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Abstract
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1 Introduction
It is well known that nonlocal boundary value problemswith integral conditions arewidely
used for thermo-elasticity, chemical engineering, heat conduction, and plasma physics
[–]. Some problems arising in dynamics of ground waters are defined as hyperbolic
equations with nonlocal conditions [] and []. The authors of [] investigate nonclassi-
cal problems formultidimensional hyperbolic equationwith integral boundary conditions
and the uniqueness of classical solution. In [] a linear second-order hyperbolic equation
with forcing and integral constraints on the solution is converted to a nonlocal hyperbolic
problem. Using the Riesz representation theorem and the Schauder fixed point theorem,
existence and uniqueness of a generalized solution are proved. The solutions of hyperbolic
equations with nonlocal integral conditions were investigated in [–]. The method of
operators as a tool for investigation of the solution to hyperbolic equations in Hilbert and
Banach spaces has been used extensively in [–].
In [] the nonlocal boundary value problem

⎧
⎪⎨

⎪⎩

du(t)
dt +Au(t) = f (t),  ≤ t ≤ ,

u() =
∑n

r= αru(λr) + ϕ, ut() =
∑n

r= βrut(λr) +ψ ,
 < λ ≤ λ ≤ · · · ≤ λn ≤ 

was investigated. Stability estimates for the solution of the problemwere established. First
order of accuracy difference schemes for the approximate solutions of the problem were
presented. Stability estimates for the solution of these difference schemes were estab-
lished. Theoretical statements were supported by numerical examples.
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In the present paper, we consider the nonlocal boundary value problem with integral
conditions

⎧
⎪⎨

⎪⎩

du(t)
dt +Au(t) = f (t),  ≤ t ≤ ,

u() =
∫ 
 α(ρ)u(ρ)dρ + ϕ,

ut() =
∫ 
 β(ρ)ut(ρ)dρ +ψ

()

in a Hilbert space H with a self-adjoint positive definite operator A. We are interested in
studying the stability of solutions of problem () under the assumption

∣
∣
∣
∣ +

∫ 


α(s)β(s)ds

∣
∣
∣
∣ >

∫ 



(∣
∣α(s)

∣
∣ +

∣
∣β(s)

∣
∣
)
ds. ()

As in [], a function u(t) is called a solution of problem () if the following conditions are
satisfied:

(i) u(t) is twice continuously differentiable on the interval (, ) and continuously
differentiable on the segment [, ].

(ii) The element u(t) belongs to D(A) for all t ∈ [, ], and the function Au(t) is
continuous on the segment [, ].

(iii) u(t) satisfies the equation and nonlocal boundary conditions ().

2 Themain theorem
Let H be a Hilbert space, A be a positive definite self-adjoint operator with A≥ δI , where
δ > δ > . Throughout this paper, {c(t), t ≥ } is a strongly continuous cosine operator-
function defined by

c(t) =
eitA/ + e–itA/


.

Then, from the definition of sine operator-function s(t),

s(t)u =
∫ t


c(ρ)udρ

it follows that

s(t) = A–/ eitA
/ – e–itA/

i
.

For the theory of cosine operator-function we refer to [] and [].

Lemma . The following estimates hold:

∥
∥c(t)

∥
∥
H→H ≤ ,

∥
∥A/s(t)

∥
∥
H→H ≤ . ()

Lemma . Suppose that assumption () holds. Then the operator T ,

T =
(

 +
∫ 



∫ 


α(s)β(s)dsds

)

I –
∫ 



(
β(s) + α(s)

)
c(s)ds,
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has the inverse

T– =
[(

 +
∫ 



∫ 


α(s)β(s)dsds

)

I –
∫ 



(
β(s) + α(s)

)
c(s)ds

]–

and the following estimate is satisfied:

∥
∥T–∥∥

H→H ≤ 
| + ∫ 

 α(s)β(s)ds| – ∫ 
 (|α(s)| + |β(s)|)ds . ()

Proof Applying the triangle inequality and estimates (), we obtain

∥
∥
∥
∥

(

 +
∫ 



∫ 


α(s)β(s)dsds

)

I –
∫ 



(
β(s) + α(s)

)
c(s)ds

∥
∥
∥
∥
H→H

≥
∣
∣
∣
∣ +

∫ 


α(s)β(s)ds

∣
∣
∣
∣ –

∥
∥
∥
∥

∫ 



(
β(s) + α(s)

)
c(s)ds

∥
∥
∥
∥
H→H

≥
∣
∣
∣
∣ +

∫ 


α(s)β(s)ds

∣
∣
∣
∣ –

∫ 



(∣
∣α(s)

∣
∣ +

∣
∣β(s)

∣
∣
)∥
∥c(s)

∥
∥
H→H ds

≥
∣
∣
∣
∣ +

∫ 


α(s)β(s)ds

∣
∣
∣
∣ –

∫ 



(∣
∣α(s)

∣
∣ +

∣
∣β(s)

∣
∣
)
ds > .

Estimate () follows from this estimate. Lemma . is proved. �

Now, we will obtain the formula for the solution of problem () for ϕ ∈ D(A) and ψ ∈
D(A/). It is clear that [] the initial value problem

du
dt

+Au(t) = f (t),  < t < , u() = u, u′() = u′
 ()

has a unique solution,

u(t) = c(t)u + s(t)u′
 +

∫ t


s(t – λ)f (λ)dλ, ()

where the function f (t) is not only continuous but also continuously differentiable on [, ],
u ∈D(A) and u′

 ∈ D(A/).
Using () and the nonlocal boundary condition

u =
∫ 


α(y)u(y)dy + ϕ,

we get

u =
∫ 


α(y)

(

c(y)u + s(y)u′
 +

∫ y


s(y – λ)f (λ)dλ

)

dy + ϕ.

Then

(

I –
∫ 


α(y)c(y)dy

)

u –
∫ 


α(y)s(y)dyu′

 =
∫ 


α(y)

∫ y


s(y – λ)f (λ)dλdy + ϕ. ()
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Differentiating both sides of (), we obtain

u′(t) = –As(t)u + c(t)u′
 +

∫ t


c(t – λ)f (λ)dλ.

Using this formula and the integral condition

u′
 =

∫ 


β(y)u′(y)dy +ψ ,

we get

u′
 =

∫ 


β(y)

(

–As(y)u + c(y)u′
 +

∫ y


c(y – λ)f (λ)dλ

)

dy +ψ .

Thus,

∫ 


β(y)As(y)dyu +

(

I –
∫ 


β(y)c(y)dy

)

u′


=
∫ 


β(y)

∫ y


c(y – λ)f (λ)dλdy +ψ . ()

Now, we have a system of equations () and () for the solution of u and u′
. Solving it,

we get

u = T–
{[

I –
∫ 


β(y)c(y)dy

][∫ 


α(y)

∫ y


s(y – λ)f (λ)dλdy + ϕ

]

+
∫ 


α(y)s(y)dy

[∫ 


β(y)

∫ y


c(y – λ)f (λ)dλdy +ψ

]}

()

and

u′
 = T–

{[

I –
∫ 


α(y)c(y)dy

][∫ 


β(y)

∫ y


c(y – λ)f (λ)dλdy +ψ

]

–
∫ 


β(y)As(y)dy

[∫ 


α(y)

∫ y


s(y – λ)f (λ)dλdy + ϕ

]}

. ()

Hence, for the solution of the nonlocal boundary value problem () we have (), (), and
().

Theorem. Suppose that ϕ ∈D(A),ψ ∈D(A/), and f (t) is a continuously differentiable
on [, ]; assumption () holds. Then there is a unique solution of problem () and the fol-
lowing stability inequalities:

max
≤t≤

∥
∥u(t)

∥
∥
H ≤ M

[

‖ϕ‖H +
∥
∥A–/ψ

∥
∥
H +

∫ 



∥
∥A–/f (λ)

∥
∥
H dλ

]

, ()

max
≤t≤

∥
∥
∥
∥
du(t)
dt

∥
∥
∥
∥
H
+ max

≤t≤

∥
∥A/u(t)

∥
∥
H

≤ M
[
∥
∥A/ϕ

∥
∥
H + ‖ψ‖H +

∫ 



∥
∥f (λ)

∥
∥
H dλ

]

, ()
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max
≤t≤

∥
∥
∥
∥
du(t)
dt

∥
∥
∥
∥
H
+ max

≤t≤

∥
∥Au(t)

∥
∥
H

≤ M
{

‖Aϕ‖H +
∥
∥A/ψ

∥
∥
H +

∥
∥f ()

∥
∥
H +

∫ 



∥
∥f ′(λ)

∥
∥
H dλ

}

()

are valid, where M does not depend on f (t), t ∈ [, ], ϕ, and ψ .

Proof We take the estimates

max
≤t≤

∥
∥u(t)

∥
∥
H ≤

[
∥
∥u()

∥
∥
H +

∥
∥A–/u′()

∥
∥
H +

∫ 



∥
∥A–/f (t)

∥
∥
H dt

]

, ()

max
≤t≤

∥
∥u′(t)

∥
∥
H + max

≤t≤

∥
∥A/u(t)

∥
∥
H

≤ M
[
∥
∥A/u()

∥
∥
H +

∥
∥u′()

∥
∥
H +

∫ 



∥
∥f (t)

∥
∥
H dt

]

, ()

max
≤t≤

∥
∥
∥
∥
du(t)
dt

∥
∥
∥
∥
H
+ max

≤t≤

∥
∥Au(t)

∥
∥
H + max

≤t≤

∥
∥A/u′(t)

∥
∥
H

≤ M
[
∥
∥Au()

∥
∥
H +

∥
∥A/u′()

∥
∥
H +

∥
∥f ()

∥
∥
H +

∫ 



∥
∥f ′(t)

∥
∥
H dt

]

()

from [] for the solution of problem (). The proof of Theorem . is based on estimates
(), (), (), and the estimates for the norms of u, A–/u′

, A/u, u′
, Au, A/u′

.
First of all, let us find an estimate for ‖u()‖H . By using () and estimates (), (), we

obtain

∥
∥u()

∥
∥
H ≤ M

[∫ 



∥
∥A–/f (λ)

∥
∥
H dλ + ‖ϕ‖H +

∥
∥A–/ψ

∥
∥
H

]

. ()

Applying A–/ to (), we get

A–/u′
 = T–

{[

I –
∫ 


α(y)c(y)dy

][∫ 


β(y)

∫ y


c(y – λ)A–/f (λ)dλdy +A–/ψ

]

–
∫ 


β(y)A/s(y)dy

×
[∫ 


α(y)

∫ y


A/s(y – λ)A–/f (λ)dλdy + ϕ

]}

.

Using estimates (), (), we obtain

∥
∥A–/u′()

∥
∥
H ≤ M

[∫ 



∥
∥A–/f (λ)

∥
∥
H dλ +

∥
∥A–/ψ

∥
∥
H + ‖ϕ‖H

]

. ()

Thus, estimates (), (), and () yield estimate ().
Second, applying operator A/ to (), we get

A/u = T–
{[

I –
∫ 


β(y)c(y)dy

][∫ 


α(y)

∫ y


A/s(y – λ)f (λ)dλdy +A/ϕ

]

+
∫ 


α(y)A/s(y)dy

[∫ 


β(y)

∫ y


c(y – λ)f (λ)dλdy +ψ

]}

.
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Using estimates () and (), we obtain

∥
∥A/u()

∥
∥
H ≤ M

[∫ 



∥
∥f (λ)

∥
∥
H dλ +

∥
∥A/ϕ

∥
∥
H + ‖ψ‖H

]

. ()

Using (), and estimates (), (), we get

∥
∥u′()

∥
∥
H ≤ M

[∫ 



∥
∥f (λ)

∥
∥
H dλ + ‖ψ‖H +

∥
∥A/ϕ

∥
∥
H

]

. ()

Then estimate () follows from estimates (), (), and ().
Third, applying A to () and using Abel’s formula, we have

Au = T–
{[

I –
∫ 


β(y)c(y)dy

]

×
[∫ 


α(y)

[

f (y) – c(y)f () –
∫ y


c(y – λ)f ′(λ)dλ

]

dy +Aϕ

]

+
∫ 


α(y)A/s(y)dy

×
[∫ 


β(y)

[

A/s(y)f () +
∫ y


A/s(y – λ)f ′(λ)dλ

]

dy +A/ψ

]}

and using estimates (), (), we get

∥
∥Au()

∥
∥
H ≤ M

[

‖Aϕ‖H +
∥
∥A/ψ

∥
∥
H +

∥
∥f ()

∥
∥
H +

∫ 



∥
∥f ′(λ)

∥
∥
H dλ

]

. ()

In the same manner, applying A/ to () and using Abel’s formula, and estimates (), (),
we obtain

∥
∥A/u′()

∥
∥
H ≤ M

[

‖Aϕ‖H +
∥
∥A/ψ

∥
∥
H +

∥
∥f ()

∥
∥
H +

∫ 



∥
∥f ′(λ)

∥
∥
H dλ

]

. ()

Thus, estimate () follows from estimates () and (), and (). �

3 Applications
Now, we consider the applications of Theorem .. First, a nonlocal boundary value prob-
lem for a hyperbolic equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt – (a(x)ux)x + σu = f (t,x),  < t < ,  < x < ,

u(,x) =
∫ 
 α(ρ)u(ρ,x)dρ + ϕ(x),

ut(,x) =
∫ 
 β(ρ)ut(ρ,x)dρ +ψ(x),  ≤ x ≤ ,

u(t, ) = u(t, ), ux(t, ) = ux(t, ),  ≤ t ≤ 

()

under assumption () is considered. Problem () has a unique smooth solution u(t,x) for
(), smooth functions a(x)≥ a >  (x ∈ (, )), a() = a(), ϕ(x), ψ(x) (x ∈ [, ]) and f (t,x)
(t,x ∈ [, ]), σ a positive constant and under some conditions. This allows us to reduce
problem () to nonlocal boundary value problem () in the Hilbert space H = L[, ]
with a self-adjoint positive definite operator Ax defined by ().

http://www.boundaryvalueproblems.com/content/2014/1/205
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Theorem . For the solution of problem (), we have the following stability inequalities:

max
≤t≤

∥
∥ux(t, ·)

∥
∥
L[,]

≤ M
[

max
≤t≤

∥
∥f (t, ·)∥∥L[,]

+ ‖ϕx‖L[,] + ‖ψ‖L[,]
]
, ()

max
≤t≤

∥
∥uxx(t, ·)

∥
∥
L[,]

+ max
≤t≤

∥
∥utt(t, ·)

∥
∥
L[,]

≤ M
[

max
≤t≤

∥
∥ft(t, ·)

∥
∥
L[,]

+
∥
∥f (, ·)∥∥L[,]

+ ‖ϕxx‖L[,] + ‖ψx‖L[,]
]
, ()

where M does not depend on ϕ(x), ψ(x), and f (t,x).

The proof of Theorem . is based on Theorem . and the symmetry properties of the
space operator generated by problem ().

Proof Problem () can be written in the abstract form

⎧
⎪⎨

⎪⎩

du(t)
dt +Au(t) = f (t) ( ≤ t ≤ ),

u() =
∫ 
 α(ρ)u(ρ)dρ + ϕ,

ut() =
∫ 
 β(ρ)ut(ρ)dρ +ψ

()

in the Hilbert space L[, ] of all square integrable functions defined on [, ] with a self-
adjoint positive definite operator A = Ax defined by the formula

Axu(x) = –
(
a(x)ux

)

x + σu(x)

with the domain

D
(
Ax) =

{
u(x) : u,ux,(a(x)ux)x ∈ L[, ],

u() = u(),u′() = u′()

}

.

Here, f (t) = f (t,x) and u(t) = u(t,x) are known and unknown abstract functions defined
on [, ] with the values in H = L[, ]. Therefore, estimates () and () follow from
estimates (), (), and (). Thus, Theorem . is proved. �

Second, let Ω be the unit open cube in the m-dimensional Euclidean space R
m : {x =

(x, . . . ,xm) :  < xj < ,  ≤ j ≤ m}with boundary S,Ω = Ω ∪S. In [, ]×Ω , let us consider
a boundary value problem for the multidimensional hyperbolic equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u(t,x)
∂t –

∑m
r=(ar(x)uxr )xr + σu(x) = f (t,x),

x = (x, . . . ,xm) ∈ Ω ,  < t < ,
u(,x) =

∫ 
 α(ρ)u(ρ,x)dρ + ϕ(x), x ∈ Ω ,

ut(,x) =
∫ 
 β(ρ)ut(ρ,x)dρ +ψ(x), x ∈ Ω ,

u(t,x) = , x ∈ S,

()

under assumption (). Here, ar(x) (x ∈ Ω), ϕ(x), ψ(x) (x ∈ Ω) and f (t,x), t ∈ (, ), x ∈ Ω

are given smooth functions and ar(x)≥ a > .

http://www.boundaryvalueproblems.com/content/2014/1/205
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Let us introduce theHilbert space L(Ω) of all square integrable functions defined onΩ ,
equipped with the norm

‖f ‖L(Ω) =
{∫

· · ·
∫

x∈Ω

∣
∣f (x)

∣
∣ dx · · · dxm

} 

.

Theorem . For the solution of problem (), the following stability inequalities hold:

max
≤t≤

m∑

r=

∥
∥uxr (t, ·)

∥
∥
L(Ω)

≤ M

[

max
≤t≤

∥
∥f (t, ·)∥∥L(Ω) +

m∑

r=

‖ϕxr‖L(Ω) + ‖ψ‖L(Ω)

]

, ()

max
≤t≤

m∑

r=

∥
∥uxrxr (t, ·)

∥
∥
L(Ω) + max

≤t≤

∥
∥utt(t, ·)

∥
∥
L(Ω)

≤ M

[

max
≤t≤

∥
∥ft(t, ·)

∥
∥
L(Ω) +

∥
∥f (, ·)∥∥L(Ω)

+
m∑

r=

‖ϕxrxr‖L(Ω) +
m∑

r=

‖ψxr‖L(Ω)

]

, ()

where M does not depend on ϕ(x), ψ(x), and f (t,x) (t ∈ (, ), x ∈ Ω).

Proof Problem () can be written in the abstract form () in the Hilbert space L(Ω)
with a self-adjoint positive definite operator A = Ax defined by the formula

Axu(x) = –
m∑

r=

(
ar(x)uxr

)

xr
+ σu(x)

with domain

D
(
Ax) =

{
u(x) : u,uxr ,

(
ar(x)uxr

)

xr
∈ L(Ω),  ≤ r ≤ m,u(x) = ,x ∈ S

}
.

Here, f (t) = f (t,x) and u(t) = u(t,x) are known and unknown abstract functions defined
on Ω with the values in H = L(Ω). So, estimates () and () follow from estimates (),
(), (), and the following theorem. �

Theorem . [] For the solution of the elliptic differential problem

Axu(x) = ω(x), x ∈ Ω ,

u(x) = , x ∈ S,

the following coercivity inequality holds:

m∑

r=

‖uxr xr‖L(Ω) ≤ M‖ω‖L(Ω),

where M is independent of ω.

http://www.boundaryvalueproblems.com/content/2014/1/205
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4 Conclusion
This work is devoted to the study of the stability of the nonlocal boundary value problem
with integral conditions for hyperbolic equations. For the solution of nonlocal boundary
problem () in a Hilbert space H with a self-adjoint positive definite operator A, Theo-
rem . is established. Two applications of Theorem . are given. Of course, stable two-
step difference schemes for approximate solution of problem () can be presented. The
methods given above permit us to establish the stability of these difference schemes. Ap-
plying [], we can give a numerical support of the theoretical results.
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