

‖u‖E –

C


(‖u‖L + ‖u‖pLp

)
≥ 


‖u‖E –

C


η(k)‖u‖E –

C


app‖u‖pE

≥ 

‖u‖E

[


‖u‖E –Capp‖u‖p–E

]
.

Set

l(t) =


t –Cappt

p–, ∀t ≥ .

Note that p > , we can conclude that there exists a constant ρ >  such that

l(ρ) = max
t≥

l(t) > .

Therefore,

I(u) ≥ 

ρl(ρ) =: α > ,

whenever u ∈ Zk with ‖u‖E = ρ . This completes the proof. �

Lemma. Let assumptions (f)-(f)hold, then for each finite dimensional subspace Ẽ ⊂ E,
there is an r = r(̃E) >  such that I |̃E\Br < .

Proof By the assumptions (f)-(f), there exist two positive constants C and C such that

F(x, z)≥ C|z|θ –C|z|, ∀(x, z) ∈ RN × R. (.)

For any finite dimensional subspace Ẽ ⊂ E, by the equivalence of norms in the finite di-
mensional space, there exists a constant βs >  such that

‖u‖Ls ≥ βs‖u‖E , ∀u ∈ Ẽ, (.)

http://www.boundaryvalueproblems.com/content/2014/1/199
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for  ≤ s < ∗. Therefore, the combination of (.)-(.) with (.)-(.) implies

I(u) =


‖u‖E –

∫
RN

F(x,u)dx

≤ 

‖u‖E –C‖u‖θ

Lθ +C‖u‖L

≤ 

‖u‖E –Cβ

θ
θ ‖u‖θ

E +Ca‖u‖E

for all u ∈ Ẽ. Note that θ > , hence there is an r = r(̃E) >  such that I |̃E\Br < . This com-
pletes the proof. �

Next, we shall prove our Theorem .. To begin with, for convenience of notation, we
state the classical symmetric mountain pass theorem as follows.

Theorem . ([, Theorem .]) Let E be an infinite dimensional Banach space, and
let I ∈ C(E,R) be even and satisfy the (PS) condition and I() = . If E = Y ⊕ Z, Y is finite
dimensional, and I satisfies

(I) there exist constants ρ,α >  such that I|∂Bρ∩Z ≥ α, and
(I) for each finite dimensional subspace Ẽ ⊂ E, there is r = r(̃E) such that I ≤  on Ẽ \ Br ,

then I possesses an unbounded sequence of critical values.

Proof of Theorem . The proof is to verify I satisfies all the conditions of Theorem .. Set
Y = Ek , Z = Zk , then E = Y ⊕ Z and Y is finite dimensional. First, I satisfies (I) and (I)
in Theorem . by Lemmas . and ., respectively. Second, I satisfies the (PS) condition
by virtue of Lemmas . and .. Finally, I() = , I is even on E due to (f) and I ∈ C(E,R)
by Lemma .. Hence, the conclusion directly follows from Theorem .. The proof is
completed. �

Remark  Compared with TheoremA (see [, Theorem .]), on one hand, the assump-
tions imposed on f aremuchweaker. On the other hand, we present a new proof technique
to verify the boundedness of Palais-Smale sequences, andwe apply the classical symmetric
mountain pass theorem of Rabinowitz instead of the fountain theorem in [] to obtain
high energy solutions for the problem (.). Hence, it is very different.
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