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Abstract
We study periodic solutions of the suspension bridge model proposed by Lazer and
McKenna with a periodic damping term. Under the Dolph-type condition and a small
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1 Introduction
Many people pay close attention to oscillations in suspension bridges after the collapse
of the Tacoma Narrows suspension bridge. In the late s and early s, Lazer and
McKenna [–] have studied the suspension bridge model

Utt + kUt + cUxxxx + dU+ = h(t,x), ()

where U =U(x, t), ≤ x ≤ L, t >  satisfies the boundary conditions

U(, t) =U(L, t) =Uxx(, t) =Uxx(L, t) = , ()

c > , k ≥ , d ≥  are constant, U+ = max{U , } and U– = max{–U , }. System ()-() de-
scribes the transverse vibrations of a beam hinged at both ends with length L and external
force h(t,x). The term dU+ takes into account the fact that the cables’ restoring force exists
only in the situation of stretching. Here kUt represents the damping term.
In this paper, we consider problem () with π-periodic damping term p(t)

Utt + p(t)Ut + cUxxxx + dU+ = h(t,x), ()

where h(t,x) = (sinπx/L)f (t) is the π-periodic external force as same as the assumption
in []. Looking for a standing-wave solution of () and (), we have

U(t,x) = (sinπx/L)u(t),
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which leads to an equivalent ordinary differential equation

u′′ + p(t)u′ + bu+ – au– = f (t), ()

in which a = c(π/L) and b = d + c(π/L).
In the past years, the jumping nonlinearity has been discussed by many authors [–

]. However, to our knowledge, there is no result about periodic damping term. In the
early s, Li [] obtained an ingeniousmethod to discuss the existence and uniqueness
of nonlinear two-point boundary value problems with variable coefficient. Recently, the
second author of this paper extended this method to the periodic situation []. In this
paper we refine this method to solve problem () and take some numerical simulations to
illustrate the effect of periodic damping term.
The rest of this paper is organized as follows. In Section , we briefly state the main

results. In Section , we study the properties of the homogeneous equation by a construc-
tive method. In Section , we prove our main results by Leray-Schauder degree theory. In
Section , we present some numerical experiments. In Section , we give the conclusion.

2 Main results
We denote by N a positive integer and γ = sup

R
|p(t)|. To study the existence of periodic

solutions of (), we need the following assumptions:

(H) Dolph-type condition:

N < a –
γ 


< b +

(N + )πγ


< (N + ).

(H) Small periodic damping term condition:

sin
π

√
a – γ 

N
<

√

 –
γ 

a
.

Theorem  Let (H) and (H) hold. Then problem () has a unique π -periodic solution.

The more general form of the suspension bridge model is

u′′ + p(t)u′ + b(t)u+ – a(t)u– = f (t). ()

Here b(t) and a(t) are positive π-periodic functions satisfying

d(t) := b(t) – a(t)≥ , t ∈ [, π ], ()

where d(t) is the variational coefficient of cables’ restoring force. Denote α = infR(b(t)),
β = sup

R
(b(t)), α = infR(a(t)), β = sup

R
(a(t)). Then

α ≤ b(t) ≤ β, α ≤ a(t)≤ β, α ≥ α, β ≥ β.

To study the existence of periodic solutions of (), we make the following assumptions:
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(H) Dolph-type condition:

α >N +
γ 


, β < (N + ) –

(N + )πγ


.

(H) Small periodic damping term condition:

sin
π

√
α – γ 

N
<

√

 –
γ 

α
.

Theorem  Let (H) and (H) hold. Then problem () has a unique π -periodic solution.

Remark  Problem () with (H) and (H) is a particular case of problem () with (H)
and (H). So we shall only give the proof of Theorem .

3 Homogeneous equation
The following lemmas will be used in this section.

Lemma  (see []) Let x ∈ C([,h],R), h > , with

x() = x(h) = , x(t) > , t ∈ (,h).

Then

∫ h



∣∣x(t)x′(t)
∣∣dt ≤ h



∫ h


x′(t)dt,

and the constant h
 is optimal.

Lemma (see []) Let x ∈ C([a,b],R) a,b ∈R, a < b,with the boundary value conditions
x(a) = x(b) = . Then

∫ b

a
x(t)dt ≤ (b – a)

π

∫ b

a
x′(t)dt.

Consider the periodic boundary value problem

{
u′′ + p(t)u′ + b(t)u+ – a(t)u– = ,
u() = u(π ), u′() = u′(π ).

()

We will prove the following proposition by similar methods to [].

Proposition  Suppose that p(t), b(t), a(t) are L-integrable π -periodic functions satis-
fying (), (H) and (H), then () has only the trivial π -periodic solution u(t) ≡ .

Proof We assume that () has a nonzero π-periodic solution u(t). A contradiction will
be proved in six steps.
Step . We will prove that u(t) has at least one zero in (, π ). Otherwise, we may we

assume u(t) > , t ∈ (, π ). Then we have u′′ + p(t)u′ + b(t)u+ =  in (, π ). Consider the
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following equivalent equation:

(
e
∫ t
t

p(s)dsu′)′ + e
∫ t
t

p(s)ds(b(t)u+ – a(t)u–
)
= ,

where t ∈ [, π ] is undetermined. By Rolle’s theorem, there exists a t′ ∈ (, π ) with
u′(t′) =  = u′(t′ + π ). Then

 =
∫ t′+π

t′

(
e
∫ t
t

p(s)dsu′)′ dt = –
∫ t′+π

t′
e
∫ t
t

p(s)dsb(t)u+ dt < ,

which leads to a contradiction.
Without loss of generality, we assume u() = u(π ) = , u′() = u′(π ) = A > .
Step . We construct two auxiliary equations. Consider the initial value problem

u′′ + p(t)u′ + b(t)u+ = , u() = , u′() = A.

The first auxiliary equation is

ϕ′′ – γ ϕ′ + αϕ = , ϕ() = , ϕ′() = A. ()

Obviously,

ϕ(t) =
A

√
α – γ 

e
γ t
 sin

√
α – γ 


t

is the solution of () and

ϕ′(t) = A
√

α

α – γ  e
γ t
 sin

(√
α – γ 


t + θ

)
,

where θ ∈ (, π
 ] with sin θ =

√
α–γ 

α
. Since

N <
√
α – γ 


<

√
α ≤ √

β <N +  ()

holds under the assumptions of (H), there is a t ∈ (,π ) such that

√
α – γ 


t + θ = π , i.e.,

π


≤

√
α – γ 


t < π . ()

Thus, we have

sin

√
α – γ 


t = sin θ =

√
α – γ 

α
≥

√
α – γ 

α
.

Since π
 < π

√
α–γ 

N < π and sin t is decreasing in [π
 ,π ), we have

sin
π

√
α – γ 

N
≥ sin

π
√
α – γ 

N
.

http://www.boundaryvalueproblems.com/content/2014/1/231


Wang and Zu Boundary Value Problems 2014, 2014:231 Page 5 of 13
http://www.boundaryvalueproblems.com/content/2014/1/231

By (H), we have

sin

√
α – γ 


t =

√
α – γ 

α
> sin

π
√
α – γ 

N
, ()

and  < t < π
N . Therefore

ϕ′(t) > , ϕ(t) > , for t ∈ (, t); ϕ(t) > , ϕ′(t) = . ()

We also consider the initial value problem

ψ ′′ + γψ ′ + αψ = , ψ(t) = ϕ(t), ψ ′(t) = . ()

Clearly,

ψ(t) = 
√

α

α – γ  ϕ(t)e
–γ (t–t)

 sin

(√
α – γ 


(t – t) + θ

)

is the solution of (), where θ is the same as the previous one, and

ψ ′(t) = –
α√

α – γ 
ϕ(t)e

–γ (t–t)
 sin

√
α – γ 


(t – t).

Hence there exists a t ∈ (, π ) with t – t ∈ (,π ), such that

√
α – γ 


(t – t) + θ = π . ()

Then ψ(t) = . From () and (), it follows that

√
α – γ 


t = π – θ , i.e.,

π


≤

√
α – γ 


t < π . ()

By () and (), we have

sin

√
α – γ 


t = sin θ =

√
α – γ 

α
> sin

π
√
α – γ 

N
.

Since sin t is decreasing on [π
 ,π ), we have  < t < π

N , and

ψ ′(t) < , ψ(t) > , for t ∈ (t, t); ψ(t) = , ψ ′(t) < .

Step .Wewill prove that u(t) has a zero point in (, t]. Assume, on the contrary, u(t) > 
for t ∈ (, t].
Let y = ϕ′(t)u(t) – ϕ(t)u′(t) on [, t]. Since ϕ′(t) ≥ , ϕ(t) > , u(t) >  on t ∈ (, t], we

have

y′ = ϕ′′(t)u(t) + ϕ′(t)u′(t) – ϕ′(t)u′(t) – ϕ(t)u′′(t)

=
(
γ ϕ′(t) – αϕ(t)

)
u(t) – ϕ(t)

(
–p(t)u′(t) – b(t)u(t)

)

http://www.boundaryvalueproblems.com/content/2014/1/231
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=
(
γ + p(t)

)
ϕ′(t)u(t) +

(
–p(t)

)(
ϕ′(t)u(t) – ϕ(t)u′(t)

)
+

(
b(t) – α

)
ϕ(t)u(t)

≥ –p(t)y,

which implies

(
ye

∫ t
 p(s)ds

)′ ≥ , t ∈ (, t].

Notice that y() = ϕ′()u() – ϕ()u′() = , we have

y = ϕ′(t)u(t) – ϕ(t)u′(t) ≥ , t ∈ (, t]. ()

By (), we know that u′(t)≤ .
Let z = ψ ′(t)u(t) –ψ(t)u′(t) on [t, t]. Since ψ(t) > , ψ ′(t) = , we have

z(t) = ψ ′(t)u(t) –ψ(t)u′(t) ≥ .

Since ψ ′(t)≤ , ψ(t) ≥ , u(t) >  on [t, t], we have

z′ = ψ ′′(t)u(t) +ψ ′(t)u′(t) –ψ ′(t)u′(t) –ψ(t)u′′(t)

=
(
–γψ ′(t) – αψ(t)

)
u(t) –ψ(t)

(
–p(t)u′(t) – b(t)u(t)

)

=
(
–γ + p(t)

)
ψ ′(t)u(t) +

(
–p(t)

)(
ψ ′(t)u(t) –ψ(t)u′(t)

)
+

(
b(t) – α

)
ψ(t)u(t)

≥ –p(t)z,

which implies

(
ze

∫ t
 p(s)ds

)′ ≥ , t ∈ [t, t], ()

i.e.,

z(t) ≥ , t ∈ [t, t].

But ψ(t) =  and ψ ′(t) <  imply that

z(t) = ψ ′(t)u(t) –ψ(t)u′(t) < ,

which is a contradiction to u(t) >  on (, t]. Therefore u(t) has at least one zero in (, t]
with t < π

N .
Step . We will prove that u(t) has at least N +  zeros on [, π ]. Let u(t) be the first

zero point in (, t] such that u(t) = , u′(t) = B < .We claim that there must exist a zero
point in (t, π ]. Otherwise, we consider u′′ + p(t)u′ – a(t)u– = . With a similar argument
to Step , we have a t such that there must be a zero in (t, t] and t – t < π

N . Step by step,
we find that u(t) has at least N +  zeros on [, π ].
Step . We will prove that u(t) has at least N +  zeros on [, π ]. On the contrary, we

assume u(t) has exactly N +  zeros on [, π ]. We write them as

 = t < t < · · · < tN+ = π .

http://www.boundaryvalueproblems.com/content/2014/1/231
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Obviously,

u′(ti
) �= , i = , , . . . , N + .

Without loss of generality, we may assume u′(t) > . Since

u′(ti
)
u′(ti+

)
< , i = , , . . . , N ,

we obtain u′(tN+) < , which contradicts u′(tN+) = u′(t) > . Therefore u(t) has at least
N +  zeros on [, π ].
Step . Since u(t) has at least N +  zeros on [, π ], there are two zeros ξ and ξ with

 < ξ – ξ ≤ π
N+ . Integrating u

′ from ξ to ξ, we have

∫ ξ

ξ

u′(t)dt = –
∫ ξ

ξ

u(t)u′′(t)dt

=
∫ ξ

ξ

p(t)u(t)u′(t)dt +
∫ ξ

ξ

b(t)u(t)u+(t) – a(t)u(t)u–(t)dt

=
∫ ξ

ξ

p(t)u(t)u′(t)dt +
∫ ξ

ξ

a(t)u(t)dt +
∫ ξ

ξ

d(t)u(t)u+(t)dt

≤
∫ ξ

ξ

∣∣p(t)u(t)u′(t)
∣∣dt +

∫ ξ

ξ

a(t)u(t)dt +
∫ ξ

ξ

d(t)u(t)dt

≤ γ

∫ ξ

ξ

∣∣u(t)u′(t)
∣∣dt + β

∫ ξ

ξ

u(t)dt.

Assume that there are k zeros in (ξ, ξ) denoted by τk , k ∈N. By Lemma ,

∫ ξ

ξ

∣∣u(t)u′(t)
∣∣dt =

∫ τ

ξ

+
∫ τ

τ

+ · · · +
∫ ξ

τk

∣∣u(t)u′(t)
∣∣dt

≤ 


max{τ – ξ, τ – τ, . . . , ξ – τk}

×
(∫ τ

ξ

+
∫ τ

τ

+ · · · +
∫ ξ

τk

u′(t)dt
)

≤ ξ – ξ



∫ ξ

ξ

u′(t)dt.

By Lemma , we have

∫ ξ

ξ

u(t)dt ≤ (ξ – ξ)

π

∫ ξ

ξ

u′(t)dt.

Since β + (N+)πγ

 < (N + ), we have

γ


(ξ – ξ) +

β

π (ξ – ξ) ≤ πγ

(N + )
+

β

(N + )
< .

Hence
∫ ξ

ξ

u′(t)dt = ,

http://www.boundaryvalueproblems.com/content/2014/1/231
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which implies u′(t) =  for t ∈ [ξ, ξ]. Due to the uniqueness of the solution for the initial
value problem, we get u(t) ≡  for t ∈ [, π ], a contradiction. �

4 Non-homogeneous equation
In this section, we will give the complete proof of Theorem .

4.1 Uniqueness
Proof Let u and u be two π-periodic solutions of (). Denote v = u – u, then v is a
solution of the following problem:

v′′ + p(t)v′ + a(t)v + d(t)
(
u+ – u+

)
= , ()

where d(t) is defined in (). Since

–v– =
(
u – u – |u – u|

)
/ < u+ – u+ <

(|u – u| + u – u
)
/ = v+,

there exists a θ ∈ (, ) such that

u+ – u+ = ( – θ )v+ + θ
(
–v–

)
.

Then () equals

v′′ + p(t)v′ +
(
( – θ )b(t) + θa(t)

)
v+ –

(
θb(t) + ( – θ )a(t)

)
v– = .

If  < θ ≤ 
 ,

(
( – θ )b(t) + θa(t)

)
–

(
θb(t) + ( – θ )a(t)

)
= ( – θ )

(
b(t) – a(t)

)
> .

Equation () satisfies (H) and (H). Otherwise, –v as a solution satisfies (H) and (H).
By Proposition , we have v≡ . �

4.2 Boundedness
We consider the homotopy equation

u′′ + αu = λ
(
–p(t)u′ – b(t)u+ + a(t)u– + αu + f (t)

) ≡ λF
(
t,u,u′), ()

where λ ∈ [, ]. Denote by ‖ · ‖ the usual normal in C[, π ], i.e., ‖u‖ = |u| + |u′|. We
assert there exists B >  such that every possible periodic solution u(t) of () satisfies
‖u‖ ≤ B. If not, there exists λk → λ and the solution uk(t) with ‖uk‖ → ∞ (k → ∞). Let
yk = uk

‖uk‖ , we have y
+
k =

u+k
‖uk‖ and y–k =

u–k
‖uk‖ . Obviously, ‖yk‖ =  (k = , , . . .). It satisfies the

following problem:

y′′
k + αyk = λk

(
–b(t)y+k + a(t)y–k – p(t)y′

k + αyk +
f (t)
‖uk‖

)
, ()

in which we have

f (t)
‖uk‖ →  (k → ∞).

http://www.boundaryvalueproblems.com/content/2014/1/231
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Since

yk(t) = yk() +
∫ t


y′
k(s)ds,

y′
k(t) = y′

k() +
∫ t


–αyk + λk

(
–b(s)y+k + a(s)y–k – p(s)y′

k + αyk +
f (s)
‖uk‖

)
ds,

{yk}, {y′
k} are uniformly bounded and equicontinuous. By the Ascoli lemma, there exists a

continuous function w(t), v(t), and a subsequence of {k}∞k= (denote it again by {k}∞k=) such
that

lim
k→∞

yk(t) = w(t), lim
k→∞

y′
k(t) = v(t) uniformly on [, π ].

As a consequence () weakly converges to the following equation in L[, π ]:

w′′(t) + λp(t)w′ +
(
λb(t) + α – αλ

)
w+ –

(
α + λa(t) – αλ

)
w– = , ()

which satisfy (H) and (H). By Proposition , we have w(t) ≡  for t ∈ [, π ], which
contradicts ‖w‖ = . Thus, the possible periodic solution is bounded.

4.3 Existence
Proof Assume �(t) is the fundamental solution matrix of u′′ + αu =  with �() = I . Ob-
viously, it is nonresonant by (H). Equation () can be transformed into the integral equa-
tion

(
u
u′

)

(t) = �(t)

((
u()
u′()

)

+
∫ t


�–(s)

(


λF(s,u(s),u′(s))

)

ds

)

. ()

Because u(t) is a π-periodic solution of (), then

(
I –�(π )

)
(
u()
u′()

)

= �(π )
∫ π


�–(s)

(


λF(s,u(s),u′(s))

)

ds. ()

Obviously, (I –�(π )) is invertible,

(
u()
u′()

)

=
(
I –�(π )

)–
�(π )

∫ π


�–(s)

(


λF(s,u(s),u′(s))

)

ds. ()

We substitute () into ()
(
u
u′

)

(t) = �(t)
(
I –�(π )

)–
�(π )

∫ π


�–(s)

(


λF(s,u(s),u′(s))

)

ds

+�(t)
∫ t


�–(s)

(


λF(s,u(s),u′(s))

)

ds. ()

Define an operator

Pλ : C[, π ]×C[, π ] → C[, π ]×C[, π ],

http://www.boundaryvalueproblems.com/content/2014/1/231
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such that

Pλ

[(
u
u′

)]

(t) ≡ �(t)
(
I –�(π )

)–
�(π )

∫ π


�–(s)

(


λF(s,u,u′)

)

ds

+�(t)
∫ t


�–(s)

(


λF(s,u,u′)

)

ds. ()

Since the right-hand side of Pλ is continuous (non-smooth), it is easy to see that Pλ is a
completely continuous operator in C[, π ]×C[, π ]. Denote

 =
{
u ∈ C[, π ],‖u‖ ≤ B + 

}

and

hλ(u) =

(
u
u′

)

– Pλ

[(
u
u′

)]

.

Because  /∈ hλ(∂) for λ ∈ [, ], by Leray-Schauder degree theory, we have

deg

((
u
u′

)

– P

[(
u
u′

)]

,, 

)

= deg
(
h(u),, 

)

= deg
(
h(u),, 

)
=  �= .

So we conclude that P has at least one fixed point in , that is, () has a unique solution.
�

5 Numerical experiment
5.1 Example 1
Let us consider

u′′ + . sin tu′ +
(
. cos(t) + 

)
u+ –

(
. cos(t) + 

)
u– = . sin(t). ()

By Theorem , there is a unique π-periodic solution.
In Figure , we make a -fold Newton iteration to get an approximate solution of (),

displayed by a blue line. It is obvious that the solution here is locally stable and unique. The
error here is about –. The red line in Figure  is the approximate solution of () with-
out periodic damping term. Our simulation illustrates that the effect of the small periodic
damping term is limited.
In Figure , we consider the effect of the cables’ restoring force d(t). If there is no cables’

restoring force, we have the following system:

u′′ + . sin tu′ +
(
. cos(t) + 

)
u = . sin(t). ()

The blue line in Figure  is the approximate solution of () and the red line in Figure 
is the approximate solution of (). The latter one is a particular case that can be tackled
by [].

http://www.boundaryvalueproblems.com/content/2014/1/231
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Figure 1 The approximate solution of (27) with and without periodic damping term.

Figure 2 The approximate solution of (27) and (28).

5.2 Example 2
Let us consider

u′′ + . sin tu′ + u+ – u– =  +  cos(t). ()

By Theorem , there is a unique π-periodic solution.
The blue line in Figure  is the approximate solution of (). The red line in Figure  is the

approximate solution of () without periodic damping term. Our simulation illustrates
that the effect of the small periodic damping term is limited. The method we applied is a
-fold Newton iteration and the error here is about –.
In Figure , we consider the effect of the cables’ restoring force d(t). If there is no cables’

restoring force, we have the following system:

u′′ + . sin tu′ + u =  +  cos(t). ()

http://www.boundaryvalueproblems.com/content/2014/1/231
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Figure 3 The approximate solution of (29) with and without periodic damping term.

Figure 4 The approximate solution of (29) and (30).

The blue line in Figure  is the approximate solution of () and the red line in Figure  is
the approximate solution of ().

6 Conclusions
Periodic solutions of the suspension bridgemodel with a periodic damping termhave been
studied. After transforming this system into an equivalent ordinary differential equation,
we get the existence and the uniqueness of a periodic solution by theDolph-type condition
and a small periodic damping term condition. Our constructive method is very adaptable
to this kind of non-smooth problem. Two numerical examples have been presented to
simulate our main results. By the numerical experiment, we know that the effect of the
small periodic damping term is limited. Furthermore, we compare the approximate solu-
tion of our system to the suspension bridge model without the cables’ restoring force, the
latter one is a particular case of [].
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