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Abstract
In this paper, we investigate the solvability of nth-order Lipschitz equations
y(n) = f (x, y, y′ , . . . , y(n–1)), x1 ≤ x ≤ x3, with nonlinear three-point boundary conditions
of the form k(y(x2), y′(x2), . . . , y(n–1)(x2); y(x1), y′(x1), . . . , y(n–1)(x1)) = 0,
gi(y(i)(x2), y(i+1)(x2), . . . , y(n–1)(x2)) = 0, i = 0, 1, . . . ,n – 3, h(y(x2), y′(x2), . . . , y(n–1)(x2);
y(x3), y′(x3), . . . , y(n–1)(x3)) = 0, where n ≥ 3, x1 < x2 < x3. By using the matching
technique together with set-valued function theory, the existence and uniqueness of
solutions for the problems are obtained. Meanwhile, as an application of our results,
an example is given.
MSC: 34B10; 34B15
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1 Introduction
As is well known, the differential equations with right hand sides satisfying the Lipschitz
conditions (Lipschitz equations for short) are important, and thus their solvability has at-
tracted much attention from many researchers. Among a substantial number of works
dealing with higher order Lipschitz equations with three-point boundary conditions, we
mention [–] and references therein. Most of these results are obtained via applying
control theory methods (Pontryagin maximum principle), matching methods, and topo-
logical degree methods etc. To the best of our knowledge, most of the three-point bound-
ary conditions in the above mentioned references are limited to simple boundary condi-
tions.
In , Barr and Sherman [] showed by the matching technique that the third-order

three-point boundary value problem

{
y′′′ = f (x, y, y′, y′′), x ≤ x≤ x,
y(α)(x) = y, y(x) = y, y(β)(x) = y

(∗)

with α = β =  has a unique solution, under the following four conditions:
(A) f (x, y, y′, y′′) is continuous on [x,x]×R

;
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(B) f (x, y, y′, y′′) satisfies the monotonicity conditions, i.e., y ≥ y, z < z implies

f (x, y, z,w) < f (x, y, z,w) on (x,x],

and y ≤ y, z < z implies

f (x, y, z,w) < f (x, y, z,w) on [x,x);

(C) for any (x, y, z,w), (x, y, z,w) ∈ [x,x]×R
,

∣∣f (x, y, z,w) – f (x, y, z,w)
∣∣ ≤ L|y – y| + L|z – z| + L|w –w|,

where L, L, and L are nonnegative constants;
(D) for each i = , ,

√



Lhi +



Lhi + Lhi < ,

where hi = xi+ – xi, i = , .
In , Moorti and Garner [] by using the matching technique showed that BVP (∗)

with α,β ∈ {, } and α + β �=  has a unique solution, under the conditions (A), (B), (C),
and
(D) for each i = , ,



Lhi +



Lhi + Lhi < .

Since then, many authors improved the condition (Di), i = , . For example, in [], Das
and Lalli proved that BVP (∗) with α = β =  has a unique solution, under the conditions
of (A), (B), (C), and
(D) for each i = , ,




Lhi +


Lhi +



Lhi < .

In [], Agarwal showed that BVP (∗) with α = β =  has a unique solution, under the
conditions of (A), (B), (C), and
(D) for each i = , ,




Lhi +



Lhi +


Lhi < .

In [], Piao and Shi generalized the above results. They not only generalized the simple
three boundary conditions to the nonlinear boundary conditions, but also they weakened
the monotonicity condition (B) and removed the restriction (Di) on the length of the in-
terval.
Recently, Pei and Chang [] generalized the results of Piao and Shi [].
The purpose of this paper is to study the solvability of nth-order Lipschitz equations

with more general nonlinear three-point boundary conditions of the form (n≥ )

y(n) = f
(
x, y, y′, . . . , y(n–)

)
, x ≤ x≤ x, (.)
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⎧⎪⎨
⎪⎩
k(y(x), y′(x), . . . , y(n–)(x); y(x), y′(x), . . . , y(n–)(x)) = ,
gi(y(i)(x), y(i+)(x), . . . , y(n–)(x)) = , i = , , . . . ,n – ,
h(y(x), y′(x), . . . , y(n–)(x); y(x), y′(x), . . . , y(n–)(x)) = ,

(.)

where –∞ < x < x < x < +∞.
The paper is organized as follows. In Section , as a preliminary, we state some use-

ful results as regards the solvability for the nth-order Lipschitz equation with the non-
linear two-point boundary conditions and a lemma of the differential inequality for nth-
order differential equations. In Section , by using the matching technique together with
set-valued function theory and nested interval theorem, we establish the existence and
uniqueness theorems of solutions for BVP (.), (.). Our results improve and generalize
widely the results of [, , , –].
We remark that the matching technique used in this paper is different from the classi-

cal one. In fact, by using the classical matching technique to obtain a matching solution
of a three-point boundary value problem, it needs usually four two-point boundary value
problems and among them two two-point boundary value problems need to have unique
solutions, the other two two-point boundary value problems need to have at most one so-
lution. However, our matching technique needs only two two-point boundary value prob-
lems and each of them needs to have at least one solution. For more about the three-point
boundary value problems, we refer the readers to the references [–], with matching
techniques, and to [–], with other techniques.
Throughout this paper, we make the following assumptions:
(H̄) f (x, y, y, . . . , yn–) is continuous on [x,x]×R

n;
(H̄) If x ∈ [x,x] and yi ≤ ȳi, i = , , . . . ,n – , then

f (x, y, y, . . . , yn–, yn–) ≤ f (x, ȳ, ȳ, . . . , ȳn–, yn–).

Also if x ∈ [x,x] and (–)n+iyi ≤ (–)n+iȳi, i = , , . . . ,n – , then

f (x, y, y, . . . , yn–, yn–) ≤ f (x, ȳ, ȳ, . . . , ȳn–, yn–);

(H̄) For any (x, y, y, . . . , yn–), (x, ȳ, ȳ, . . . , ȳn–) ∈ [x,x]×R
n,

∣∣f (x, y, y, . . . , yn–) – f (x, ȳ, ȳ, . . . , ȳn–)
∣∣ ≤

n–∑
i=

Li|yi – ȳi|,

where Li, i = , , . . . ,n – , are nonnegative Lipschitz constants;
(H̄) gi(yi, yi+, . . . , yn–), i = , , . . . ,n – , are continuously differentiable on R

n–i, ∂gi
∂yi

≥
δ > , ∂gi

∂yj
≤ , i = , , . . . ,n – , j = i + , i + , . . . ,n – , on R

n–i, and for any bounded set

Di ⊂ R
n–i–, i = , , . . . ,n – , the functions ∂gi

∂yj
, j = i + , i + , . . . ,n – , are bounded on

R×Di;
(H̄) The functions h(y, y, . . . , yn–; z, z, . . . , zn–), k(y, y, . . . , yn–; z, z, . . . , zn–) are

continuously differentiable on R
n, and for each i = , , . . . ,n – , ∂h

∂yi
≥ , ∂h

∂zi
≥ ,

(–)n+i ∂k
∂yi

≥ , (–)n+i ∂k
∂zi

≥  on R
n;

(H̄)
∑n–

i=
∂h
∂zi

≥ δ > ,
∑n–

i= (–)n+i
∂k
∂zi

≥ δ >  on R
n;

(H̄′
)

∑n–
i=

∂h
∂zi

≥ δ > ,
∑n–

i= (–)n+i
∂k
∂zi

≥ δ >  on R
n;
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(H̄) ∂h
∂yn–

+
∑n–

i=
∂h
∂zi

≥ δ > , ∂h
∂yn–

+
∑n–

i=
∂h
∂zi

≥ δ > , – ∂k
∂yn–

+
∑n–

i= (–)n+i
∂k
∂zi

≥ δ >  on
R

n;
(H̄′

)
∂h

∂yn–
+

∑n–
i=

∂h
∂zi

≥ δ > , ∂k
∂yn–

+
∑n–

i= (–)n+i
∂k
∂zi

≥ δ > , – ∂k
∂yn–

+
∑n–

i= (–)n+i
∂k
∂zi

≥
δ >  on R

n.
In the above conditions, δ denotes a constant.

2 Preliminary results
In this section, we introduce some lemmas which will be useful in the proof of our main
results.
Consider the following nonlinear two-point boundary value problems for the nth-order

differential equation (n≥ ):

y(n) = f
(
x, y, y′, . . . , y(n–)

)
, a ≤ x≤ b, (.)

with nonlinear two-point boundary conditions

{
gi(y(i)(a), y(i+)(a), . . . , y(n–)(a)) = , i = , , . . . ,n – ,
h(y(a), y′(a), . . . , y(n–)(a); y(b), y′(b), . . . , y(n–)(b)) = ,

(.)

where –∞ < a < b < +∞.
Let us list the following conditions for convenience.
(H) f (x, y, y, . . . , yn–) is continuous on [a,b]×R

n;
(H) for any (x, y, . . . , yn–, yn–), (x, ȳ, . . . , ȳn–, yn–) ∈ [a,b] × R

n, if yi ≤ ȳi, i = , , . . . ,
n – , then

f (x, y, . . . , yn–, yn–) ≤ f (x, ȳ, . . . , ȳn–, yn–);

(H) for any (x, y, y, . . . , yn–), (x, ȳ, ȳ, . . . , ȳn–) ∈ [a,b]×R
n,

∣∣f (x, y, y, . . . , yn–) – f (x, ȳ, ȳ, . . . , ȳn–)
∣∣ ≤

n–∑
i=

Li|yi – ȳi|,

where Li, i = , , . . . ,n – , are nonnegative constants;
(H′

) for any (x, y, . . . , yn–, yn–), (x, y, . . . , yn–, ȳn–) ∈ [a,b]×R
n,

∣∣f (x, y, . . . , yn–, yn–) – f (x, y, . . . , yn–, ȳn–)
∣∣ ≤ Ln–|yn– – ȳn–|,

where Ln– is a nonnegative constant;
(H) gi(yi, yi+, . . . , yn–), i = , , . . . ,n – , are continuously differentiable on R

n–i and
h(y, y, . . . , yn–; z, z, . . . , zn–) is continuously differentiable on R

n;
(H) ∂gi

∂yi
≥ δ > , i = , , . . . ,n– on R

n–i, ∂gi
∂yj

≤ , i = , , . . . ,n–, j = i+ , i+, . . . ,n– 
on R

n–i;
(H′

)
∂gi
∂yi

≥ δ > , i = , , . . . ,n –  on R
n–i, ∂gn–

∂yn–
≥  on R

, ∂gi
∂yj

≤ , i = , , . . . ,n – ,

j = i + , i + , . . . ,n –  on R
n–i, ∂gn–

∂yn–
≤ –δ on R

;
(H) ∂h

∂yi
≥ , i = , , . . . ,n –  on R

n;
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(H) ∂h
∂zi

≥ , i = , , . . . ,n – ,
∑n–

i=
∂h
∂zi

≥ δ >  on R
n;

(H′
)

∂h
∂zi

≥ , i = , , . . . ,n – ,
∑n–

i=
∂h
∂zi

≥ δ >  on R
n;

(H) ∂h
∂yi

≥ , ∂h
∂zi

≥ , i = , , . . . ,n – , ∂h
∂yn–

+
∑n–

i=
∂h
∂zi

≥ δ >  on R
n;

(H′
)

∂h
∂yi

≥ , ∂h
∂zi

≥ , i = , , . . . ,n – , ∂h
∂yn–

+
∑n–

i=
∂h
∂zi

≥ δ >  on R
n.

In the above conditions, δ denotes a constant.
Nowwe recall the results [] of the existence and uniqueness of solutions for BVP (.),

(.) and a lemma for a differential inequality for differential equation (.) of the nth order.

Lemma . (See [, Theorem .]) Assume that (H), (H), (H), (H), (H), and (H)
hold. Then BVP (.), (.) has at least one solution.

Lemma . (See [, Theorem .]) Assume that (H), (H), (H), (H), (H′
), and (H′

)
hold. Then BVP (.), (.) has at least one solution.

Lemma . (See [, Theorem .]) Assume that (H), (H), (H), (H), (H), (H), and
(H) hold. Then BVP (.), (.) has exactly one solution.

Lemma . (See [, Theorem .]) Assume that (H), (H), (H), (H), (H′
), (H), and

(H′
) hold. Then BVP (.), (.) has exactly one solution.

Lemma . (See [, Lemma .]) Assume that (H), (H), and (H′
) hold. Let φ(x), φ(x)

be solutions of the differential equation (.) on some interval [a,b) ⊂ [a,b] satisfying

φ
(i)
 (a) ≤ φ

(i)
 (a), i = , , . . . ,n – ,

and

φ
(n–)
 (a) + φ

(n–)
 (a) < φ

(n–)
 (a) + φ

(n–)
 (a).

Then φ
(n–)
 (x)≤ φ

(n–)
 (x) for x ∈ [a,b).

3 Main results
In order to obtain the existence and uniqueness of solutions for BVP (.), (.) by using the
matching technique, we need first to discuss the existence and uniqueness of solutions for
the nth-order Lipschitz equation (.) with one of the following sets of two-point boundary
conditions:⎧⎪⎨

⎪⎩
gi(y(i)(x), y(i+)(x), . . . , y(n–)(x)) = , i = , , . . . ,n – ,
y(n–)(x) = μ,
h(y(x), y′(x), . . . , y(n–)(x); y(x), y′(x), . . . , y(n–)(x)) = ,

(.)

⎧⎪⎨
⎪⎩
k(y(x), y′(x), . . . , y(n–)(x); y(x), y′(x), . . . , y(n–)(x)) = ,
gi(y(i)(x), y(i+)(x), . . . , y(n–)(x)) = , i = , , . . . ,n – ,
y(n–)(x) = μ,

(.)

⎧⎪⎨
⎪⎩
gi(y(i)(x), y(i+)(x), . . . , y(n–)(x)) = , i = , , . . . ,n – ,
y(n–)(x) = μ,
h(y(x), y′(x), . . . , y(n–)(x); y(x), y′(x), . . . , y(n–)(x)) = ,

(.)

where μ ∈R = (–∞, +∞).

http://www.boundaryvalueproblems.com/content/2014/1/239
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Let x = –t and y(x) = (–)nz(t). Then BVP (.), (.) becomes an equivalent boundary
value problem:

z(n) = F
(
t, z, z′, . . . , z(n–)

)
, (.′)⎧⎪⎨

⎪⎩
Gi(z(i)(–x), z(i+)(–x), . . . , z(n–)(–x)) = , i = , , . . . ,n – ,
z(n–)(–x) = μ,
H(z(–x), . . . , z(n–)(–x); z(–x), . . . , z(n–)(–x)) = ,

(.′)

where

F(t, y, y, . . . , yn–) = f
(
–t, (–)ny, (–)n+y, . . . , (–)n–yn–

)
,

Gi(yi, yi+, . . . , yn–) = gi
(
(–)n+iyi, (–)n+i+yi+, . . . , (–)n–yn–

)
,

H(y, y, . . . , yn–; z, z, . . . , zn–)

= k
(
(–)ny, (–)n+y, . . . , (–)n–yn–; (–)nz, (–)n+z, . . . , (–)n–zn–

)
.

This shows that BVP (.), (.) on the interval [x,x] can be transformed to the same
type as BVP (.), (.) on the interval [–x, –x].

Lemma . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄) hold. Then each of BVP
(.), (.), BVP (.), (.), and BVP (.), (.) has at least one solution.

Proof It is easy to check that conditions (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄) imply con-
ditions (H), (H), (H), (H), (H), and (H) for BVP (.), (.) as well as conditions (H),
(H), (H), (H), (H′

), and (H′
) for BVP (.), (.), respectively. Hence by Lemma .

and ., each of BVP (.), (.) and BVP (.), (.) has at least one solution.
Similarly, by Lemma . BVP (.′), (.′) has at least one solution. Hence BVP (.), (.)

has at least one solution. �

Lemma . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄) hold. Then each of BVP
(.), (.), BVP (.), (.), and BVP (.), (.) has exactly one solution.

Proof Similarly to the proof of Lemma . by Lemma . and ., the lemma follows. �

In order to prove our main results, we introduce some concepts as follows.

Definition . A set-valued function T : R → R is said to be upper semi-continuous at
μ ∈ R if for any open set U with T(μ) ⊂ U , there exists a neighborhood V of μ such
that

⋃
μ∈V T(μ) ⊂U .

Definition . Let I and I be subsets of R.
() If for any t ∈ I and t ∈ I, t ≤ t holds, then we denote I ≤ I and say that I is not

greater than I.
() If for any t ∈ I and t ∈ I, t < t holds, then we denote I < I and say that I is less

than I.

http://www.boundaryvalueproblems.com/content/2014/1/239
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Definition .
() Define a set-valued function T :R → R by

T(μ) = Sμ for any μ ∈R,

where Sμ = {y(n–)(x,μ) : y(x,μ) are solutions of BVP (.), (.)};
() Define a set-valued function T :R → R by

T(μ) = Jμ for any μ ∈R,

where Jμ = {y(n–)(x,μ) : y(x,μ) are solutions of BVP (.), (.)}.

Lemma .
() Suppose that (H̄), (H̄), (H̄), (H̄), (H̄) and (H̄) hold. If μ < μ, then

T(μ) ≥ T(μ), T(μ) ≤ T(μ).

() Suppose that (H̄), (H̄), (H̄), (H̄), (H̄) and (H̄) hold. If μ < μ, then

T(μ) > T(μ).

Proof () Let us show first the inequality with respect to T. To do this, we take any
y(n–) (x,μ) ∈ Sμ , y

(n–)
 (x,μ) ∈ Sμ . Suppose that y(n–) (x,μ) ≥ y(n–) (x,μ) is false,

i.e., y(n–) (x,μ) < y(n–) (x,μ). Then, for each i = , , . . . ,n – , from (.) we have by the
mean value theorem

 = gi
(
y(i) (x,μ), . . . , y(n–) (x,μ)

)
– gi

(
y(i) (x,μ), . . . , y(n–) (x,μ)

)
=

∂gi
∂yi

· (y(i) (x,μ) – y(i) (x,μ)
)
+

n–∑
j=i+

∂gi
∂yj

· (y(j) (x,μ) – y(j) (x,μ)
)
,

and y(n–) (x,μ) = μ < μ = y(n–) (x,μ). By (H̄) we can inductively show that, for
each i = n – , . . . , , , y(i) (x,μ) ≤ y(i) (x,μ). Consequently by Lemma . we have
y(n–) (x,μ) ≤ y(n–) (x,μ) for x ≤ x ≤ x. Furthermore one can inductively get for each
i = n – , . . . , ,  the result y(i) (x,μ) < y(i) (x,μ) for x < x ≤ x. Now by (H̄) and (H̄) we
get

h
(
y(x,μ), . . . , y(n–) (x,μ); y(x,μ), . . . , y(n–) (x,μ)

)
– h

(
y(x,μ), . . . , y(n–) (x,μ); y(x,μ), . . . , y(n–) (x,μ)

)

=
n–∑
i=

∂h
∂yi

· (y(i) (x,μ) – y(i) (x,μ)
)
+

n–∑
i=

∂h
∂zi

· (y(i) (x,μ) – y(i) (x,μ)
)

> .

This is a contradiction to (.). Thus we conclude that

y(n–) (x,μ) ≥ y(n–) (x,μ),

i.e., T(μ) ≥ T(μ) for μ < μ.

http://www.boundaryvalueproblems.com/content/2014/1/239
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By similar arguments, we can show the inequality for T.
() Since (H̄) and (H̄) imply (H̄), for any y(n–) (x,μ) ∈ Sμ and y

(n–)
 (x,μ) ∈ Sμ , we

have by (), y(n–) (x,μ) ≥ y(n–) (x,μ). Suppose y(n–) (x,μ) = y(n–) (x,μ). Then both
y(x,μ) and y(x,μ) are solutions of BVP (.), (.) with μ = y(n–) (x,μ) = y(n–) (x,μ).
By Lemma . of the uniqueness, we conclude y(x,μ) = y(x,μ) for x ≤ x ≤ x, which
implies

μ = y(n–) (x,μ) = y(n–) (x,μ) = μ.

This is a contradiction. Thus y(n–) (x,μ) > y(n–) (x,μ), i.e., T(μ) > T(μ) for μ <
μ. �

Lemma . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄) and (H̄) (or (H̄)) hold. Then, for
any μ ∈R, both Sμ and Jμ are compact and connected subsets of R.

Proof If (H̄i), i = , , , , ,  hold, then by Lemma ., each of BVP (.), (.) and BVP
(.), (.) has exactly one solution. Consequently both Sμ and Jμ are single-point sets.
Hence the theorem holds.
Now let (H̄i), i = , , , , ,  hold. First, we prove that Sμ is an interval. To do this,

let us take any y(n–) (x,μ), y(n–) (x,μ) ∈ Sμ with y(n–) (x,μ) < y(n–) (x,μ). We need to
show that if y(n–) (x,μ) < y(n–) < y(n–) (x,μ), then y(n–) ∈ Sμ. By (H̄), it is easy to
see inductively that y(i) (x,μ) ≤ y(i) (x,μ), i = n – , . . . , , , and for any fixed y(n–) ∈
(y(n–) (x,μ), y(n–) (x,μ)) there exist unique y(i) ∈ [y(i) (x,μ), y

(i)
 (x,μ)], i = n – , . . . , , ,

such that

gi
(
y(i) , y

(i+)
 , . . . , y(n–) ,μ, y(n–)

)
= , i = , , . . . ,n – .

Now let y(x) be the unique solution of (.) which satisfies the initial conditions y(i) (x) =
y(i) , i = , , . . . ,n – , where y(n–) = μ. Then by Lemma ., y(n–) (x,μ) ≤ y(n–) (x) for x ≤
x ≤ x. Furthermore we have y(i) (x,μ) ≤ y(i) (x) for x ≤ x ≤ x, i = , , . . . ,n – . Similarly
we can show that y(i) (x) ≤ y(i) (x,μ) for x ≤ x ≤ x, i = , , . . . ,n – . Hence by (H̄), we
have

h
(
y(x), y′

(x), . . . , y
(n–)
 (x); y(x), y′

(x), . . . , y
(n–)
 (x)

)
≥ h

(
y(x,μ), y′

(x,μ), . . . , y
(n–)
 (x,μ); y(x,μ), y′

(x,μ), . . . , y
(n–)
 (x,μ)

)
= 

and

h
(
y(x), y′

(x), . . . , y
(n–)
 (x); y(x), y′

(x), . . . , y
(n–)
 (x)

)
≤ h

(
y(x,μ), y′

(x,μ), . . . , y
(n–)
 (x,μ); y(x,μ), y′

(x,μ), . . . , y
(n–)
 (x,μ)

)
= .

Thus

h
(
y(x), y′

(x), . . . , y
(n–)
 (x); y(x), y′

(x), . . . , y
(n–)
 (x)

)
= .
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Hence y(x) satisfies the boundary condition (.), which implies that y(x) is the solu-
tion of BVP (.), (.), and then y(n–) = y(n–) (x) ∈ Sμ.
Next, we show that Sμ is closed. To do this, for any sequence {y(n–)m }∞m= in Sμ with

y(n–)m → y(n–) as m → ∞, we need to show y(n–) ∈ Sμ. By the definition of Sμ, corre-
sponding to {y(n–)m }∞m= there exists a sequence {ym(x,μ)}∞m= of solutions of BVP (.), (.)
such that y(n–)m = y(n–)m (x,μ). By (H̄), it is easy to see that, for each y(n–)m , there exist y(i)m ,
i = , , . . . ,n – , such that

gi
(
y(i)m , y

(i+)
m , . . . , y(n–)m ,μ, y(n–)m

)
= , i = , , . . . ,n – .

Furthermore we have, by (H̄),

y(i)m = y(i)m (x,μ), i = , , . . . ,n – ,m = , , . . . .

Now let us show that the sequences {y(i)m }∞m=, i = , , . . . ,n–, are convergent. In fact, when
i = n – , for any positive integers m,p ∈N we have

 = gn–
(
y(n–)m ,μ, y(n–)m

)
– gn–

(
y(n–)m+p ,μ, y

(n–)
m+p

)
=

∂gn–
∂yn–

· (y(n–)m – y(n–)m+p
)
+

∂gn–
∂yn–

· (y(n–)m – y(n–)m+p
)
.

Consequently by (H̄), we get

∣∣y(n–)m – y(n–)m+p
∣∣ ≤ δ–

∣∣∣∣∂gn–∂yn–

∣∣∣∣∣∣y(n–)m – y(n–)m+p
∣∣.

Since {y(n–)m }∞m= is a Cauchy sequence, so is the sequence {y(n–)m }∞m=. Hence {y(n–)m }∞m= con-
verges to a number y(n–) . Similarly we can show inductively that, for each i = n–, . . . , , ,
the sequence {y(i)m }∞m= converges to a number y(i) .
We note that y(n–)m = y(n–) = μ, m = , , . . . . Then by Kamke’s standard convergence

theorem [], there exists a solution y = ŷ(x) of (.) defined on [x,x] satisfying initial
conditions ŷ(i)(x) = y(i) , i = , , . . . ,n – , and there exists a subsequence {ymj (x,μ)}∞j= of
{ym(x,μ)}∞m= such that, for each i = , , . . . ,n – , the sequence {y(i)mj (x,μ)}∞j= uniformly
converges to ŷ(i)(x) on [x,x]. It is easy to see that y = ŷ(x) is the solution of BVP (.),
(.). Hence y(n–) = ŷ(n–)(x) ∈ Sμ.
Finally, we show that Sμ is bounded. To do this, we take μ,μ ∈ R with μ < μ < μ.

Then from Lemma ., we have

Sμ ≤ Sμ ≤ Sμ .

This implies the boundedness of Sμ.
By a similar argument for BVP (.′), (.′), we can show that Jμ is also a compact and

connected subset of R. �

Lemma . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄) hold. Then there exist
sequences {ym(x,μm)}∞m= and {ym(x,νm)}∞m= of solutions of BVP (.), (.) with μ = μm

http://www.boundaryvalueproblems.com/content/2014/1/239
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and of BVP (.), (.) with μ = νm, respectively, for which

lim
m→∞ y(n–)m (x,μm) = ∞, lim

m→∞ y(n–)m (x,νm) = –∞.

Proof Let us take a sequence {y(n–)m }∞m= with limm→∞ y(n–)m = ∞. Then, by Lemma ., BVP
(.), (.) with μ = y(n–)m has a solution, denoted by ym(x). It is easy to see that ym(x) is the
solution of BVP (.), (.) with μ = y(n–)m (x). Let μm = y(n–)m (x) and let ym(x,μm) = ym(x).
Then y(n–)m (x,μm) ∈ Sμm and

lim
m→∞ y(n–)m (x,μm) = lim

m→∞ y(n–)m = ∞.

Similarly one can show that there exists y(n–)m (x,νm) ∈ Sνm , for which

lim
m→∞ y(n–)m (x,νm) = –∞. �

Lemma . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄) and (H̄) hold. Then
() for any μ ∈R and ε > , there exists ρ >  such that if |μ –μ| < ρ , then, for any

y(n–)(x,μ) ∈ Sμ, there exists y(n–)(x,μ) ∈ Sμ satisfying
|y(n–)(x,μ) – y(n–)(x,μ)| < ε;

() for any μ ∈R and ε > , there exists ρ >  such that if |μ –μ| < ρ , then, for any
z(n–)(x,μ) ∈ Jμ, there exists z(n–)(x,μ) ∈ Jμ satisfying
|z(n–)(x,μ) – z(n–)(x,μ)| < ε.

Proof Let us prove only (), since () can be shown similarly.
Suppose the conclusion () is false. Then there exist μ ∈ R and ε >  such that, for

each ρ = 
m , m = , , . . . , there exist μm ∈ (μ – 

m ,μ + 
m ) and y(n–)(x,μm) ∈ Sμm such

that, for any y(n–)(x,μ) ∈ Sμ ,

∣∣y(n–)(x,μm) – y(n–)(x,μ)
∣∣ ≥ ε.

Since μ – 
m < μm < μ + 

m ,m = , , . . . , we have by Lemma .

T(μ + )≤ T

(
μ +


m

)
≤ {

y(n–)(x,μm)
} ≤ T

(
μ –


m

)
≤ T(μ – ).

Thus {y(n–)(x,μm)}∞m= is bounded. Without loss of generality, we may assume that
y(n–)(x,μm) → y(n–) as m → ∞. For any positive integers m,p ∈ N, we have, for each
i = , , . . . ,n – ,

 = gi
(
y(i)(x,μm), . . . , y(n–)(x,μm)

)
– gi

(
y(i)(x,μm+p), . . . , y(n–)(x,μm+p)

)
=

∂gi
∂yi

· (y(i)(x,μm) – y(i)(x,μm+p)
)

+
n–∑
j=i+

∂gi
∂yj

· (y(j)(x,μm) – y(j)(x,μm+p)
)
.
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Pei and Chang Boundary Value Problems 2014, 2014:239 Page 11 of 16
http://www.boundaryvalueproblems.com/content/2014/1/239

Hence, for each i = , , . . . ,n – , by (H̄) we have

∣∣y(i)(x,μm) – y(i)(x,μm+p)
∣∣ ≤ δ–

n–∑
j=i+

∣∣∣∣∂gi∂yj

∣∣∣∣∣∣y(j)(x,μm) – y(j)(x,μm+p)
∣∣.

Since {y(n–)(x,μm)}∞m= and {y(n–)(x,μm)}∞m= = {μm}∞m= are convergent, {y(n–)(x,
μm)}∞m= is a Cauchy sequence, and thus {y(n–)(x,μm)}∞m= is convergent. Similarly one
can show inductively that, for each i = n – , . . . , , , {y(i)(x,μm)}∞m= is also convergent.
Set limm→∞ y(i)(x,μm) = y(i) , i = , , . . . ,n – , where y(n–) = μ. Then by Kamke’s con-
vergence theorem, there exists a solution y = ŷ(x) of (.) defined on [x,x] satisfying the
initial conditions ŷ(i)(x) = y(i) , i = , , . . . ,n– and there exists a subsequence {y(x,μmj )}∞j=
of {y(x,μm)}∞m= such that, for each i = , , . . . ,n–, the sequence {y(i)(x,μmj )}∞j= uniformly
converges to ŷ(i)(x) on [x,x]. It is easy to see that ŷ(x) is the solution of BVP (.), (.)
with μ = μ. Consequently y(n–) = ŷ(n–)(x) ∈ Sμ , and hence

∣∣y(n–)(x,μm) – y(n–)
∣∣ ≥ ε,

which is a contradiction to limm→∞ y(n–)(x,μm) = y(n–) . Thus () holds. �

Lemma . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄) hold. Then both T and T

are upper semi-continuous on R.

Proof For any μ ∈R, let us show T is upper semi-continuous at μ = μ.
From Lemma ., T(μ) is a compact and connected subset of R. Hence without loss

of generality, we may assume that

T(μ) =
[
y(n–) (x,μ), y(n–) (x,μ)

]
.

Take any open set U with T(μ) ⊂U . Then there exists ε >  such that

(
y(n–) (x,μ) – ε, y(n–) (x,μ) + ε

) ⊂U .

Thus from Lemma ., there exists ρ >  such that if |μ – μ| < ρ , then, for any
y(n–)(x,μ) ∈ Sμ, there exists y(n–)(x,μ) ∈ Sμ = T(μ) for which

∣∣y(n–)(x,μ) – y(n–)(x,μ)
∣∣ < ε,

and so Sμ ⊂U . Hence T is upper semi-continuous at μ = μ.
The upper semi-continuity of T on R can be shown similarly. �

Theorem . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄) hold. Then BVP (.),
(.) has at least one solution.

Proof We consider two cases as follows.
Case . Suppose there exists μ ∈ R such that Sμ ∩ Jμ �= ∅. Then BVP (.), (.) with

μ = μ and BVP (.), (.) with μ = μ have solutions y(x,μ) and z(x,μ), respectively,

http://www.boundaryvalueproblems.com/content/2014/1/239
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such that y(n–)(x,μ) = z(n–)(x,μ). Since y(n–)(x,μ) = μ = z(n–)(x,μ), by (H̄) it is
easy to see that y(i)(x,μ) = z(i)(x,μ), i = , , . . . ,n – . Hence, if we let

u(x) :=

{
y(x,μ), x ∈ [x,x],
z(x,μ), x ∈ [x,x],

then u(x) is a solution of BVP (.), (.).
Case . Suppose for any μ ∈ R, Sμ ∩ Jμ = ∅. Then by Lemma . and ., there exist μ

and μ with μ < μ, such that

Sμ > Jμ , Sμ < Jμ , Sμ > Sμ .

In fact, let us take anyμ ∈R and z(n–)(x,μ) ∈ Jμ . ThenbyLemma., there exists some
y(n–) (x,ν) ∈ Sν such that y(n–) (x,ν) > z(n–)(x,μ). Take μ with μ < min{ν,μ}.
Then by Lemma ., we have

Sμ ≥ {
y(n–) (x,ν)

}
>

{
z(n–)(x,μ)

} ≥ Jμ .

Also by Lemma ., there exists some y(n–) (x,ν) ∈ Sν such that

y(n–) (x,ν) < min
{
z(n–)(x,μ), y(n–) (x,ν)

}
.

Again take μ > max{μ,ν}. Then by Lemma ., we have

Sμ ≤ {
y(n–) (x,ν)

}
<

{
z(n–)(x,μ)

} ≤ Jμ

and

Sμ ≥ {
y(n–) (x,ν)

}
>

{
y(n–) (x,ν)

} ≥ Sμ .

Now we apply a bisection argument as follows. Set a = μ, b = μ. Then we have two
cases, i.e.,

Sa+b


> J a+b


or Sa+b


< J a+b


.

If Sa+b


> J a+b


, set a = a+b
 and b = b. If Sa+b


< J a+b


, set a = a and b = a+b

 . In
summary, there exist a,b ∈ [a,b] such that

a < b, b – a =


(b – a), Sa > Ja , Sb < Jb .

By continuing this bisection process, we can get sequences {am}∞m= and {bm}∞m= with
am,bm ∈ [am–,bm–] ⊂ [a,b],m = , , . . . , such that

am < bm, bm – am =

m

(b – a), Sam > Jam , Sbm < Jbm .

Hence by the nested interval theorem, there uniquely exists ξ ∈ R such that ξ ∈⋂∞
m=[am,bm], actually am, bm squeeze to the common limit ξ .

http://www.boundaryvalueproblems.com/content/2014/1/239
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Suppose Sξ > Jξ . Then since both Sξ and Jξ are compact and connected subsets of R
and Sξ ∩ Jξ = ∅, there exist two open interval US and UJ such that US ⊃ Sξ , UJ ⊃ Jξ and
US ∩ UJ = ∅. Consequently US > UJ . Since both T and T are upper semi-continuous on
R by Lemma ., there exists ρ >  such that if |μ – ξ | < ρ then T(μ) = Sμ ⊂ US and
T(μ) = Jμ ⊂ UJ , and thus Sμ > Jμ. On the other hand since bm → ξ as m → ∞, there
existsm ∈N such that |bm – ξ | < ρ , consequently Sbm

> Jbm
, which is a contradiction.

If Sξ < Jξ , then we can similarly obtain a contradiction. Hence the case  cannot occur.
This completes the proof of the theorem. �

Theorem . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄) hold. Then BVP (.),
(.) has exactly one solution.

Proof Since (H̄) and (H̄) imply (H̄), by Theorem ., BVP (.), (.) has at least one
solution.
Now we need to show the uniqueness. By Theorem ., BVP (.), (.) has a solution

u(x), for which we denote

u(x) :=

{
y(x,μ), x ∈ [x,x],
z(x,μ), x ∈ [x,x].

Let v(x) be any solution of BVP (.), (.), and let z(x) = v(x) for x ≤ x ≤ x, y(x) = v(x)
for x ≤ x≤ x and v(n–)(x) = μ∗. Then y(x) and z(x) are the solutions of BVP (.), (.)
with μ = μ∗ and BVP (.), (.) with μ = μ∗, respectively.
If μ∗ > μ, then by Lemma . we have

y(n–)(x,μ) > y(n–) (x) = z(n–) (x)≥ z(n–)(x,μ),

which is a contradiction.
If μ∗ < μ, then by Lemma . we have

z(n–)(x,μ) ≥ z(n–) (x) = y(n–) (x) > y(n–)(x,μ),

which is also a contradiction. Hence μ∗ = μ. Consequently by Lemma ., we get z(x) =
z(x,μ) for x ≤ x ≤ x and y(x) = y(x,μ) for x ≤ x ≤ x. Thus u(x) ≡ v(x) on [x,x].
This completes the proof of the theorem. �

Remark . Theorem . includes the results of [, , , –] as particular cases.

It is easy to see that the linear boundary conditions in the next corollary satisfy (H̄),
(H̄), and (H̄).

Corollary . Suppose that (H̄), (H̄), and (H̄) hold. Suppose further that aiai+ ≤ ,
i = , , . . . ,n–,

∑n–
i= |ai| > ; biibij ≤ , i = , , . . . ,n–, j = i+, i+, . . . ,n–, |bii| > , i =

, , . . . ,n–; cici+ ≥ , i = , , . . . ,n–,
∑n–

i= |ci| > .Then, for any λi ∈R, i = , , . . . ,n–,

http://www.boundaryvalueproblems.com/content/2014/1/239
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the three-point boundary value problem of (.) with linear boundary conditions

⎧⎪⎨
⎪⎩

∑n–
i= aiy(i)(x) = λ,∑n–
j=i bijy(j)(x) = λi+, i = , , . . . ,n – ,∑n–
i= ciy(i)(x) = λn–

has exactly one solution.

By using the transformations x = –t and y(x) = (–)nz(t), fromTheorem . we can easily
obtain the following.

Theorem . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄′
) hold. Then BVP (.),

(.) has at least one solution.

Similarly to the proof of Theorem ., from Theorem . we can get the following.

Theorem . Suppose that (H̄), (H̄), (H̄), (H̄), (H̄), and (H̄′
) hold. Then BVP (.),

(.) has exactly one solution.

It is easy to see that the linear boundary conditions in the next corollary satisfy (H̄),
(H̄), and (H̄′

).

Corollary . Suppose that (H̄), (H̄), and (H̄) hold. Suppose further that aiai+ ≤ ,
i = , , . . . ,n–,

∑n–
i= |ai| > ; biibij ≤ , i = , , . . . ,n–, j = i+, i+, . . . ,n–, |bii| > , i =

, , . . . ,n–; cici+ ≥ , i = , , . . . ,n–,
∑n–

i= |ci| > .Then, for any λi ∈ R, i = , , . . . ,n–,
the three-point boundary value problems of (.) with linear boundary conditions

⎧⎪⎨
⎪⎩

∑n–
i= aiy(i)(x) = λ,∑n–
j=i bijy(j)(x) = λi+, i = , , . . . ,n – ,∑n–
i= ciy(i)(x) = λn–

has exactly one solution.

Finally, as an application, we give an example to demonstrate our results.

Example . Consider a third-order three-point boundary value problem

y′′′ = (sinx)
y

 + y
+ (cosx) arctan y′ +

∣∣y′′∣∣ + , –
π


≤ x≤ π


, (.)

⎧⎪⎨
⎪⎩
ay(–π

 ) + ay′(–π
 ) + ay′′(–π

 ) = λ,
by() + by′() + by′′() = λ,
cy(π

 ) + cy′(π
 ) + cy′′(π

 ) = λ,
(.)

where ai,bi, ci,λi ∈ R, i = , , , are constants.
Let

f (x, y, z,w) = (sinx)
y

 + y
+ (cosx) arctan z + |w| +  on

[
–

π


,
π



]
×R

.
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Then it is easy to check that the assumptions (H̄), (H̄), and (H̄) are satisfied. Hence from
either Corollary . or Corollary ., BVP (.), (.) has exactly one solution under either
of the following conditions:

(i) aa ≤ , aa ≤ , |a| + |a| + |a| > ;
(ii) bb ≤ , bb ≤ , b �= ;
(iii) cc ≥ , cc ≥ , |c| + |c| > ,

or the following conditions:

(i′) aa ≤ , aa ≤ , |a| + |a| > ;
(ii′) bb ≤ , bb ≤ , b �= ;
(iii′) cc ≥ , cc ≥ , |c| + |c| + |c| > .

We note that the results of [, , , –] cannot guarantee that the above third-order
three-point boundary value problem has a unique solution, unless b = .
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