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Abstract
This paper is concerned with the following perturbed elliptic system:
–ε2�u + V(x)u =Wv(x,u, v), x ∈R

N , –ε2�v + V(x)v =Wu(x,u, v), x ∈R
N , u, v ∈ H1(RN),

where V ∈ C(RN ,R) andW ∈ C1(RN ×R
2,R). Under some mild conditions on the

potential V and nonlinearityW , we establish the existence of nontrivial semi-classical
solutions via variational methods, provided that 0 < ε ≤ ε0, where the bound ε0 is
formulated in terms of N, V , andW .
MSC: 35J10; 35J20

Keywords: semi-classical solutions; perturbed elliptic system; generalized linking
theorems

1 Introduction
The goal of this paper is to establish the existence of semi-classical solutions to the follow-
ing perturbed elliptic system of Hamiltonian form:

⎧
⎪⎨

⎪⎩

–ε�u +V (x)u =Wv(x,u, v), x ∈R
N ,

–ε�v +V (x)v =Wu(x,u, v), x ∈R
N ,

u, v ∈H(RN ),
(.)

where u, v : RN → R, ε >  is a small parameter, and V : RN → R and W : RN × R
 → R

satisfy the following basic assumptions, respectively:
(V) V ∈ C(RN ) and there exists a b >  such that the set Vb := {x ∈R

N : V (x) < b} has
finite measure;

(V) V (x) ≥ minV = ;
(W) W ∈ C(RN ×R

), and there exist constants p ∈ (, ∗) and C >  such that

∣
∣Wz(x, z)

∣
∣ ≤ C

(
 + |z|p–), ∀(x, z) ∈R

N ×R
, z = (u, v);

here and in the sequel ∗ := N/(N – ) if N ≥  and ∗ := +∞ if N =  or ;
(W) |Wz(x, z)| = o(|z|), as |z| → , uniformly in x ∈R

N .
For the case ε = , the interest in the study of various qualitative properties of the solu-

tions has steadily increased in recent years. In a bounded smooth domain � ⊂R
N , similar

systems have been extensively studied; see, for instance, [–] and the references therein.
The problem set on the whole space RN was considered recently in some works. The first
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difficulty of such a type of problem is the lack of the compactness of the Sobolev em-
bedding. A usual way to recover this difficulty is choosing suitable working space which
has compact embedding property, for example, the radially symmetric functions space;
see [–]. The second difficulty is that the energy functional is strongly indefinite differ-
ent from the single equation case, and so the dual variational methods are involved to
avoid this difficulty; see [, ]. Recently, with the aid of the linking arguments in [–],
the existence of solutions or multiple solutions were obtained with periodic potential and
nonlinearity, see [–] and the references therein.
For the problem with a small parameter ε > , it is called the semi-classical problem,

which describes the transition between of quantum mechanics and classical mechanics
with the parameter ε goes to zero. There is much literature dealing with the existence of
semi-classical solutions to the single particle equation

–ε�u +V (x)u = g(x,u), x ∈R
N ,u ∈H(

R
N)

, (.)

under various hypotheses on the potential V and the nonlinearity g ; for example, see [–
] and references therein. In a very recent paper [], Lin andTang developed a direct and
simple approach to show the existence of semi-classical solutions for the single particle
equation (.) with V satisfying (V) and (V). It is well known that the extension of these
results of single equation to a system of equations presents some difficulties. One of the
main difficulties is that the energy functional associated with (.) is strongly indefinite, so
the approach used in the single equation is not applicable to system (.).
Inspired by the single equation, there are a few works considering the perturbed elliptic

systems; see [, –] and references therein. To the best of our knowledge, the first ap-
proach to the singular perturbed system in a bounded domain, with Neumann boundary,
and V (x) ≡  appeared in [] by means of a dual variational formulation of the problem.
Moreover, in [], Sirakov and Soares considered the superquadratic case by using dual
variational methods. In [], Ramos and Tavares considered the following problem:

⎧
⎪⎨

⎪⎩

–ε�u +V (x)u = g(v), x ∈ �,
–ε�v +V (x)v = f (u), x ∈ �,
u(x) =  and v(x) =  on ∂�,

where � is a domain of RN , f and g are power functions, superlinear but subcritical at
infinity. The authors established the existence of positive solutions which concentrate, as
ε → , on a prescribed finite number of local minimum points of the potential V ; also
see [].
Since Kryszewski and Szulkin [] proposed the generalized linking theorem for the

strongly indefinite functionals in , Li and Szulkin [], Bartsch and Ding [] gave
several weaker versions, which provide another effective way to deal with such problems.
With the aid of the generalized linking theorem, Xiao et al. [] studied the asymptotically
quadratic case and obtained the existence of multiple solutions. For the superquadratic
case with magnetic potential, we refer the reader to [] and references therein.
In the aforementioned references, it always was assumed thatW satisfies a condition of

the type of Ambrosetti-Rabinowitz, that is,
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(AR) there is a μ >  such that

 < μW (x, z)≤ Wz(x, z) · z, ∀(x, z) ∈R
N ×R

, z �= ; (.)

together with a technical assumption that there is ν > N/(N + ) such that

∣
∣Wz(x, z)

∣
∣ν ≤ c

[
 +Wz(x, z) · z

]
, ∀(x, z) ∈R

N ×R
; (.)

or the superquadratic condition

lim|z|→∞
|W (x, z)|

|z| = ∞, uniformly in x ∈R
N (.)

and a condition of the type of Ding-Lee [];
(DL) W̃ (x, z) := 

Wz(x, z)z –W (x, z) >  for z �=  and there exist c >  and
κ > max{,N/} such that

∣
∣Wz(x, z)

∣
∣κ ≤ c|z|κW̃ (x, z) for large |z|. (.)

As is well known, conditions (.) and (.) have been successfully applied to Hamiltonian
systems, to periodic Schrödinger systems, and to diffusion systems; see [, ] and so
on. We refer the reader to [–] and the references therein where the condition (AR)
was weakened by more general superlinear conditions. Condition (DL) was firstly given
for a single Schrödinger equation by Ding and Lee []. Soon after, this condition was
generalized by Zhang et al. [].
Observe that conditions (.) and W (x, z) > , ∀z �=  in (AR) or W̃ (x, z) > , ∀z �= ,

in (DL) play an important role in showing that any Palais-Smale sequence or Cerami
sequence is bounded in the aforementioned works. However, there are many functions
which do not satisfy these conditions, for example,

W (x,u, v) = |u + v|�, � ∈ (
, ∗)

or

W (x,u, v) = (u + v)
√
u + v.

Motivated by these works, in the present paper, we shall establish the existence of semi-
classical solutions of system (.) with a weaker superlinear condition via the generalized
linking theorem. To state our results, in addition to the basic hypotheses, we make the
following assumptions:
(W) there exist a >  and p ∈ (, ∗) such that

W (x,u, v)≥ a|u + v|p, ∀(x,u, v) ∈R
N ×R

;

(W) W̃ (x, z) ≥ , ∀(x, z) ∈R
N ×R

, and there exist R > , a > , and κ > max{,N/}
such that

∣
∣Wu(x, z) +Wv(x, z)

∣
∣ ≤ b


|z|, ∀(x, z) ∈R

N ×R
, |z| ≤ R
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and

∣
∣Wu(x, z) +Wv(x, z)

∣
∣κ ≤ a|z|κW̃ (x, z), ∀(x, z) ∈R

N ×R
, |z| ≥ R.

In the present paper, we make use of the techniques developed in [, ] to obtain the
existence of semi-classical solutions for system (.) when ε ≤ ε, where the bound ε is
formulated in terms of N , V , andW .
Since (p – )N – p < , we can choose a h ≥  such that

(p – )ωN

Na/(p–)

[
N + (N + )

(N + )p( – –N )

]p/(p–)

h[(p–)N–p]/(p–)
 ≤ b(κ–N)/

κ
√
a(γ∗γ)N

. (.)

Let x ∈R
N be such that V (x) = . Then we can choose λ >  such that

sup
λ/|x|≤h

∣
∣V (x + x)

∣
∣ ≤ h– , ∀λ ≥ λ. (.)

Let E be a Hilbert space as defined in Section  and λ = ε–. Under assumptions (V),
(V), (W), and (W), the functional

�λ(z) =
∫

RN

(∇u · ∇v + λV (x)uv
)
dx – λ

∫

RN
W (x,u, v) dx, ∀z = (u, v) ∈ E, (.)

is well defined. Moreover, �λ ∈ C(E,R) and for all z = (u, v), ζ = (ϕ,ψ) ∈ E

〈
�′

λ(z), ζ
〉
=

∫

RN

[∇u · ∇ψ +∇v · ∇ϕ + λV (x)(uψ + vϕ)
]
dx

– λ

∫

RN

[
Wu(x,u, v)ϕ +Wv(x,u, v)ψ

]
dx. (.)

We are now in a position to state the main results of this paper.

Theorem . Assume that V andW satisfy (V), (V), (W), (W), (W), and (W).Then
for  < ε ≤ λ–/

 , (.) has a solution (uε , vε) such that  <�ε–/ (uε , vε)≤ b(κ–N)/

κ
√
a(γ∗γ)N

εN–,
and

∫

RN
W̃ (x,uε , vε) dx ≤ b(κ–N)/

κ
√
a(γ∗γ)N

εN .

Theorem. Assume that V andW satisfy (V), (V), (W), (W), (W), and (W).Then
for λ ≥ λ, (.) has a solution (uλ, vλ) such that  < �λ(uλ, vλ) ≤ b(κ–N)/

κ
√
a(γ∗γ)N

λ–N/, and

∫

RN
W̃ (x,uλ, vλ) dx ≤ b(κ–N)/

κ
√
a(γ∗γ)N

λ–N/.

Before proceeding to the proofs of these theorems, we give two examples to illustrate
the assumptions.

Example . W (x,u, v) = h(x)|u + v|� satisfies (W)-(W), where � ∈ (, ∗), h ∈ C(RN )
with infRN h > .

http://www.boundaryvalueproblems.com/content/2014/1/208
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Example . W (x,u, v) = h(x)(u + v)
√
u + v satisfies (W)-(W), where h ∈ C(RN )

with infRN h > .

The rest of the paper is organized as follows. In Section , we provide a variational set-
ting. In Section , we give the proofs of our theorems.

2 Variational setting
Letting ε– = λ, (.) is rewritten as

⎧
⎪⎨

⎪⎩

–�u + λV (x)u = λWv(x,u, v), x ∈R
N ,

–�v + λV (x)v = λWu(x,u, v), x ∈R
N ,

u, v ∈H(RN ).
(.)

Let

EV =
{

u ∈H(
R

N)
:
∫

RN
V (x)u dx < +∞

}

,

(u, v)λV =
∫

RN

[∇u · ∇v + λV (x)uv
]
dx, ∀u, v ∈ EV

and

‖u‖λV =
{∫

RN

[|∇u| + λV (x)u
]
dx

}/

, ∀u ∈ EV .

Analogous to the proof of [, Lemma ], by using (V), (V), and the Sobolev inequality,
one can demonstrate that there exists a constant γ >  independent of λ such that

‖u‖H(RN ) ≤ γ‖u‖λV , ∀u ∈ EV ,λ ≥ . (.)

This shows that (EV , (·, ·)λV ) is a Hilbert space for λ ≥ . Furthermore, by virtue of the
Sobolev embedding theorem, we have

‖u‖s ≤ γs‖u‖H(RN ) ≤ γsγ‖u‖λV , ∀u ∈ EV ,λ ≥ , ≤ s ≤ ∗; (.)

here and in the sequel, by ‖ · ‖s we denote the usual norm in space Ls(RN ).
Set E = EV × EV , then E is a Hilbert space with the inner product

(z, z)λ† = (u,u)λV + (v, v)λV , ∀zi = (ui, vi) ∈ E, i = , ,

the corresponding norm is denoted by ‖ · ‖λ†. Then we have

‖z‖λ† = ‖u‖λV + ‖v‖λV , ∀z = (u, v) ∈ E (.)

and

‖z‖ss =
∫

RN

(
u + v

)s/ dx ≤ (s–)/
(‖u‖ss + ‖v‖ss

)

≤ (s–)/(γsγ)s
(‖u‖sλV + ‖v‖sλV

)

http://www.boundaryvalueproblems.com/content/2014/1/208
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≤ (s–)/(γsγ)s
(‖u‖λV + ‖v‖λV

)s/

= (s–)/(γsγ)s‖z‖sλ†, ∀s ∈ (, ∗], z = (u, v) ∈ E. (.)

Let

E– =
{
(u, –u) : u ∈ EV

}
, E+ =

{
(u,u) : u ∈ EV

}
.

For any z = (u, v) ∈ E, set

z– =
(
u – v


,
v – u


)

, z+ =
(
u + v


,
u + v


)

.

It is obvious that z = z– + z+, z– and z+ are orthogonal with respect to the inner products
(·, ·)L and (·, ·)λ†. Thus we have E = E– ⊕ E+. By a simple calculation, one gets



(∥
∥z+

∥
∥

λ† –
∥
∥z–

∥
∥

λ†

)
=

∫

RN

[∇u · ∇v + λV (x)uv
]
dx.

Therefore, the functional �λ defined in (.) can be rewritten in a standard way

�λ(z) =


(∥
∥z+

∥
∥

λ† –
∥
∥z–

∥
∥

λ†

)
– λ

∫

RN
W (x,u, v) dx, ∀z = (u, v) ∈ E. (.)

Moreover,

〈
�′

λ(z), z
〉
=

∥
∥z+

∥
∥

λ† –
∥
∥z–

∥
∥

λ†

– λ

∫

RN

[
Wu(x,u, v)u +Wv(x,u, v)v

]
dx, ∀z = (u, v) ∈ E. (.)

The following generalized linking theorem provides a convenient approach to get a (C)c
sequence.
Let X be a Hilbert space with X = X– ⊕ X+ and X– ⊥ X+. For a functional ϕ ∈

C(X,R), ϕ is said to be weakly sequentially lower semi-continuous if for any un ⇀ u in
X one has ϕ(u) ≤ lim infn→∞ ϕ(un), and ϕ′ is said to be weakly sequentially continuous if
limn→∞〈ϕ′(un), v〉 = 〈ϕ′(u), v〉 for each v ∈ X.

Lemma . ([, Theorem .], [, Theorem .]) Let X be a Hilbert space with X =
X– ⊕X+ and X– ⊥ X+, and let ϕ ∈ C(X,R) be of the form

ϕ(u) =


(∥
∥u+

∥
∥ –

∥
∥u–

∥
∥) –ψ(u), u = u+ + u– ∈ X+ ⊥ X–.

Suppose that the following assumptions are satisfied:
(I) ψ ∈ C(X,R) is bounded from below and weakly sequentially lower

semi-continuous;
(I) ψ ′ is weakly sequentially continuous;
(I) there exist r > ρ >  and e ∈ X+ with ‖e‖ =  such that

κ := infϕ(Sρ) > supϕ(∂Q),

http://www.boundaryvalueproblems.com/content/2014/1/208
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where

Sρ =
{
u ∈ X+ : ‖u‖ = ρ

}
, Q =

{
se + v : v ∈ X–, s ≥ ,‖se + v‖ ≤ r

}
.

Then for some c≥ κ , there exists a sequence {un} ⊂ X satisfying

ϕ(un) → c,
∥
∥ϕ′(un)

∥
∥
(
 + ‖un‖

) → .

Such a sequence is called a Cerami sequence on the level c, or a (C)c sequence.

3 Proofs of the theorems
In this section, we give the proofs of Theorems . and ..
Fromnowonwe assumewithout loss of generality that x =  (see []), that is,V () = ,

then λ >  defined by (.) satisfies

sup
λ/|x|≤h

∣
∣V (x)

∣
∣ ≤ h– , ∀λ ≥ λ. (.)

Let

ϑ(x) :=

⎧
⎪⎪⎨

⎪⎪⎩


h
, |x| ≤ h,

hN–


––N [|x|–N – (h)–N ], h < |x| ≤ h,
, |x| > h.

(.)

Then ϑ ∈H(RN ), moreover,

‖∇ϑ‖ =
∫

RN

∣
∣∇ϑ(x)

∣
∣ dx ≤ NωN

(N + )( – –N )
hN–
 , (.)

‖ϑ‖ =
∫

RN

∣
∣ϑ(x)

∣
∣ dx ≤ ωN

( – –N )N
hN–
 (.)

and

‖ϑ‖pp =
∫

RN

∣
∣ϑ(x)

∣
∣p dx ≥ ωN

N
hN–p
 . (.)

Let eλ(x) = (ϑ(λ/x), ). Then we can prove the following lemma which is very important
and crucial.

Lemma . Suppose that (V), (V), (W), (W), and (W) are satisfied. Then

sup
{
�λ(ζ + seλ) : ζ = (w, –w) ∈ E–, s ≥ 

} ≤ b(κ–N)/

κ
√
a(γ∗γ)N

λ–N/, ∀λ ≥ λ. (.)

Proof Note that e+λ = (ϑ(λ/x)/,ϑ(λ/x)/), we have

∥
∥e+λ

∥
∥

λ† =



∫

RN

(∣
∣∇ϑ

(
λ/x

)∣
∣ + λV (x)

∣
∣ϑ

(
λ/x

)∣
∣

)
dx

=


λ–N/

∫

RN

(|∇ϑ | +V
(
λ–/x

)|ϑ |)dx

http://www.boundaryvalueproblems.com/content/2014/1/208
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≤ 

λ–N/

(
‖∇ϑ‖ + ‖ϑ‖ sup

λ/|x|≤h

∣
∣V (x)

∣
∣
)

≤ 

λ–N/(‖∇ϑ‖ + h– ‖ϑ‖

)
, ∀λ ≥ λ. (.)

It follows from (W), (.), (.), (.), (.), (.), and (.) that

�λ(ζ + seλ) =


(
s

∥
∥e+λ

∥
∥

λ† –
∥
∥ζ + se–λ

∥
∥

λ†

)
– λ

∫

RN
W

(
x,w + sϑ

(
λ/x

)
, –w

)
dx

≤ s


∥
∥e+λ

∥
∥

λ† – aλsp
∫

RN

∣
∣ϑ

(
λ/x

)∣
∣p dx

≤ λ–N/
{
s


(‖∇ϑ‖ + h– ‖ϑ‖

)
– asp‖ϑ‖pp

}

≤ λ–N/
[
s



(
N + (N + )

N(N + )( – –N )

)

ωNhN–
 –

aωN

N
sphN–p



]

≤ (p – )ωN

Na/(p–)

[
N + (N + )

(N + )p( – –N )

]p/(p–)

h[(p–)N–p]/(p–)
 λ–N/

≤ b(κ–N)/

κ
√
a(γ∗γ)N

λ–N/, ∀s≥ ,λ ≥ λ, ζ = (w, –w) ∈ E–. (.)

Now the conclusion of Lemma . follows by (.). �

Applying Lemma ., by standard arguments (see, e.g., []), we can prove the following
lemma.

Lemma . Suppose that (V), (V), (W), (W), and (W) are satisfied. Then there ex-
ist a constant cλ ∈ (, sup{�λ(ζ + seλ) : ζ = (w, –w) ∈ E–, s ≥ }] and a sequence {zn} =
{(un, vn)} ⊂ E satisfying

�λ(zn) → cλ,
∥
∥�′

λ(zn)
∥
∥
(
 + ‖zn‖

) → . (.)

Lemma . Suppose that (V), (V), (W), (W), (W), and (W) are satisfied. Then any
sequence {zn} = {(un, vn)} ⊂ E satisfying (.) is bounded in E.

Proof By virtue of (W), (.), and (.), one gets

cλ + o() =
∥
∥z+n

∥
∥

λ† –
∥
∥z–n

∥
∥

λ† – λ
∫

RN
W (x,un, vn) dx

≤ ∥
∥z+n

∥
∥

λ† –
∥
∥z–n

∥
∥

λ† – aλ
∫

RN
|un + vn|p dx. (.)

To prove the boundedness of {zn}, arguing by contradiction, suppose that ‖zn‖λ† → ∞.
Let ξn = zn/‖zn‖λ† = (ϕn,ψn), then ‖ξn‖λ† = . If

δ := lim sup
n→∞

sup
y∈RN

∫

B(y,)

∣
∣ξ+

n
∣
∣ dx = ,

http://www.boundaryvalueproblems.com/content/2014/1/208
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then by Lions’ concentration compactness principle [] or [, Lemma .], ϕn+ψn → 
in Ls(RN ) for  < s < ∗. Hence, it follows from (W), (.), (.), and theHölder inequality
that

λ



∫

|zn|≤R

∣
∣Wu(x,un, vn) +Wv(x,un, vn)

∣
∣|un + vn|dx

≤ λb


∫

|zn|≤R
|zn||un + vn|dx

≤ λb


∫

RN \Vb

|zn||un + vn|dx + λb


∫

Vb

|zn||un + vn|dx

≤ λb


(∫

RN \Vb

|zn| dx
)/(∫

RN \Vb

|un + vn| dx
)/

+
λb[meas(Vb)]/(N+)



(∫

Vb

|zn|(N+)/N dx
)N/(N+)

×
(∫

Vb

|un + vn|(N+)/N dx
)N/(N+)

≤ 


‖zn‖λ†‖un + vn‖λV +
λb[meas(Vb)]/(N+)


‖zn‖(N+)/N‖un + vn‖(N+)/N

=



‖zn‖λ†‖un + vn‖λV +
λb[meas(Vb)]/(N+)


‖ξn‖(N+)/N

× ‖ϕn +ψn‖(N+)/N‖zn‖λ†

≤
[


+ o()

]

‖zn‖λ†. (.)

From (.), (.), and (.), one has

cλ + o() = λ

∫

RN
W̃ (x,un, vn) dx. (.)

Let κ ′ = κ/(κ – ), then  < κ ′ < ∗. Hence, by virtue of (W), (.), and the Hölder in-
equality, one gets

λ



∫

|zn|≥R

|Wu(x,un, vn) +Wv(x,un, vn)||un + vn|
‖zn‖λ†

dx

=
λ



∫

|zn|≥R

|Wu(x,un, vn) +Wv(x,un, vn)||ξn||ϕn +ψn|
|zn| dx

≤ λ



(∫

|zn|≥R

∣
∣
∣
∣
Wu(x,un, vn) +Wv(x,un, vn)

zn

∣
∣
∣
∣

κ

dx
)/κ(∫

|zn|≥R
|ξn|κ ′

dx
)/κ ′

×
(∫

|zn|≥R
|ϕn +ψn|κ ′

dx
)/κ ′

≤ λ



(

a
∫

|zn|≥R
W̃ (x,un, vn) dx

)/κ

‖ξn‖κ ′ ‖ϕn +ψn‖κ ′

≤ λ(κ–)/κ (cλa)/κ‖ξn‖κ ′ ‖ϕn +ψn‖κ ′ = o(). (.)

http://www.boundaryvalueproblems.com/content/2014/1/208
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Combining (.) with (.) and using (.), (.), and (.), we have



+ o() ≤ ‖z+n‖λ† – 〈�′

λ(zn), z+n〉
‖zn‖λ†

=
λ



∫

RN

[Wu(x,un, vn) +Wv(x,un, vn)](un + vn)
‖zn‖λ†

dx

=
λ



∫

|zn|≤R

[Wu(x,un, vn) +Wv(x,un, vn)](un + vn)
‖zn‖λ†

dx

+
λ



∫

|zn|>R

[Wu(x,un, vn) +Wv(x,un, vn)](un + vn)
‖zn‖λ†

dx

≤ 

+ o(). (.)

This contradiction shows that δ > .
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

N such that
∫

B+
√
N (kn) |ξ+

n | dx > δ
 . Let ζn(x) = ξn(x + kn). Then

∫

B+
√
N ()

∣
∣ζ +

n
∣
∣ dx >

δ


. (.)

Nowwe define z̃n(x) = (ũn, ṽn) = zn(x+kn), then z̃n/‖zn‖λ† = ζn and ‖ζn‖H(RN ) = ‖ξn‖H(RN ).
Passing to a subsequence, we have ζn ⇀ ζ in E, ζn → ζ in Lsloc(R

N ), ≤ s < ∗, and ζn → ζ

a.e. on R
N . Obviously, (.) implies that ζ + �= . For a.e. x ∈ {y ∈ R

N : ζ +(y) �= } := �,
we have limn→∞ |ũn(x) + ṽn(x)| = ∞. Hence, it follows from (.), (.), (W), and Fatou’s
lemma that

 = lim
n→∞

c + o()
‖zn‖λ†

= lim
n→∞

�λ(zn)
‖zn‖λ†

= lim
n→∞

[


(∥
∥ξ+

n
∥
∥

λ† –
∥
∥ξ–

n
∥
∥

λ†

)
– λ

∫

RN

W (x,un, vn)
‖zn‖λ†

dx
]

= lim
n→∞

[


(∥
∥ξ+

n
∥
∥

λ† –
∥
∥ξ–

n
∥
∥

λ†

)
– λ

∫

RN

W (x + kn, ũn, ṽn)
|z̃+n |

∣
∣ζ +

n
∣
∣ dx

]

= lim
n→∞

[


(∥
∥ξ+

n
∥
∥

λ† –
∥
∥ξ–

n
∥
∥

λ†

)
– λ

∫

RN

W (x + kn, ũn, ṽn)
|ũn + ṽn|

∣
∣ζ +

n
∣
∣ dx

]

≤ 

– λ

∫

�

lim inf
n→∞

W (x + kn, ũn, ṽn)
|ũn + ṽn|

∣
∣ζ +

n
∣
∣ dx = –∞.

This contradiction shows that ‖zn‖λ† is bounded. �

Proof of Theorem . Applying Lemmas ., ., and ., we deduce that there exists a
bounded sequence {zn} = {(un, vn)} ⊂ E satisfying (.) and (.) with

cλ ≤ b(κ–N)/

κ
√
a(γ∗γ)N

λ–N/, ∀λ ≥ λ. (.)

Going if necessary to a subsequence, we can assume that zn ⇀ zλ = (uλ, vλ) in (E,‖ · ‖λ†),
and �′

λ(zn) → . Next, we prove that zλ �= .

http://www.boundaryvalueproblems.com/content/2014/1/208
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Arguing by contradiction, suppose that zλ = , i.e. zn ⇀  in E, and so un → , vn → 
in Lsloc(R

N ),  ≤ s < ∗, and un → , vn →  a.e. on R
N . Since Vb is a set of finite measure,

we have

‖un + vn‖ =
∫

RN \Vb

|un + vn| dx +
∫

Vb

|un + vn| dx ≤ 
λb

‖un + vn‖λV + o() (.)

and

‖zn‖ =
∫

RN \Vb

(
un + vn

)
dx +

∫

Vb

(
un + vn

)
dx≤ 

λb
‖zn‖λ† + o(). (.)

For s ∈ (, ∗), it follows from (.), (.), (.), (.), and the Hölder inequality that

‖un + vn‖ss ≤ ‖un + vn‖(∗–s)/(∗–)
 ‖un + vn‖∗(s–)/(∗–)

∗

≤ (γ∗γ)
∗(s–)/(∗–)(λb)–(

∗–s)/(∗–)‖un + vn‖sλV + o() (.)

and

‖zn‖ss ≤ ‖zn‖(∗–s)/(∗–)
 ‖zn‖∗(s–)/(∗–)

∗

≤ (s–)/(γ∗γ)
∗(s–)/(∗–)(λb)–(∗–s)/(∗–)‖zn‖sλ† + o(). (.)

According to (W), (.), (.), and (.), one gets

λ



∫

|zn|≤R

∣
∣Wu(x,un, vn) +Wv(x,un, vn)

∣
∣|un + vn|dx

≤ λb


∫

|zn|≤R
|zn||un + vn|dx

≤ λb


‖zn‖‖un + vn‖ ≤ 


‖zn‖λ†‖un + vn‖λV

≤ 

∥
∥z+n

∥
∥

λ† + o(). (.)

By virtue of (.), (.), and (.), we have

�λ(un) –


〈
�′

λ(un),un
〉
= λ

∫

RN
W̃ (x,un, vn) dx = cλ + o(). (.)

Using (W), (.), (.), (.) with s = κ/(κ – ), and (.), we obtain

λ



∫

|un|>R

∣
∣Wu(x,un, vn) +Wv(x,un, vn)

∣
∣|un + vn|dx

≤ λ



(∫

|un|>R

( |Wu(x,un, vn) +Wv(x,un, vn)|
|zn|

)κ

dx
)/κ

‖zn‖s‖un + vn‖s

≤ (s–)/s


(γ∗γ)·

∗(s–)/s(∗–)λ

(

a
∫

|un|>R
W̃ (x,un, vn) dx

)/κ

× (λb)–(
∗–s)/s(∗–)‖zn‖λ†‖un + vn‖λV + o()

http://www.boundaryvalueproblems.com/content/2014/1/208
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≤ 

(
√
a)/κ (γ∗γ)N/κλ–/κc/κλ (λb)(N–κ)/κ‖zn‖λ†‖un + vn‖λV + o()

≤ (
√
a)/κ (γ∗γ)N/κ

b(κ–N)/κ

[
λ(N–)/cλ

]/κ∥∥z+n
∥
∥

λ† + o()

≤ 

∥
∥z+n

∥
∥

λ† + o(), (.)

which, together with (.), (.), (.), and (.), yields

o() =
〈
�′

λ(zn), z
+
n
〉
=

∥
∥z+n

∥
∥

λ† –
λ



∫

RN

[
Wu(x,un, vn) +Wv(x,un, vn)

]
(un + vn) dx

≥ 

∥
∥z+n

∥
∥

λ† + o(), (.)

resulting in the fact that ‖z+n‖λ† → , which contradicts (.). Thus zλ �= . By a standard
argument, we easily verify that�′

λ(zλ) =  and�λ(zλ) ≤ cλ. Then zλ = (uλ, vλ) is a nontrivial
solution of (.), moreover,

cλ ≥ �λ(zλ) = �λ(zλ) –


〈
�′

λ(zλ), zλ

〉
= λ

∫

RN
W̃ (x,uλ, vλ) dx. (.)

�

Theorem . is a direct consequence of Theorem ..
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