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Abstract
In this paper, we investigate the sampling analysis for a new Sturm-Liouville problem
with symmetrically located discontinuities which are defined depending on a
parameter in a neighborhood of a midpoint of the interval. Also the problem has
transmission conditions at these points of discontinuity and includes an
eigenparameter in a boundary condition. We establish briefly the relations needed for
the derivations of the sampling theorems and construct the Green’s function for the
problem. Then we derive sampling representations for the solutions and Green’s
functions.
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1 Introduction
We consider the following Sturm-Liouville problem:

τ (u) := –u′′ + q(x)u = λu, x ∈ I, (.)

with one of the boundary conditions including an eigenparameter:

Ba(u) := βu(a) + βu′(a) = , (.)

Bb(u) := λ
(
α′
u(b) – α′

u
′(b)

)
+

(
αu(b) – αu′(b)

)
= , (.)

and transmission conditions at two points of discontinuity, θ–ε and θ+ε :

T–ε(u) := u(θ–ε–) – δu(θ–ε+) = , (.)

T ′
–ε(u) := u′(θ–ε–) – δu′(θ–ε+) = , (.)

T+ε(u) := δu(θ+ε–) – γu(θ+ε+) = , (.)

T ′
+ε(u) := δu′(θ+ε–) – γu′(θ+ε+) = , (.)

where I := [a, θ–ε) ∪ (θ–ε , θ+ε) ∪ (θ+ε ,b]; λ is a complex spectral parameter; q(x) is a given
real valued function which is continuous in [a, θ–ε), (θ–ε , θ+ε), and (θ+ε ,b] and has finite
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limits q(θ–ε±), q(θ+ε±); βi,αi,α′
i , δ,γ ∈ R (i = , ); |β| + |β| �= , δ,γ �= ; θ := (a + b)/;

θ±ε± := (θ ± ε)± ;  < ε < (b – a)/, and

ρ :=
(
α′
α – αα

′

)
> .

In the literature, the Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem and
generalization of the WKS sampling theorem (see [–]) has been investigated exten-
sively (see also [–]). Sampling theorems associated with Sturm-Liouville problems were
investigated in [–]. Also, [–] and [–] are for example works in the direction
of sampling analysis for continuous and discontinuous eigenproblems, respectively. The
sampling series associated with strings were investigated and one compared them with
those associated with Sturm-Liouville problems in []. In [] the author studied the
sampling analysis for the discontinuous Sturm-Liouville problem which had transmission
conditions at one point of discontinuity and contained an eigenparameter in two bound-
ary conditions. In the present paper, we derive sampling theorems associated with a new
Sturm-Liouville problem with moving discontinuity points. The problem studied in this
paper was presented in more detail for the first time in []. The problem has symmetri-
cally located discontinuities which are defined depending on a parameter in a neighbor-
hood of the midpoint of the interval and with an eigenparameter appearing in a boundary
condition. There are many published works on sampling theorems associated with differ-
ent types of generalized Sturm-Liouville boundary value problems, but the present paper
deals with a case that has not been studied before. To derive sampling theorems for the
problem (.)-(.), we establish briefly some spectral properties and construct the Green’s
function of the problem (.)-(.). Then we derive two sampling theorems using solutions
and the Green’s function, respectively.

2 An operator formulation and asymptotic formulas
Some properties of the eigenvalues and asymptotic formulas for the eigenvalues and the
corresponding eigenfunctions for the same problem were given in []. We state the re-
sults briefly in this section.
To formulate a theoretic approach to the problem (.)-(.) we define a Hilbert space

H := L(a,b)⊕C with an inner product

〈
f(·), g(·)〉H :=

∫ θ–ε

a
f (x)g(x)dx + δ

∫ θ+ε

θ–ε

f (x)g(x)dx

+ γ 
∫ b

θ+ε

f (x)g(x)dx +
γ 

ρ
hk, (.)

where f(x) =
( f (x)

h

)
, g(x) =

( g(x)
k

) ∈H , f (·), g(·) ∈ L(a,b), h,k ∈C. For convenience we put

R(u) := αu(b) – αu′(b), R′(u) := α′
u(b) – α′

u
′(b). (.)

Let D(A)⊆H be the set of all f(x) =
( f (x)

h

) ∈H such that f and f ′ are absolutely continuous
on [a,b] and τ (f ) ∈ L(a,b), h = R′(f ),Ba(f ) = ,T±ε(f ) = T ′±ε(f ) = .We define an operator
A :D(A) →H by

A

(
f (x)
R′(f )

)

:=

(
τ (f )
–R(f )

)

,

(
f (x)
R′(f )

)

∈D(A).
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Thus, the operator A :D(A)→H is equivalent to the eigenvalue problem (.)-(.) in the
sense that the eigenvalues of A are exactly those of the problem (.)-(.).
We can prove according to [, ] that A is symmetric in H , and all eigenvalues of the

problem are real (see []).
Let φλ(·) and χλ(·) be two solutions of (.) as

φλ(x) =

⎧
⎪⎨

⎪⎩

φ–ε,λ(x), x ∈ [a, θ–ε),
φε,λ(x), x ∈ (θ–ε , θ+ε),
φ+ε,λ(x), x ∈ (θ+ε ,b],

χλ(x) =

⎧
⎪⎨

⎪⎩

χ–ε,λ(x), x ∈ [a, θ–ε),
χε,λ(x), x ∈ (θ–ε , θ+ε),
χ+ε,λ(x), x ∈ (θ+ε ,b],

satisfying the following conditions, respectively:

φ–ε,λ(a) = β, φ′
–ε,λ(a) = –β,

φε,λ(θ–ε) = δ–φ–ε,λ(θ–ε–), φ′
ε,λ(θ–ε) = δ–φ′

–ε,λ(θ–ε–),

φ+ε,λ(θ+ε) = δγ –φε,λ(θ+ε–), φ′
+ε,λ(θ+ε) = δγ –φ′

ε,λ(θ+ε–),

(.)

and

χ+ε,λ(b) = λα′
 + α, χ ′

+ε,λ(b) = λα′
 + α,

χε,λ(θ+ε) = γ δ–χ+ε,λ(θ+ε+), χ ′
ε,λ(θ+ε) = γ δ–χ ′

+ε,λ(θ+ε+),

χ–ε,λ(θ–ε) = δχε,λ(θ–ε+), χ ′
–ε,λ(θ–ε) = δχ ′

ε,λ(θ–ε+).

(.)

These functions are entire in λ for all x ∈ I .
Let W (φλ,χλ;x) be the Wronskian of φλ(x) and χλ(x) which is independent of x, since

the coefficient of y′ in (.) is zero. Let

ω(λ) :=W (φλ,χλ;x) = φλ(x)χ ′
λ(x) – φ′

λ(x)χλ(x)

= ω–ε(λ) = δωε(λ) = γ ω+ε(λ). (.)

Now, ω(λ) is an entire function of λ whose zeros are precisely the eigenvalues of the op-
erator A. Using techniques similar to those established by Titchmarsh in [], see also
[–], the zeros of ω(λ) are real and simple and if λn, n = , , , . . . , denote the zeros of
ω(λ), then the two component vectors

�n(x) :=

(
φλn (x)
R′(φλn )

)

are the corresponding eigenvectors of the operator A satisfying the orthogonality relation

〈
�n(·),�m(·)

〉
H = , for n �=m.

Here {φλn (·)}∞n= will be the sequence of eigenfunctions of the problem (.)-(.) corre-
sponding to the eigenvalues {λn}∞n= and we denote by �n(x) the normalized eigenvectors
of A, i.e.;

�n(x) :=
�n(x)

‖�n(·)‖H =

(
�n(x)
R′(�n)

)

.
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Let kn �=  be the real constants for which

χλn (x) = knφλn (x), x ∈ I,n = , , , . . . . (.)

φλ(·) is the solution determined by (.) so, the following integral equations hold for k = 
and k = :

dk

dxk
φ–ε,λ(x) = β

dk

dxk
cos

(√
λ(x – a)

)
–

β√
λ

dk

dxk
sin

(√
λ(x – a)

)

+
√
λ

∫ x

a

dk

dxk
sin

(√
λ(x – y)

)
q(y)φ–ε,λ(y)dy,

dk

dxk
φε,λ(x) = δ–φ–ε,λ(θ–ε–)

dk

dxk
cos

(√
λ(x – θ–ε)

)

+
δ–√

λ
φ′
–ε,λ(θ–ε–)

dk

dxk
sin

(√
λ(x – θ–ε)

)

+
√
λ

∫ x

θ–ε

dk

dxk
sin

(√
λ(x – y)

)
q(y)φε,λ(y)dy,

dk

dxk
φ+ε,λ(x) = δγ –φε,λ(θ+ε–)

dk

dxk
cos

(√
λ(x – θ+ε)

)

+
δγ –
√

λ
φ′

ε,λ(θ+ε–)
dk

dxk
sin

(√
λ(x – θ+ε)

)

+
√
λ

∫ x

θ+ε

dk

dxk
sin

(√
λ(x – y)

)
q(y)φ+ε,λ(y)dy,

and φλ(·) has the following asymptotic representations for |λ| → ∞, which holds uni-
formly for x ∈ I :

dk

dxk
φ–ε,λ(x) = β

dk

dxk
cos

(√
λ(x – a)

)
+O

(|λ| (k–) e|t|(x–a)),

dk

dxk
φε,λ(x) = βδ

– dk

dxk
cos

(√
λ(x – a)

)
+O

(|λ| (k–) e|t|(x–a)),

dk

dxk
φ+ε,λ(x) = βγ

– dk

dxk
cos

(√
λ(x – a)

)
+O

(|λ| (k–) e|t|(x–a)),

(.)

if β �= ,

dk

dxk
φ–ε,λ(x) = –

β√
λ

dk

dxk
sin

(√
λ(x – a)

)
+O

(|λ| (k–) e|t|(x–a)),

dk

dxk
φε,λ(x) = –

βδ
–

√
λ

dk

dxk
sin

(√
λ(x – a)

)
+O

(|λ| (k–) e|t|(x–a)),

dk

dxk
φ+ε,λ(x) = –

βγ
–

√
λ

dk

dxk
sin

(√
λ(x – a)

)
+O

(|λ| (k–) e|t|(x–a)),

(.)

if β = .
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Hıra and Altınışık Boundary Value Problems 2014, 2014:237 Page 5 of 15
http://www.boundaryvalueproblems.com/content/2014/1/237

Then we obtain four distinct cases for the asymptotic behavior of ω(λ) for |λ| → ∞,
namely,

ω(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ
√

λα′
βγ sin(

√
λ(b – a)) +O(λe|t|(b–a)), if β �= ,α′

 �= ,
λα′

βγ cos(
√

λ(b – a)) +O(
√

λe|t|(b–a)), if β �= ,α′
 = ,

λα′
βγ cos(

√
λ(b – a)) +O(

√
λe|t|(b–a)), if β = ,α′

 �= ,
–
√

λα′
βγ sin(

√
λ(b – a)) +O(e|t|(b–a)), if β = ,α′

 = .

Consequently if λ < λ < · · · , are the zeros of ω(λ), then we have the following asymptotic
formulas for sufficiently large n:

√
λn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n–)π
(b–a) +O(n–), if β �= ,α′

 �= ,
(n–/)π
(b–a) +O(n–), if β �= ,α′

 = ,
(n–/)π
(b–a) +O(n–), if β = ,α′

 �= ,
nπ

(b–a) +O(n–), if β = ,α′
 = .

(.)

3 Green’s function
To study the completeness of the eigenvectors of A and hence the completeness of the
eigenfunctions of the problem (.)-(.), we construct the resolvent of A as well as the
Green’s function of the problem (.)-(.). We assume without any loss of generality that
λ =  is not an eigenvalue of A.
Now let λ ∈ C not be an eigenvalue of A and consider the inhomogeneous problem for

f(x) =
( f (x)

h

) ∈H , u(x) =
( u(x)
R′(u)

) ∈ D(A);

(λI –A)u(x) = f(x), x ∈ I,

where I is the identity operator. Since

(λI –A)u(x) = λ

(
u(x)
R′(u)

)

–

(
τ (u)
–R(u)

)

=

(
f (x)
h

)

we have

(λ – τ )u(x) = f (x), x ∈ I, (.)

λR′(u) + R(u) = h. (.)

Now we can represent the general solution of the homogeneous differential equation
(.), appropriate to (.) in the following form:

u(x,λ) =

⎧
⎪⎨

⎪⎩

cφ–ε,λ(x) + cχ–ε,λ(x), x ∈ [a, θ–ε),
cφε,λ(x) + cχε,λ(x), x ∈ (θ–ε , θ+ε),
cφ+ε,λ(x) + cχ+ε,λ(x), x ∈ (θ+ε ,b],

in which ci (i = , ) are arbitrary constants. By applying the method of variation of the
constants, we shall search the general solution of the non-homogeneous linear differential

http://www.boundaryvalueproblems.com/content/2014/1/237
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(.) in the following form:

u(x,λ) =

⎧
⎪⎨

⎪⎩

c(x,λ)φ–ε,λ(x) + c(x,λ)χ–ε,λ(x), x ∈ [a, θ–ε),
c(x,λ)φε,λ(x) + c(x,λ)χε,λ(x), x ∈ (θ–ε , θ+ε),
c(x,λ)φ+ε,λ(x) + c(x,λ)χ+ε,λ(x), x ∈ (θ+ε ,b],

(.)

where the functions ci(x,λ) (i = , ) satisfy the following linear system of equations:

{
c′(x,λ)φ–ε,λ(x) + c′(x,λ)χ–ε,λ(x) = ,
c′(x,λ)φ′

–ε,λ(x) + c′(x,λ)χ ′
–ε,λ(x) = f (x),

for x ∈ [a, θ–ε),

{
c′(x,λ)φε,λ(x) + c′(x,λ)χε,λ(x) = ,
c′(x,λ)φ′

ε,λ(x) + c′(x,λ)χ ′
ε,λ(x) = f (x),

for x ∈ (θ–ε , θ+ε),

{
c′(x,λ)φ+ε,λ(x) + c′(x,λ)χ+ε,λ(x) = ,
c′(x,λ)φ′

+ε,λ(x) + c′(x,λ)χ ′
+ε,λ(x) = f (x),

for x ∈ (θ+ε ,b].

(.)

Since λ is not an eigenvalue and ω–ε(λ) �= , ωε(λ) �= , ω+ε(λ) �= , each of the linear
systems in (.) has a unique solution, which leads to

{
c(x,λ) = 

ω–ε(λ)
∫ θ–ε

x χ–ε,λ(y)f (y)dy + c(λ),
c(x,λ) = 

ω–ε(λ)
∫ x
a φ–ε,λ(y)f (y)dy + c(λ),

for x ∈ [a, θ–ε),

{
c(x,λ) = 

ωε (λ)
∫ θ+ε

x χε,λ(y)f (y)dy + c(λ),
c(x,λ) = 

ωε (λ)
∫ x
θ–ε

φε,λ(y)f (y)dy + c(λ),
for x ∈ (θ–ε , θ+ε),

{
c(x,λ) = 

ω+ε(λ)
∫ b
x χ+ε,λ(y)f (y)dy + c(λ),

c(x,λ) = 
ω+ε (λ)

∫ x
θ+ε

φ+ε,λ(y)f (y)dy + c(λ),
for x ∈ (θ+ε ,b],

(.)

where ci(λ) (i = , ) are arbitrary constants. Substituting (.) into (.), we obtain the
solution of (.) as

u(x,λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ–ε,λ(x)
ω–ε(λ)

∫ θ–ε

x χ–ε,λ(y)f (y)dy +
χ–ε,λ(x)
ω–ε(λ)

∫ x
a φ–ε,λ(y)f (y)dy

+ c(λ)φ–ε,λ(x) + c(λ)χ–ε,λ(x), x ∈ [a, θ–ε),
φε,λ(x)
ωε(λ)

∫ θ+ε

x χε,λ(y)f (y)dy +
χε,λ(x)
ωε (λ)

∫ x
θ–ε

φε,λ(y)f (y)dy
+ c(λ)φε,λ(x) + c(λ)χε,λ(x), x ∈ (θ–ε , θ+ε),

φ+ε,λ(x)
ω+ε(λ)

∫ b
x χ+ε,λ(y)f (y)dy +

χ+ε,λ(x)
ω+ε (λ)

∫ x
θ+ε

φ+ε,λ(y)f (y)dy
+ c(λ)φ+ε,λ(x) + c(λ)χ+ε,λ(x), x ∈ (θ+ε ,b].

(.)

Then, from the boundary conditions (.), (.), and the transmission conditions (.)-
(.), we get

c(λ) =


ωε(λ)

∫ θ+ε

θ–ε

χε,λ(y)f (y)dy +


ω+ε(λ)

∫ b

θ+ε

χ+ε,λ(y)f (y)dy +
h

ω+ε(λ)
,

c(λ) = ,

c(λ) =


ω+ε(λ)

∫ b

θ+ε

χ+ε,λ(y)f (y)dy +
h

ω+ε(λ)
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/237
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c(λ) =


ω–ε(λ)

∫ θ–ε

a
φ–ε,λ(y)f (y)dy,

c(λ) =
h

ω+ε(λ)
,

c(λ) =


ω–ε(λ)

∫ θ–ε

a
φ–ε,λ(y)f (y)dy +


ωε(λ)

∫ θ+ε

θ–ε

φε,λ(y)f (y)dy.

Substituting (.) and (.) into (.), (.) can be written as

u(x,λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ–ε,λ(x)
ω(λ)

∫ θ–ε

x χ–ε,λ(y)f (y)dy +
χ–ε,λ(x)

ω(λ)
∫ x
a φ–ε,λ(y)f (y)dy

+ δφ–ε,λ(x)
ω(λ)

∫ θ+ε

θ–ε
χε,λ(y)f (y)dy

+ γ φ–ε,λ(x)
ω(λ)

∫ b
θ+ε

χ+ε,λ(y)f (y)dy + γ h
ω(λ)φ–ε,λ(x), x ∈ [a, θ–ε),

δφε,λ(x)
ω(λ)

∫ θ+ε

x χε,λ(y)f (y)dy +
δχε,λ(x)

ω(λ)
∫ x
θ–ε

φε,λ(y)f (y)dy
+ χε,λ(x)

ω(λ)
∫ θ–ε

a φ–ε,λ(y)f (y)dy
+ γ φε,λ(x)

ω(λ)
∫ b
θ+ε

χ+ε,λ(y)f (y)dy + γ h
ω(λ)φε,λ(x), x ∈ (θ–ε , θ+ε),

γ φ+ε,λ(x)
ω(λ)

∫ b
x χ+ε,λ(y)f (y)dy

+ δχ+ε,λ(x)
ω(λ)

∫ x
θ+ε

φ+ε,λ(y)f (y)dy
+ χ+ε,λ(x)

ω(λ)
∫ θ–ε

a φ–ε,λ(y)f (y)dy
+ δχ+ε,λ(x)

ω(λ)
∫ θ+ε

θ–ε
φε,λ(y)f (y)dy + γ h

ω(λ)φ+ε,λ(x), x ∈ (θ+ε ,b].

Hence we have

u(x) = (λI –A)–f(x)

=

⎛

⎜
⎝

∫ θ–ε

a G(x, y;λ)f (y)dy + δ
∫ θ+ε

θ–ε
G(x, y;λ)f (y)dy

+γ  ∫ b
θ+ε

G(x, y;λ)f (y)dy + γ hφλ(x)
ω(λ)

R′(u)

⎞

⎟
⎠ , (.)

where

G(x, y;λ) =

{
φλ(y)χλ(x)

ω(λ) , a≤ y ≤ x≤ b,x �= θ–ε , θ+ε ; y �= θ–ε , θ+ε ,
φλ(x)χλ(y)

ω(λ) , a≤ x ≤ y≤ b,x �= θ–ε , θ+ε ; y �= θ–ε , θ+ε ,
(.)

is the Green’s function of the problem (.)-(.).

4 The sampling theorems
In this section we derive two sampling theorems associated with the problem (.)-(.).
For convenience we may assume that the eigenvectors of A are real valued.

Theorem  Consider the problem (.)-(.), and let

φλ(x) =

⎧
⎪⎨

⎪⎩

φ–ε,λ(x), x ∈ [a, θ–ε),
φε,λ(x), x ∈ (θ–ε , θ+ε),
φ+ε,λ(x), x ∈ (θ+ε ,b],

http://www.boundaryvalueproblems.com/content/2014/1/237
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be the solution defined above. Let g(·) ∈ L(a,b) and

F(λ) =
∫ θ–ε

a
g(x)φ–ε,λ(x)dx + δ

∫ θ+ε

θ–ε

g(x)φε,λ(x)dx + γ 
∫ b

θ+ε

g(x)φ+ε,λ(x)dx. (.)

Then F(λ) is an entire function of exponential type (b – a) that can be reconstructed from
its values at the points {λn}∞n= via the sampling formula

F(λ) =
∞∑

n=

F(λn)
ω(λ)

(λ – λn)ω′(λn)
. (.)

The series (.) converges absolutely onC and uniformly on compact subset ofC.Here ω(λ)
is the entire function defined in (.).

Proof The relation (.) can be rewritten as an inner product of H as follows:

F(λ) =
〈
g(·),�λ(·)

〉
H

=
∫ θ–ε

a
g(x)φ–ε,λ(x)dx + δ

∫ θ+ε

θ–ε

g(x)φε,λ(x)dx + γ 
∫ b

θ+ε

g(x)φ+ε,λ(x)dx, (.)

where

g(x) =

(
g(x)


)

, �λ(x) =

(
φλ(x)
R′(φλ)

)

∈H .

Since both g(·) and �λ(·) are in H , then they have the Fourier expansions

g(x) =
∞∑

n=

ĝ(n)
�n(x)

‖�n(·)‖H
, �λ(x) =

∞∑

n=

〈
�n(·),�λ(·)

〉
H

�n(x)
‖�n(·)‖H

,

where

ĝ(n) =
〈
g(·),�λ(·)

〉
H

=
∫ θ–ε

a
g(x)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

g(x)φε,λn (x)dx + γ 
∫ b

θ+ε

g(x)φ+ε,λn (x)dx

= F(λn). (.)

Applying Parseval’s identity to (.) and using (.), we obtain

F(λ) =
∞∑

n=

F(λn)
〈�n(·),�λ(·)〉H

‖�n(·)‖H
.

Now we calculate 〈�n(·),�λ(·)〉H and ‖�n(·)‖H . To prove formula (.), we need to show
that

〈�n(·),�λ(·)〉H
‖�n(·)‖H

=
ω(λ)

(λ – λn)ω′(λn)
, n = , , , . . . . (.)
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By the definition of the inner product of H , we have

〈
�λ(·),�n(·)

〉
H =

∫ θ–ε

a
φ–ε,λ(x)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

φε,λ(x)φε,λn (x)dx

+ γ 
∫ b

θ+ε

φ+ε,λ(x)φ+ε,λn (x)dx +
δ

ρ
R′(φλ)R′(φλn ). (.)

From the Green’s identity [], we have

∫ θ–ε

a
τ (φ–ε,λ)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

τ (φε,λ)φε,λn (x)dx + γ 
∫ b

θ+ε

τ (φ+ε,λ)φ+ε,λn (x)dx

=
∫ θ–ε

a
φ–ε,λ(x)τ (φ–ε,λn )dx + δ

∫ θ+ε

θ–ε

φε,λ(x)τ (φε,λn )dx + γ 
∫ b

θ+ε

φ+ε,λ(x)τ (φ+ε,λn )dx

+W (φ–ε,λ,φ–ε,λn ; θ–ε–) –W (φ–ε,λ,φ–ε,λn ;a) + δW (φε,λ,φε,λn ; θ+ε–)

– δW (φε,λ,φε,λn ; θ–ε+) + γ W (φ+ε,λ,φ+ε,λn ;b) – γ W (φ+ε,λ,φ+ε,λn ; θ+ε+), (.)

then from (.) and (.), the equality (.) becomes

(λ – λn)
(∫ θ–ε

a
φ–ε,λ(x)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

φε,λ(x)φε,λn (x)dx

+ γ 
∫ b

θ+ε

φ+ε,λ(x)φ+ε,λn (x)dx
)

= γ W (φ+ε,λ,φ+ε,λn ;b).

Thus
∫ θ–ε

a
φ–ε,λ(x)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

φε,λ(x)φε,λn (x)dx + γ 
∫ b

θ+ε

φ+ε,λ(x)φ+ε,λn (x)dx

=
γ W (φ+ε,λ,φ+ε,λn ;b)

(λ – λn)
. (.)

From (.), (.), and (.), we have

W (φ+ε,λ,φ+ε,λn ;b) = φ+ε,λ(b)φ′
+ε,λn (b) – φ′

+ε,λ(b)φ+ε,λn (b)

= k–n
{
φ+ε,λ(b)χ ′

+ε,λn (b) – φ′
+ε,λ(b)χ+ε,λn (b)

}

= k–n
{
φ+ε,λ(b)

(
λnα

′
 – α

)
– φ′

+ε,λ(b)
(
λnα

′
 – α

)}

= k–n
{
ω(λ) + (λn – λ)R′(φλ)

}
. (.)

Equations (.), (.), and R′(χλn ) = ρ yield

γ 

ρ
R′(φλ)R′(φλn ) =

γ 

ρ
k–n R′(φλ)R′(χλn ) = γ k–n R′(φλ). (.)

Substituting from (.), (.), and (.) into (.), we get

〈
�λ(·),�n(·)

〉
H = γ k–n

ω(λ)
λ – λn

. (.)

http://www.boundaryvalueproblems.com/content/2014/1/237
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Letting λ → λn in (.), since the zeros of ω(λ) are simple, we get

〈
�n(·),�n(·)

〉
H =

∥∥�n(·)
∥∥
H = γ k–n ω′(λn). (.)

Therefore from (.) and (.), we get (.). Hence (.) is proved with a pointwise con-
verge onC. Nowwe investigate the convergence of (.). First we prove that it is absolutely
convergent on C. Using the Cauchy-Schwarz’s inequality for λ ∈C,

∣
∣∣∣
∣

∞∑

n=

F(λn)
ω(λ)

(λ – λn)ω′(λn)

∣
∣∣∣
∣

≤
( ∞∑

n=

|〈g(·),�n(·)〉H |
‖�n(·)‖H

)/( ∞∑

n=

|〈�n(·),�λ(·)〉H |
‖�n(·)‖H

)/

. (.)

Since g(·),�λ(·) ∈H , both series in the right-hand side of (.) converge. Thus the series
(.) converges absolutely on C. For uniform convergence let M ⊂ C be compact. Let
λ ∈M and N > . Define σN (λ) to be

σN (λ) :=

∣
∣∣
∣∣
F(λ) –

∞∑

n=

F(λn)
ω(λ)

(λ – λn)ω′(λn)

∣
∣∣
∣∣
.

Using the same method developed above

σN (λ)≤
( ∞∑

n=N+

|〈g(·),�n(·)〉H |
‖�n(·)‖H

)/( ∞∑

n=N+

|〈�n(·),�λ(·)〉H |
‖�n(·)‖H

)/

.

Therefore

σN (λ)≤
∥∥�λ(·)

∥∥
H

( ∞∑

n=N+

|〈g(·),�n(·)〉H |
‖�n(·)‖H

)/

.

Since [a,b]×M is compact, then we can find a positive constant CM such that

∥
∥�λ(·)

∥
∥
H ≤ CM, for all λ ∈M.

Therefore,

σN (λ)≤ CM

( ∞∑

n=N+

|〈g(·),�n(·)〉H |
‖�n(·)‖H

)/

uniformly onM. In view of Parseval’s equality,

( ∞∑

n=N+

|〈g(·),�n(·)〉H |
‖�n(·)‖H

)/

→  as N → ∞.

http://www.boundaryvalueproblems.com/content/2014/1/237
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Thus σN (λ)→  uniformly onM. Hence (.) converges uniformly onM. As a result F(λ)
is analytic on compact subsets of C and hence it is entire function. From the relation

∣∣F(λ)
∣∣ ≤

∫ θ–ε

a

∣∣g(x)
∣∣∣∣φ–ε,λ(x)

∣∣dx + δ
∫ θ+ε

θ–ε

∣∣g(x)
∣∣∣∣φε,λ(x)

∣∣dx + γ 
∫ b

θ+ε

∣∣g(x)
∣∣∣∣φ+ε,λ(x)

∣∣dx,

and the fact thatφ–ε,λ(x),φε,λ(x) andφ+ε,λ(x) are entire functions of exponential type (b–a),
we conclude that F(λ) is also exponential type (b – a). �

Remark  To see that the expansion (.) is a Lagrange type interpolation, wemay replace
ω(λ) by the canonical product

� (λ) =

{∏∞
n=( –

λ
λn
), if zero is not an eigenvalue,

λ
∏∞

n=( –
λ
λn
), if λ =  is an eigenvalue.

(.)

From Hadamard’s factorization theorem (see []), ω(λ) = h(λ)� (λ), where h(λ) is an en-
tire function with no zeros. Thus,

ω(λ)
ω′(λn)

=
h(λ)� (λ)

h(λn)� ′(λn)

and (.), (.) remain valid for the function F(λ)/h(λ). Hence

F(λ) =
∞∑

n=

F(λn)
h(λ)� (λ)

(λ – λn)h(λn)� ′(λn)
.

We may redefine (.) by taking the kernel φλ(·)/h(λ) = φλ(·) to get

F(λ) =
F(λ)
h(λ)

=
∞∑

n=

F(λn)
� (λ)

(λ – λn)� ′(λn)
.

The next theorem is devoted to giving interpolation sampling expansions associated
with the problem (.)-(.) defined in terms of the Green’s function (these steps were
introduced for the first time in [, ] and recently in [, ]). As we see in (.), the
Green’s function G(x, y;λ) of the problem (.)-(.) has simple poles at {λn}∞n=. Let the
function G(x,λ) to be G(x,λ) = ω(λ)G(x, y;λ), where y ∈ I is a fixed point and ω(λ) is the
function defined in (.) or the canonical product (.).

Theorem  Let g(·) ∈ L(a,b) and F(λ) be the integral transform

F(λ) =
∫ θ–ε

a
G(x,λ)g(x)dx + δ

∫ θ+ε

θ–ε

G(x,λ)g(x)dx + γ 
∫ b

θ+ε

G(x,λ)g(x)dx. (.)

Then F(λ) is an entire function of exponential type (b – a) which admits the sampling rep-
resentation

F(λ) =
∞∑

n=

F(λn)
ω(λ)

(λ – λn)ω′(λn)
. (.)

The series (.) converges absolutely on C and uniformly on a compact subset of C.

http://www.boundaryvalueproblems.com/content/2014/1/237


Hıra and Altınışık Boundary Value Problems 2014, 2014:237 Page 12 of 15
http://www.boundaryvalueproblems.com/content/2014/1/237

Proof The integral transform (.) can be rewritten as

F(λ) =
〈
G(·,λ), g(·)〉H , (.)

where

g(x) =

(
g(x)


)

, G(x,λ) =

(
G(x,λ)
R′(G)

)

∈H .

Applying Parseval’s identity to (.) with respect to {�n(·)}∞n=, we obtain

F(λ) =
∞∑

n=

〈
G(·,λ),�n(·)

〉
H

〈g(·),�n(·)〉H
‖�n(·)‖H

. (.)

Let λ �= λn. Since each �n(·) is an eigenvector of A,

(λI –A)�n(x) = (λ – λn)�n(x).

Thus

(λI –A)–�n(x) =


(λ – λn)
�n(x). (.)

From (.) and (.), we obtain

∫ θ–ε

a
G(x, y;λ)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

G(x, y;λ)φε,λn (x)dx

+ γ 
∫ b

θ+ε

G(x, y;λ)φ+ε,λn (x)dx +
γ 

ω(λ)
φλ(y)R′(φλn )

=


(λ – λn)
�λn (y). (.)

Using R′(φλn ) = k–n ρ , (.) becomes

∫ θ–ε

a
G(x, y;λ)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

G(x, y;λ)φε,λn (x)dx

+ γ 
∫ b

θ+ε

G(x, y;λ)φ+ε,λn (x)dx +
γ 

ω(λ)
k–n ρφλ(y)

=


(λ – λn)
�λn (y). (.)

Hence (.) can be rewritten as

∫ θ–ε

a
G(x,λ)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

G(x,λ)φε,λn (x)dx

+ γ 
∫ b

θ+ε

G(x,λ)φ+ε,λn (x)dx + γ k–n ρφλ(y)

=
ω(λ)

(λ – λn)
�λn (y). (.)

http://www.boundaryvalueproblems.com/content/2014/1/237
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From the definition of G(·,λ), we have

〈
G(·,λ),�n(·)

〉
H =

∫ θ–ε

a
G(x,λ)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

G(x,λ)φε,λn (x)dx

+ γ 
∫ b

θ+ε

G(x,λ)φ+ε,λn (x)dx +
γ 

ρ
R′(G)R′(φλn ). (.)

From (.), we have

R′(G) = φλ(y)R′(χ+ε,λ). (.)

Combining (.), R′(χ+ε,λ) = ρ and (.), together with (.), yields

〈
G(·,λ),�n(·)

〉
H =

∫ θ–ε

a
G(x,λ)φ–ε,λn (x)dx + δ

∫ θ+ε

θ–ε

G(x,λ)φε,λn (x)dx

+ γ 
∫ b

θ+ε

G(x,λ)φ+ε,λn (x)dx + γ k–n ρφλ(y). (.)

Substituting from (.) and (.), we get

〈
G(·,λ),�n(·)

〉
H =

ω(λ)
(λ – λn)

�λn (y). (.)

As an element of H , G(·,λ) has the eigenvectors expansion

G(x,λ) =
∞∑

i=

〈
G(·,λ),�i(·)

〉
H

�i(x)
‖�i(·)‖H

=
∞∑

i=

ω(λ)
(λ – λi)

�λi (y)
�i(x)

‖�i(·)‖H
. (.)

Taking the limit when λ → λn in (.), we get

F(λn) = lim
λ→λn

〈
G(·,λ), g(·)〉H . (.)

Making use of (.), we may rewrite (.) as

F(λn) = lim
λ→λn

∞∑

i=

ω(λ)
(λ – λi)

�λi (y)
〈�i(·), g(·)〉H

‖�i(·)‖H

= ω′(λn)�λn (y)
〈�n(·), g(·)〉H

‖�n(·)‖H
. (.)

The interchange of the limit and summation is justified by the asymptotic behavior of
�λn (x) and ω(λ). If �λn (y) �= , then (.) gives

〈g(·),�n(·)〉H
‖�n(·)‖H

=
F(λn)

ω′(λn)�λn (y)
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/237
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Combining (.), (.), and (.) under the assumption that �λn (y) �=  for all n. If
�λn (y) = , for some n, the same expansion holds with F(λn) = . The convergence prop-
erties as well as the analytic and growth properties can be established as in Theorem .

�

Now we give an example to illustrate the sampling transform.

Example Consider the boundary value problem:

–u′′ = λu, – ≤ x≤ ,

u′(–) = ,

λu() – u′() = ,

u(–) – u(+) = ,

u′(–) – u′(+) = ,

u(–) –


u(+) = ,

u′(–) –


u′(+) = ,

(.)

is a special case of the problem (.)-(.) when θ–ε =  and θ+ε =  as  < ε < . The eigen-
values λn of the problem (.) are the zeros of the function

ω(λ) = cos(
√

λ) + λ
√

λ sin(
√

λ) = . (.)

By Theorem , the transform

F(λ) =
∫ 

–
g(x) cos

(√
λ(x + )

)
dx + 

∫ 


g(x) cos

(√
λ(x + )

)
dx

+
∫ 


g(x) cos

(√
λ(x + )

)
dx,

has the following expansion:

F(λ) =
∞∑

n=

F(λn)
cos(

√
λ) + λ

√
λ sin(

√
λ)

(λ – λn)(λn cos(
√

λn) + ((λn – )/
√

λn) sin(
√

λn))
,

where λn are the zeros of (.).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements
All authors are very grateful to the anonymous referees for their valuable suggestions.

Received: 17 June 2014 Accepted: 30 October 2014

http://www.boundaryvalueproblems.com/content/2014/1/237
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