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Abstract
In this paper, we consider the problem for optimal control of the sixth-order
convective Cahn-Hilliard type equation. The optimal control under boundary
condition is given, the existence of an optimal solution to the equation is proved and
the optimality system is established.

1 Introduction
In past decades, the optimal control of a distributed parameter system has received much
more attention in academic field. A wide spectrum of problems in applications can be
solved by the methods of optimal control such as chemical engineering and vehicle dy-
namics. Many papers have already been published to study the control problems for non-
linear parabolic equations, for example, [–] and so on.
The Cahn-Hilliard (CH) equation is a type of higher order nonlinear parabolic equation,

it models many interesting phenomena in mathematical biology, fluid mechanics, phase
transition, etc. The fourth-order convective Cahn-Hilliard (FCCH) equation arises natu-
rally as a continuousmodel for the formation of facets and corners in crystal growth.Many
papers have been devoted to CH equation and FCCH equation, see, for example, [–].
In [], Savina et al. derived a sixth-order convective Cahn-Hilliard (SCCH) equation

ut – δuux –
(
uxx + u – u

)
xxxx =  ()

for the description of a growing crystalline surface with small slopes that undergoes
faceting. Here, u = hx is the slope of a  + D surface h(x, t) and δ is proportional to the
deposition strength of an atomic flux. Recently, by an extension of the method of matched
asymptotic expansions that retains exponentially small terms, Korzec et al. [] derived a
new type of stationary solutions of the one-dimensional sixth-order Cahn-Hilliard equa-
tion. In [], the existence and uniqueness of weak solutions to equation () with periodic
boundary conditions were established in L(,T ; Ḣ

per). Furthermore, a numerical study
showed that the solution behave similarly to that for the better known convective Cahn-
Hilliard equation. We also noticed that some investigations of SCCH equation were stud-
ied, such as in [, ].
In this article, suppose that κ is a positive constant, S is a real Hilbert space of observa-

tions, C ∈L(W (,T ;V ),S) is an operator, which is called the observer. We are concerned
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with the distributed optimal control problem

min J(u,w) =


‖Cu – zd‖S +

κ


‖w‖L(Q)

, ()

subject to

⎧
⎪⎪⎨

⎪⎪⎩

ut – δuux – (uxx + u – u)xxxx = Bw, x ∈ R,

u(x + , t) = u(x, t), x ∈ R,

u(x, ) = u(x), x ∈ R,

()

on an interval � = (, ) for t ∈ [,T], where J(u,w) is the cost function associated with
the control system. The control target is to match the given desired state zd in L-sense by
adjusting the body forcew in a control volumeQ ⊆Q = (,T)×� in the L-sense. On the
other hand, we assume that the initial function of () has zero mean, i.e.,

∫
�
u(x)dx = ,

then it follows that
∫
�
u(x, t)dx =  for t > .

Now, we introduce some notations that will be used throughout the paper. For fixed
T > , let Q be an open set with positive measure, V = Ḣ

per(�) and H = L(, ), let V ′

and H ′ be dual spaces of V and H . Then we get

V ↪→H =H ′ ↪→ V ′.

Each embedding is dense. The extension operator B ∈ L(L(Q),L(,T ;H)) which is
called the controller is introduced as

Bq =

⎧
⎨

⎩
q, q ∈Q,

, q ∈Q \Q.

We supply H with the inner product (·, ·) and the norm ‖ · ‖, and we define a space
W (,T ;V ) as

W (,T ;V ) =
{
y; y ∈ L(,T ;V ),

dy
dt

∈ L
(
,T ;V ′)

}
,

which is a Hilbert space endowed with common inner product.
This paper is organized as follows. In the next section, we give some preparations and

establish the existence and uniqueness of a global solution for problem (). In Section ,
we consider the optimal control problem and prove the existence of an optimal solution.
In Section , the optimality conditions are showed and the optimality system is derived.
In the following, the letters c, ci (i = , , . . .) will always denote positive constants differ-

ent in various occurrences.

2 Global existence and uniqueness of weak solution
In this section, we prove the existence and uniqueness of a weak solution for problem ().

Definition . For all t ∈ (,T), a function y(x, t) ∈ W (,T ;V ) is called a weak solution
to problem (), if

d
dt

(u,η) + (uxxx,ηxxx) –
([
u – u

]
xx,ηxx

)
+

δ


(
u,ηx

)
= (Bw,η), ∀η ∈ V . ()
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Now, we give Lemma ., which ensures the existence of a unique weak solution to prob-
lem ().

Lemma . Suppose u ∈ Ḣ
per(�), Bw ∈ L(,T ;H),w ∈ L(Q).Then problem () admits

a unique weak solution u(x, t) ∈W (,T ;V ).

Proof The Galerkin method is applied to the proof. Denote A = –∂
x as a differential op-

erator, let {ψi}∞i= denote the eigenfunctions of the operator A = –∂
x . For n ∈N , define the

discrete ansatz space by

Vn = span{ψ,ψ, . . . ,ψn} ⊂ V .

Let un(t) = un(x, t) =
∑n

i= uni (t)ψi(x) require un(, ·)→ u in H hold true.
By analyzing the limiting behavior of sequences of a smooth function {un}, we can prove

the existence of a weak solution to problem ().
Performing the Galerkin procedure for (), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

d
dt un – δununx – (unxx + un – un)xxxx = Bw, x ∈ R,

un(x + , t) = un(x, t), x ∈ R,

un(x, ) = un(x), x ∈ R.

()

Obviously, the equation of () is an ordinary differential equation, and according toODE
theory, there exists a unique solution to problem () in the interval [, tn).What we should
do is to show that the solution is uniformly bounded when tn → T . We need also to show
that the times tn there are not decaying to  as n→ ∞.
Then, we shall prove the existence of a solution for problem (). Setting

Fn(t) =



∫

�

|unx| dx – 


∫

�

un dx +



∫

�

un dx, H(s) = sxx + s – s.

Differentiating Fn(t) with respect to time and integrating by parts, we obtain

d
dt

Fn(t) =
∫ 


unxunxt dx –

∫ 


ununt dx +

∫ 


ununt dx

=
∫ 



(
–unxx – un + un

)[(
unxx – un + un

)
xxxx + δununx + Bw

]
dx

= –
∫ 



[
H(un)

]
xx dx +

δ



∫ 



[
H(un)

]
xu


n dx –

∫ 


H(un)Bwdx

≤ –
∫ 



[
H(un)

]
xx dx +

∫ 



[
H(un)

]
x dx +

δ



∫ 


un dx

+ 
∫ 



[
H(un)

] dx +



∫ 


(Bw) dx.

Using Poincaré’s inequality, we have

∫ 



[
H(un)

] dx ≤ 


∫ 



[
H(un)

]
x dx ≤ 



∫ 



[
H(un)

]
xx dx.
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Hence

d
dt

Fn(t) ≤ δ



∫ 


un dx +



‖Bw‖ ≤ δ


Fn(t) +



‖Bw‖. ()

Since Bw ∈ L(,T ;H) is the control item, we can assume ‖Bw‖ ≤ M, whereM is a positive
constant. Then, by Gronwall’s inequality, we get

Fn(t)≤ e
δ
 t

(
Fn() +

M

δ

)
≤ e

δ
 T

(
Fn() +

M

δ

)
= c, ∀t ∈ [,T].

A simple calculation shows that

∫ 


|unx| dx≤ c,

∫ 


un dx ≤ c,

∫ 


un dx ≤ c. ()

Therefore
∫ T


‖un‖H dxdt =

∫ T



∫ 



(
un + |unx|

)
dxdt =

(
c + c

)
T = c. ()

By the Sobolev embedding theorem, we get

∥
∥un(x, t)

∥
∥∞ = sup

x∈[,]

∣
∣un(x, t)

∣
∣ ≤ c. ()

Multiplying the equation of () by un, integrating with respect to x on (, ), we obtain



d
dt

∥∥un
∥∥ + ‖unxxx‖ = –

((
un – un

)
x,unxxx

)
–

δ


(
un,unx

)
+ (Bw,un). ()

A simple calculation shows that

(
un,unx

)
=

∫ 


ununx dx = .

Hence, we have



d
dt

∥∥un
∥∥ + ‖unxxx‖

= ‖unxx‖ +
(
ununx,unxxx

)
+ (Bw,un)

≤ ‖unxx‖ + ‖un‖∞‖unx‖‖unxxx‖ + ‖Bw‖‖un‖

≤ 

‖unxxx‖ + ‖unx‖ + c‖unx‖ +



‖Bw‖ + 


‖un‖,

that is,

d
dt

∥
∥un

∥
∥ + ‖unxxx‖ ≤ (

 + c
)
c + c + ‖Bw‖ ≤ c + ‖Bw‖. ()

Therefore

‖un‖ +
∫ T


‖unxxx‖ dt ≤ (

c +M)T +
∥
∥un()

∥
∥. ()
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Multiplying the equation of () by unxxxx, integrating with respect to x on (, ), we de-
duce that



d
dt

‖unxx‖ + ‖unxxxxx‖

= ‖unxxxx‖ +
((
un

)
xxx,unxxxxx

)
–

δ


(
un,unxxxxx

)
+ (Bw,unxxxx).

Note that

(
un

)
xxx = ununxxx + ununxunxx + (unx).

By Nirenberg’s inequality and (), we have

‖unx‖ ≤ c‖unxxxxx‖ 
 ‖unx‖ 

 , ‖unx‖ ≤ c‖unxxxxx‖ 
 ‖unx‖ 

 ,

‖unxx‖ ≤ c‖unxxxxx‖ 
 ‖unx‖ 

 , ‖unxxx‖ ≤ c‖unxxxxx‖ 
 ‖unx‖ 

 ,

and

‖unxxxx‖ ≤ c‖unxxxxx‖ 
 ‖unx‖ 

 .

Then

((
un

)
xxx,unxxxxx

)

=
(
ununxxx + ununxunxx + (unx),unxxxxx

)

≤ (
‖un‖∞‖unxxx‖ + ‖un‖∞‖unx‖‖unxx‖ + ‖unx‖

)‖unxxxxx‖
≤ [

c
(
c‖unxxxxx‖ 

 ‖unx‖ 

)
+ cc

(‖unxxxxx‖ 
 ‖unx‖ 


)(‖unxxxxx‖ 

 ‖unx‖ 


)

+ c
(‖unxxxxx‖ 

 ‖unx‖ 

)]‖unxxxxx‖

≤ 


‖unxxxxx‖ + c.

We also have

–
δ


(
un,unxxxxx

) ≤ δ


‖un‖∞‖un‖‖unxxxxx‖ ≤ 


‖unxxxxx‖ + c,

and

‖unxxxx‖ + (Bw,unxxxx)≤ 

‖unxxxx‖ + 


‖Bw‖

≤ 

c
(‖unxxxxx‖ 

 ‖unx‖ 

) +



‖Bw‖

≤ 


‖unxxxxx‖ + 

‖Bw‖ + c.

Summing up, we have

d
dt

‖unxx‖ + ‖unxxxxx‖ ≤ (c + c + c) + ‖Bw‖. ()
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Therefore

‖unxx‖ ≤ (c + c + c)T +MT = c. ()

Hence, we have

∫ T


‖un‖H dt =

∫ T


‖un‖H dt +

∫ T


‖unxxx‖ dt +

∫ T


‖unxx‖ dt ≤ c. ()

In addition, we prove a uniform L(,T ;V ′) bound on a sequence {unt}. Noticing that

((
un – un

)
xxxx,η

)
= –

((
 – un

)
unx,ηxxx

) ≤ ∥
∥ + un

∥
∥∞‖unx‖‖η‖V ,

(unxxxxxx,η) = –(unxxx,ηxxx) ≤ ‖unxxx‖‖η‖V ,
((
un

)
x,η

)
= –

(
un,ηx

) ≤ ∥
∥un

∥
∥‖ηx‖ ≤ ∥

∥un
∥
∥‖η‖V ,

(Bw,η) ≤ ‖Bw‖‖η‖ ≤ ‖Bw‖‖η‖V .

By the Sobolev embedding theorem, we have V ↪→ L∞(�). Therefore

‖unt‖V ′ ≤ ‖unxxx‖ +
∥∥ + un

∥∥∞‖unx‖ + ‖un‖L + ‖Bw‖ ≤ c. ()

Then, we immediately conclude

‖unt‖L(,T ;V ′) =
∫ T


‖unt‖V ′ dt ≤ cT . ()

Based on the above discussion, we obtain u(x, t) ∈ W (,T ;V ). It is easy to check that
W (,T ;V ) is continuously embedded into C(,T ;H) which denotes the space of contin-
uous functions. We conclude the convergence of a subsequence, denoted by {un}, weak
into W (,T ;V ), weak-star in L∞(,T ;H) (by [, Lemma ]) and strong in L(,T ;H)
to functions u(x, t) ∈ W (,T ;V ). Since the proof of uniqueness is similar as the proof of
Theorem  of [], we omit it.
Then, we complete the proof. �

Now, wewill discuss the relation among the norm of a weak solution and the initial value
and the control item.

Lemma . Suppose u ∈ Ḣ
per(�), Bw ∈ L(,T ;H), w ∈ L(Q). Then there exist positive

constants C and C such that

‖u‖W (,T ;V ) ≤ C
(‖u‖ + ‖ux‖ + ‖u‖L + ‖w‖L(Q)

)
+C. ()

Proof Setting

F(t) =


‖ux‖ – 


‖u‖ + 


‖u‖L ,

passing to the limit in (), we obtain

d
dt

F(t)≤ δ


F(t) +



‖Bw‖.

http://www.boundaryvalueproblems.com/content/2014/1/206
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Using Gronwall’s inequality, we get

F(t)≤ e
δ
 tF() +


δ

‖Bw‖ ≤ e
δ
 TF() +


δ

‖Bw‖, ∀t ∈ [,T].

A simple calculation shows that

∫ T


‖u‖ dt +

∫ T


‖ux‖ dt ≤ cF() + c‖Bw‖L(,T ;H). ()

Passing to the limit in (), we obtain

d
dt

∥∥u
∥∥ + ‖uxxx‖ ≤ c + ‖Bw‖.

Therefore

∫ T


‖uxxx‖ dt ≤ c + c‖Bw‖L(,T ;H) + c‖u‖. ()

On the other hand, we have

∫ T


‖uxx‖ dt = –

∫ T



∫

�

uxuxxx dxdt ≤ 


∫ T


‖ux‖ dx + 



∫ T


‖uxxx‖ dx. ()

Note that

((
u – u

)
xxxx,η

)
= –

((
 – u

)
ux,ηxxx

) ≤ ∥
∥ + u

∥
∥∞‖ux‖‖η‖V ,

(uxxxxxx,η) = –(uxxx,ηxxx) ≤ ‖uxxx‖‖η‖V ,
((
u

)
x,η

)
= –

(
u,ηx

) ≤ ∥
∥u

∥
∥‖ηx‖ ≤ ∥

∥u
∥
∥‖η‖V ,

(Bw,η) ≤ ‖Bw‖‖η‖ ≤ ‖Bw‖‖η‖V .

By the Sobolev embedding theorem, we have V ↪→ L∞(�). Therefore

‖ut‖V ′ ≤ ‖uxxx‖ +
∥
∥ + u

∥
∥∞‖ux‖ + ‖u‖L + ‖Bw‖.

Then, we immediately conclude

‖ut‖L(,T ;V ′) =
∫ T


‖unt‖V ′ dt

≤ c + c‖Bw‖L(,T ;H) + c
(‖u‖ + ‖ux‖ + ‖u‖L

)
. ()

By (), (), (), () and the definition of extension operator B, we obtain (). Hence,
Lemma . is proved. �

3 Optimal control problem
In this section, we consider the optimal control problem associated with the sixth-order
convective Cahn-Hilliard equation and prove the existence of an optimal solution.

http://www.boundaryvalueproblems.com/content/2014/1/206
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In the following, we suppose that L(Q) is a Hilbert space of control variables, we also
suppose that B ∈ L(L(Q),L(,T ;H)) is the controller and a control w ∈ L(Q), u ∈
Ḣ

per(�). Consider (), by virtue of Lemma ., we can define the solution map w → u(w)
of L(Q) into W (,T ;V ). The solution u(w) is called the state of control system (). The
observation of the state is assumed to be given by Cu. The cost function associated with
control system () is given by

J(u,w) =


‖Cu – zd‖S +

κ


‖w‖L(Q)

. ()

The optimal control problem about () is

min J(u,w), ()

where (u,w) satisfies ().
LetX =W (,T ;V )×L(Q) and Y = L(,T ;V )×H .We define an operator e = e(e, e) :

X → Y , where
⎧
⎨

⎩
e = (–	)–(ut – δuux – (uxx + u – u)xxxx – Bw),

e = u(x, ) – u.

Here 	 is an operator from V to V ′. Hence, we write () in the following form:

min J(u,w) subject to e(u,w) = .

Now, we give Theorem . on the existence of an optimal solution to the sixth-order
convective Cahn-Hilliard equation.

Theorem . Suppose Bu ∈ L(,T ;H). Then there exists an optimal control solution
(u∗,w∗) to problem ().

Proof Suppose that (u,w) satisfies the equation e(u,w) = . In view of (), we deduce that

J(u,w) ≥ κ


‖u‖L(Q)

.

By Lemma ., we obtain

‖u‖W (,T ;V ) → ∞ yields ‖w‖L(Q) → ∞.

Therefore,

J(u,w) → ∞, when
∥∥(u,w)

∥∥
X → ∞. ()

As the norm is weakly lower semi-continuous, we achieve that J is weakly lower semi-
continuous. Since for all (u,w) ∈ X, J(u,w) ≥ , there exists λ ≥  defined by

λ = inf
{
J(u,w)|(u,w) ∈ X, e(u,w) = 

}
,

http://www.boundaryvalueproblems.com/content/2014/1/206
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which means the existence of a minimizing sequence {(un,wn)}n∈N in X such that

λ = lim
n→∞ J

(
un,wn) and e

(
un,wn) = , ∀n ∈ N .

From (), there exists an element (u∗,w∗) ∈ X such that when n→ ∞,

un → u∗ weakly,u∗ ∈W (,T ;V ), ()

wn → w∗ weakly,w∗ ∈ L(Q). ()

Then, using (), we get

lim
n→∞

∫ T



(
unt (x, t) – u∗

t ,ψ(t)
)
V ′ ,V dt = , ∀ψ ∈ L(,T ;V ). ()

By the definition of W (,T ;V ) and the compactness of embedding W (,T ;V ) →
L(,T ;L∞) and W (,T ;V ) → C(,T ;H

per), we find from () and the results of Lem-
ma . that un → u∗ strongly in L(,T ;L∞) and un → u∗ strongly in C(,T ; Ḣ

per) when
n→ ∞.
Since the sequence {un}n∈N converges weakly and {un} is bounded inW (,T ;V ), based

on the embedding theorem, we can obtain that {un}L(,T ;L∞) is also bounded.
Because un → u∗ strongly in L(,T ;L∞) as n → ∞, by [, Lemma ], we know that

‖u∗‖L(,T ;L∞) is bounded. Because un → u∗ strongly in C(,T ; Ḣ
per) when n → ∞, we

know that ‖u∗‖C(,T ;Ḣ
per) is bounded too.

Using () again, we derive that

∣∣
∣∣

∫ T



∫ 



(
Bwn – Bw∗)ηdxdt

∣∣
∣∣ → , n → ∞,∀η ∈ L(,T ;H).

By (), we deduce that

∣∣
∣∣

∫ T



∫ 



((
un – un

)
xxxx –

(
u∗ –

(
u∗))

xxxx

)
ηdxdt

∣∣
∣∣

=
∣∣∣
∣

∫ T



∫ 



((
un – un

)
x –

(
u∗ –

(
u∗))

x

)
ηxxx dxdt

∣∣∣
∣

≤
∫ T



∫ 



(

(
un

)unx – 
(
u∗)u∗

x
)
ηxxx dxdt +

∫ T



∫ 



(
unx – u∗

x
)
ηxxx dxdt

= E + E.

For E, a simple calculation shows that

E =
∫ T



∫ 



(

(
un

)unx – 
(
u∗)u∗

x
)
ηxxx dxdt

≤
∫ T



[

(
un

)unx – 
(
un

)u∗
x + 

(
un

)u∗
x – 

(
u∗)u∗

x
]
ηxxx dt

≤ 
∫ T



∥
∥(
un

)∥∥
L∞

∥
∥unx – u∗

x
∥
∥
H‖ηxxx‖H dt

http://www.boundaryvalueproblems.com/content/2014/1/206
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+ 
∫ T



∥∥(
un

) –
(
u∗)∥∥

L∞
∥∥u∗

x
∥∥
H‖ηxxx‖H dt

≤ 
∥∥(
un

)∥∥
L(,T ;L∞)

∥∥unx – u∗
x
∥∥
C(,T ;H)‖ηxxx‖L(,T ;H)

+ 
∥
∥(
un

) –
(
u∗)∥∥

L(,T ;L∞)

∥
∥u∗

x
∥
∥
C(,T ;H)‖ηxxx‖L(,T ;H)

→ , n→ ∞,∀η ∈ L(,T ;V ).

For E, we get

E ≤
∫ T



∥
∥unx – u∗

x
∥
∥
H‖ηxxx‖H dt

≤ ∥
∥un – u∗∥∥

C(,T ;H)‖ηxxx‖L(,T ;H) → , n→ ∞,∀η ∈ L(,T ;V ).

Then, we immediately obtain

∣
∣∣∣

∫ T



∫ 



((
un – un

)
xxxx –

(
u∗ –

(
u∗))

xxxx

)
ηdxdt

∣
∣∣∣ → , ∀η ∈ L(,T ;V ).

We also have the following inequality:

∣
∣∣
∣

∫ T



∫ 



((
unx

) –
(
u∗
x
))

ηdxdt
∣
∣∣
∣

=
∣∣
∣∣

∫ T



∫ 



((
un

) –
(
u∗))ηx dxdt

∣∣
∣∣ ≤

∫ T



∥
∥(
un

) –
(
u∗)∥∥

H‖ηx‖H dt

≤ ∥∥(
un

) –
(
u∗)∥∥

L(,T ;H)‖ηx‖L(,T ;H) → , n → ∞,∀η ∈ L(,T ;V ).

In view of the above discussion, we get

e
(
u∗,w∗) = , ∀n ∈N .

As is known, u∗ ∈ W (,T ;V ), we derive that u∗() ∈ H . Since un → u∗ weakly in
W (,T ;V ), we get un()→ u∗() weakly when n→ ∞. Thus, we obtain

(
un() – u∗(),η

) → , n→ ∞,∀η ∈H ,

which means e(u∗,w∗) = . Therefore, we obtain

e
(
u∗,w∗) =  in Y .

So, there exists an optimal solution (u∗,w∗) to problem (). Then, we complete the proof
of Theorem .. �

4 Optimality conditions
It is well known that the optimality conditions for u are given by the variational inequality

J ′(u,w)(v –w) ≥ , for all v ∈ L(Q), ()

where J ′(u,w) denotes the Gâteaux derivative of J(u,w) at v = w.

http://www.boundaryvalueproblems.com/content/2014/1/206
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The following lemma is essential in deriving necessary optimality conditions.

Lemma . The map v → u(v) of L(Q) into W (,T ;V ) is weakly Gâteaux differentiable
at v = w, and such the Gâteaux derivative of u(v) at v = w in the direction v – w ∈ L(Q),
say z =Du(w)(v –w), is a unique weak solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zt – zxxxxxx – [( – (u(w)))z]xxxx – δ(u(w)z)x
= B(v –w),  < t ≤ T ,x ∈ R,

z(x + , t) = z(x, t), x ∈ R,

z(x, ) = z(x), x ∈ R.

()

Proof Let  ≤ h≤ , uh and u be the solutions of () corresponding to w + h(v–w) and w,
respectively. Then we prove the lemma in the following two steps.
Step , we prove uh → u strongly in C(,T ;H

per) as h→ . Let q = uh – u, then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt q – qxxxxxx – [(uh – uh) – (u – u)]xxxx – δ

 (u

h – u)x

= hB(v –w),  < t ≤ T ,x ∈ R,

q(x + , t) = q(x, t), x ∈ R,

q(x, ) = q(x), x ∈ R.

()

Taking the scalar product of () with q, a simple calculation shows that



d
dt

‖q‖ + ‖qxxx‖

= –(qx,qxxx) –
((
uh – u

)
x,qxxx

)
–

(
uh – u,qx

)
+

(
hB(v –w),q

)
.

By Lemmas .-. and the Sobolev embedding theorem, we get

∥
∥u(x, t)

∥
∥
W ,∞ = sup

x∈[,]

(∣∣u(x, t)
∣
∣ +

∣
∣ux(x, t)

∣
∣) ≤ c,

∥∥uh(x, t)
∥∥
W ,∞ sup

x∈[,]

(∣∣uh(x, t)
∣∣ +

∣∣uhx(x, t)
∣∣) ≤ c.

In addition, a simple calculation shows that

‖qx‖ ≤ 

‖q‖ + 


‖qxxx‖, ‖qxx‖ ≤ 


‖q‖ + 


‖qxxx‖.

Hence



d
dt

‖q‖ + ‖qxxx‖

= –(qx,qxxx) –
(
uhuhx – uux,qxxx

)
–

(
(uh + u)q,qx

)
+

(
hB(v –w),q

)

= –(qx,qxxx) –
(
uhuhx – uuhx,qxxx

)
–

(
uuhx – uux,qxxx

)

–
(
(uh + u)q,qx

)
+

(
hB(v –w),q

)

≤ ‖qx‖‖qxxx‖ + ‖uhx‖∞‖uh + u‖∞‖q‖‖qxxx‖ + ‖u‖∞‖qx‖‖qxxx‖

http://www.boundaryvalueproblems.com/content/2014/1/206
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+ ‖uh + u‖∞‖q‖‖qx‖ + h
∥∥B(v –w)

∥∥‖q‖

≤ 

‖qxxx‖ + c‖q‖ + h

∥∥B(v –w)
∥∥,

that is,

d
dt

‖q‖ + ‖qxxx‖ ≤ 
(
c‖q‖ + h

∥
∥B(v –w)

∥
∥). ()

Taking the scalar product of () with qxx, a simple calculation shows that



d
dt

‖qx‖ + ‖qxxxx‖

= –(qxx,qxxxx) +
((
uh – u

)
xx,qxxxx

)
–

(
hB(v –w),qxx

)

= –(qxx,qxxxx) +
(
uhuhxx – uuxx,qxxxx

)

+
(
uhuhx – uux ,qxxxx

)
–

(
hB(v –w),qxx

)

= –(qxx,qxxxx) +
(
uhuhxx – uuhxx,qxxxx

)
+

(
uuhxx – uuxx,qxxxx

)

+
(
uhuhx – uhux ,qxxxx

)
+

(
uhux – uux ,qxxxx

)
–

(
hB(v –w),qxx

)

≤ ‖qxx‖‖qxxxx‖ + ‖uh + u‖∞‖q‖∞‖uhxx‖‖qxxxx‖ + ‖u‖∞‖qxx‖‖qxxxx‖
+ ‖uh‖∞‖uhx + ux‖∞‖qx‖‖qxxxx‖ + ‖q‖‖ux‖∞‖qxxxx‖
+ h

∥
∥B(v –w)

∥
∥‖qxx‖

≤ ‖qxx‖‖qxxxx‖ + c‖uh + u‖∞‖qx‖‖uhxx‖‖qxxxx‖ + ‖u‖∞‖qxx‖‖qxxxx‖
+ ‖uh‖∞‖uhx + ux‖∞‖qx‖‖qxxxx‖ + ‖q‖‖ux‖∞‖qxxxx‖
+ h

∥
∥B(v –w)

∥
∥‖qxx‖

≤ 

‖qxxxx‖ + c‖q‖ + c‖qx‖ + h

∥∥B(v –w)
∥∥,

that is,

d
dt

‖qx‖ + ‖qxxxx‖ ≤ c‖q‖ + c‖qx‖ + h
∥∥B(v –w)

∥∥. ()

Adding ()-() together gives

d
dt

(‖q‖ + ‖qx‖
)
+

(‖qxxx‖ + ‖qxxxx‖
) ≤ c

(‖q‖ + ‖qx‖
)
+ ch

∥∥B(v –w)
∥∥.

Using Gronwall’s inequality, it is easy to see that ‖q‖ + ‖qx‖ →  as h → . Therefore,
uh → u strongly in C(,T ;H

per) as h→ .

http://www.boundaryvalueproblems.com/content/2014/1/206
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Step , we prove that uh–u
h → z strongly in W (,T ;V ). Now, we rewrite () in the fol-

lowing form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt (

uh–u
h ) – [ uh–uh ]xxxxxx –

[(uh–uh)–(u–u
)]xxxx

h – δ

[uh–u

]x
h

= B(v – u),  < t ≤ T ,x ∈ R,
uh–u
h (x + , t) = uh–u

h (x, t), x ∈ R,
uh–u
h (x, ) = , x ∈ R.

()

We can easily verify that the above problem possesses a unique weak solution in
W (,T ;V ). On the other hand, it is easy to check that the linear problem () possesses a
unique weak solution z ∈W (,T ;V ). Let r = uh–u

h – z, thus r satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt r – rxxxxxx – ( (uh–u


h)–(u–u

)
h – ( – u)z)xxxx – δ

 (
uh–u



h – uz)x
= ,  < t ≤ T ,x ∈ R,

r(x + , t) = r(x, t), x ∈ R,

r() = , x ∈ R.

Taking the scalar product of the equation of the above problem with r, we get



d
dt

‖r‖ + ‖rxxx‖

= –
((

(uh – uh) – (u – u)
h

–
(
 – u

)
z
)

x
, rxxx

)
+

δ



((
uh – u

h

)

x
– uz, r

)
.

Noticing that

–
((

uh – u
h

– z
)

x
–

(
uh – u

h
– uz

)

x
, rxxx

)

= –
(
rx –

[

(
u + θ (uh – u)

) uh – u
h

– uz
]

x
,Dr

)

≤ ‖rx‖ + 
∥∥∥
∥

[

(
u + θ (uh – u)

) uh – u
h

– uz
]

x

∥∥∥
∥



+


‖rxxx‖,

where θ ∈ (, ). Taking the scalar product of () with uh–u
h and (uh–u)xx

h , respectively, a
simple calculation shows that

d
dt

(∥
∥∥
∥
uh – u

h

∥
∥∥
∥



+
∥
∥∥
∥
(uh – u)x

h

∥
∥∥
∥

)
≤ c

(∥
∥∥
∥
uh – u

h

∥
∥∥
∥



+
∥
∥∥
∥
(uh – u)x

h

∥
∥∥
∥

)
+ c

∥∥B(v –w)
∥∥.

Using Gronwall’s inequality, we obtain

∥∥
∥∥
uh – u

h

∥∥
∥∥



+
∥∥
∥∥
(uh – u)x

h

∥∥
∥∥



≤ c
∥
∥B(v –w)

∥
∥.

http://www.boundaryvalueproblems.com/content/2014/1/206
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On the other hand, we have ‖u‖W ,∞ ≤ c and uh → u strongly in C(,T ;H
per) as h → ,

then

∥∥
∥∥

[

(
u + θ (uh – u)

) uh – u
h

– uz
]

x

∥∥
∥∥



=
∥
∥∥
∥

[

(
u + θ (uh – u)

) uh – u
h

– u
uh – u

h

]

x
+ 

[
u

uh – u
h

– uz
]

x

∥
∥∥
∥



≤ 
∥
∥∥
∥

[

(
u + θ (uh – u)

) uh – u
h

– u
uh – u

h

]

x

∥
∥∥
∥



+ 
∥
∥∥
∥

[
u

uh – u
h

– uz
]

x

∥
∥∥
∥



≤ c
[∥
∥∥∥
((
u + θ (uh – u)

) – u
)(uh – u

h

)

x

∥
∥∥∥



+
∥∥
∥∥
uh – u

h
((
u + θ (uh – u)

) – u
)
x

∥∥
∥∥



+
∥
∥urx

∥
∥ + ‖urux‖

]

≤ c
(

sup
x∈[,]

·∣∣(u + θ (uh – u)
) – u

∣
∣ ·

∥∥
∥∥

(
uh – u

h

)

x

∥∥
∥∥



+
∥
∥urx

∥
∥ + ‖urux‖

+
∥∥((

u + θ (uh – u)
) – u

)
x

∥∥
sup
x∈[,]

∥
∥∥∥
uh – u

h

∥
∥∥∥

)

≤ c
(∥∥(

u + θ (uh – u)
) – u

∥∥
H ·

∥∥∥
∥
uh – u

h

∥∥∥
∥



+ ‖rx‖ + ‖r‖

+
∥∥((

u + θ (uh – u)
) – u

)
x

∥∥
∥
∥∥
∥
uh – u

h

∥
∥∥
∥



H

)
.

Noticing that uh → u strongly in C(,T ;H
per) as h→ , thus

∥
∥∥
∥

[

(
u + θ (uh – u)

) uh – u
h

– uz
]

x

∥
∥∥
∥



→ c
(‖rx‖ + ‖r‖) as h→ .

Therefore

–
((

(uh – uh) – (u – u)
h

–
(
 – u

)
z
)

x
, rxxx

)

≤ c
(‖rx‖ + ‖r‖) + 


∥
∥Dr

∥
∥ ≤ 


∥
∥Dr

∥
∥ + c‖r‖.

Using the same method as above, we get

((
uh – u

h

)
– uz, r

)
≤ 


‖rxxx‖ + c‖r‖.

Summing up, we obtain

d
dt

‖r‖ + ‖rxxx‖ ≤ (c + c)‖r‖.

Using Gronwall’s inequality, it is easy to check that uh–u
h is strongly convergent to z in

W (,T ;V ). Then, Lemma . is proved. �
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As in [, ], we denote � = canonical isomorphism of S onto S∗, where S∗ is the dual
space of S. By calculating the Gateaux derivative of () via Lemma ., we see that the
cost J(v) is weakly Gateaux differentiable at u in the direction v – w. Then, ∀v ∈ L(Q),
() can be rewritten as

(
C∗�

(
Cu(w) – zd

)
, z

)
W (,T ;V )∗ ,W (,T ;V ) +

κ


(w, v –w)L(Q) ≥ , ()

where z is the solution of ().
Now we study the necessary conditions of optimality. To avoid the complexity of obser-

vation states, we consider the two types of distributive and terminal value observations.
. Case of C ∈L(L(,T ;V );S).
In this case, C∗ ∈L(S∗;L(,T ;V ∗)) and () may be written as

∫ T



(
C∗�

(
Cu(w) – zd

)
, z

)
V∗ ,V dt +

κ


(w, v –w)L(Q) ≥ , ∀v ∈ L(Q). ()

We introduce the adjoint state p(v) by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– d
dt p(v) – pxxxxxx(v) – ( – (u(v)))pxxxx(v) + δu(v)px(v)

= C∗�(Cu(v) – zd),  < t ≤ T ,x ∈ R,

p(x + , t) = p(x, t), x ∈ R,

p(x,T ; v) = .

()

According to Lemma ., the above problem admits a unique solution (after changing t
into T – t).
Multiplying both sides of () (with v = w) by z, using Lemma ., we get

∫ T



(
–
d
dt

p(w), z
)

V∗ ,V
dt =

∫ T



(
p(w),

d
dt

z
)
dt,

∫ T



(
pxxxxxx(w), z

)
V∗ ,V dt =

∫ T



(
p(w), zxxxxxx

)
dt,

∫ T



(
u(w)px(w), z

)
V∗ ,V dt = –

∫ T



(
p(w),

(
u(w)z

)
x

)
dt

and

∫ T



((
 – 

(
u(w)

))pxxxx(w), z
)
V∗ ,V dt =

∫ T



(
p(w),

((
 – 

(
u(w)

))z
)
xxxx

)
dt.

Then, we obtain

∫ T



(
C∗�

(
Cu(w) – zd

)
, z

)
V∗ ,V dt

=
∫ T



(
p(w), zt – zxxxxxx –

[(
 – 

(
u(w)

))z
]
xxxx – δ

(
u(w)z

)
x

)
dt

=
∫ T



(
p(w),Bv – Bw

)
dt =

(
B∗p(w), v –w

)
.
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Hence, () may be written as

∫ T



∫ 


B∗p(w)(v –w)dxdt +

κ


(w, v –w)L(Q) ≥ , ∀v ∈ L(Q). ()

Therefore we have proved the following theorem.

Theorem . We assume that all the conditions of Theorem . hold. Let us suppose that
C ∈L(L(,T ;V );S).The optimal control w is characterized by the system of two PDEs and
an inequality: (), () and ().

. Case of C ∈L(H ;S).
In this case, we observe Cu(v) = Du(T ; v), D ∈ L(H ;H). The associated cost function is

expressed as

J(y, v) =
∥∥Du(T ; v) – z

∥∥
S +

κ


‖v‖L(Q)

, ∀v ∈ L(Q). ()

Then, ∀v ∈ L(Q), the optimal control w for () is characterized by

(
Du(T ;w) – z,Du(T ; v) –Du(T ;w)

)
V∗ ,V +

κ


(w, v –w)L(Q) ≥ . ()

We introduce the adjoint state p(v) by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– d
dt p(v) – pxxxxxx(v) – ( – (u(v)))pxxxx(v) + δu(v)px(v)

= ,  < t ≤ T ,x ∈ R,

p(x + , t) = p(x, t), x ∈ R,

p(T ; v) =D∗(Du(T ; v) – zd).

()

According to Lemma ., the above problem admits a unique solution (after changing t
into T – t).
Let us set v = w in the above equations and scalarmultiply both sides of the first equation

of () by u(v) – u(w) and integrate from  to T . A simple calculation shows that () is
equivalent to

∫ T



∫ 


B∗p(w)(v –w)dxdt +

κ


(w, v –w)L(Q) ≥ , ∀v ∈ L(Q). ()

Then, we have the following theorem.

Theorem . We assume that all the conditions of Theorem . hold. Let us suppose that
D ∈ L(H ;H). The optimal control w is characterized by the system of two PDEs and an
inequality: (), () and ().
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