Solvability of n th-order Lipschitz equations with nonlinear three-point boundary conditions

Minghe Pei' and Sung Kag Chang ${ }^{2^{*}}$

"Correspondence
skchang@ynu.ac.kr
${ }^{2}$ Department of Mathematics, Yeungnam University, Kyongsan, 712-749, Korea
Full list of author information is available at the end of the article

Abstract

In this paper, we investigate the solvability of n th-order Lipschitz equations $y^{(n)}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right), x_{1} \leq x \leq x_{3}$, with nonlinear three-point boundary conditions of the form $k\left(y\left(x_{2}\right), y^{\prime}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right) ; y\left(x_{1}\right), y^{\prime}\left(x_{1}\right), \ldots, y^{(n-1)}\left(x_{1}\right)\right)=0$, $g_{i}\left(y^{(1)}\left(x_{2}\right), y^{(i+1)}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right)\right)=0, i=0,1, \ldots, n-3, h\left(y\left(x_{2}\right), y^{\prime}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right) ;\right.$ $\left.y\left(x_{3}\right), y^{\prime}\left(x_{3}\right), \ldots, y^{(n-1)}\left(x_{3}\right)\right)=0$, where $n \geq 3, x_{1}<x_{2}<x_{3}$. By using the matching technique together with set-valued function theory, the existence and uniqueness of solutions for the problems are obtained. Meanwhile, as an application of our results, an example is given. MSC: 34B10; 34B15 Keywords: nth-order Lipschitz equation; nonlinear three-point boundary value problem; matching method; existence; uniqueness

1 Introduction

As is well known, the differential equations with right hand sides satisfying the Lipschitz conditions (Lipschitz equations for short) are important, and thus their solvability has attracted much attention from many researchers. Among a substantial number of works dealing with higher order Lipschitz equations with three-point boundary conditions, we mention [1-14] and references therein. Most of these results are obtained via applying control theory methods (Pontryagin maximum principle), matching methods, and topological degree methods etc. To the best of our knowledge, most of the three-point boundary conditions in the above mentioned references are limited to simple boundary conditions.

In 1973, Barr and Sherman [2] showed by the matching technique that the third-order three-point boundary value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right), \quad x_{1} \leq x \leq x_{3}, \tag{*}\\
y^{(\alpha)}\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2}, \quad y^{(\beta)}\left(x_{3}\right)=y_{3}
\end{array}\right.
$$

with $\alpha=\beta=0$ has a unique solution, under the following four conditions:
(A) $f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ is continuous on $\left[x_{1}, x_{3}\right] \times \mathbb{R}^{3}$;
(B) $f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ satisfies the monotonicity conditions, i.e., $y_{1} \geq y_{2}, z_{1}<z_{2}$ implies

$$
f\left(x, y_{1}, z_{1}, w\right)<f\left(x, y_{2}, z_{2}, w\right) \quad \text { on }\left(x_{1}, x_{2}\right],
$$

and $y_{1} \leq y_{2}, z_{1}<z_{2}$ implies

$$
f\left(x, y_{1}, z_{1}, w\right)<f\left(x, y_{2}, z_{2}, w\right) \quad \text { on }\left[x_{2}, x_{3}\right) ;
$$

(C) for any $\left(x, y_{1}, z_{1}, w_{1}\right),\left(x, y_{2}, z_{2}, w_{2}\right) \in\left[x_{1}, x_{3}\right] \times \mathbb{R}^{3}$,

$$
\left|f\left(x, y_{1}, z_{1}, w_{1}\right)-f\left(x, y_{2}, z_{2}, w_{2}\right)\right| \leq L_{0}\left|y_{1}-y_{2}\right|+L_{1}\left|z_{1}-z_{2}\right|+L_{2}\left|w_{1}-w_{2}\right|,
$$

where L_{0}, L_{1}, and L_{2} are nonnegative constants;
$\left(\mathrm{D}_{1}\right)$ for each $i=1,2$,

$$
\frac{\sqrt{3}}{27} L_{0} h_{i}^{3}+\frac{1}{3} L_{1} h_{i}^{2}+L_{2} h_{i}<1,
$$

where $h_{i}=x_{i+1}-x_{i}, i=1,2$.
In 1978, Moorti and Garner [12] by using the matching technique showed that BVP $(*)$ with $\alpha, \beta \in\{0,1\}$ and $\alpha+\beta \neq 0$ has a unique solution, under the conditions (A), (B), (C), and
$\left(\mathrm{D}_{2}\right)$ for each $i=1,2$,

$$
\frac{1}{3} L_{0} h_{i}^{3}+\frac{1}{2} L_{1} h_{i}^{2}+L_{2} h_{i}<1 .
$$

Since then, many authors improved the condition $\left(\mathrm{D}_{i}\right), i=1,2$. For example, in [4], Das and Lalli proved that $\operatorname{BVP}(*)$ with $\alpha=\beta=0$ has a unique solution, under the conditions of (A), (B), (C), and
$\left(\mathrm{D}_{3}\right)$ for each $i=1,2$,

$$
\frac{1}{60} L_{0} h_{i}^{3}+\frac{1}{6} L_{1} h_{i}^{2}+\frac{2}{3} L_{2} h_{i}<1 .
$$

In [1], Agarwal showed that $\operatorname{BVP}(*)$ with $\alpha=\beta=0$ has a unique solution, under the conditions of (A), (B), (C), and
$\left(\mathrm{D}_{4}\right)$ for each $i=1,2$,

$$
\frac{3}{160} L_{0} h_{i}^{3}+\frac{33}{320} L_{1} h_{i}^{2}+\frac{3}{8} L_{2} h_{i}<1 .
$$

In [14], Piao and Shi generalized the above results. They not only generalized the simple three boundary conditions to the nonlinear boundary conditions, but also they weakened the monotonicity condition (B) and removed the restriction $\left(D_{i}\right)$ on the length of the interval.

Recently, Pei and Chang [13] generalized the results of Piao and Shi [14].
The purpose of this paper is to study the solvability of n th-order Lipschitz equations with more general nonlinear three-point boundary conditions of the form ($n \geq 3$)

$$
\begin{equation*}
y^{(n)}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right), \quad x_{1} \leq x \leq x_{3} \tag{1.1}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
k\left(y\left(x_{2}\right), y^{\prime}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right) ; y\left(x_{1}\right), y^{\prime}\left(x_{1}\right), \ldots, y^{(n-1)}\left(x_{1}\right)\right)=0, \tag{1.2}\\
g_{i}\left(y^{(i)}\left(x_{2}\right), y^{(i+1)}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right)\right)=0, \quad i=0,1, \ldots, n-3, \\
h\left(y\left(x_{2}\right), y^{\prime}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right) ; y\left(x_{3}\right), y^{\prime}\left(x_{3}\right), \ldots, y^{(n-1)}\left(x_{3}\right)\right)=0,
\end{array}\right.
$$

where $-\infty<x_{1}<x_{2}<x_{3}<+\infty$.
The paper is organized as follows. In Section 2, as a preliminary, we state some useful results as regards the solvability for the n th-order Lipschitz equation with the nonlinear two-point boundary conditions and a lemma of the differential inequality for n thorder differential equations. In Section 3, by using the matching technique together with set-valued function theory and nested interval theorem, we establish the existence and uniqueness theorems of solutions for BVP (1.1), (1.2). Our results improve and generalize widely the results of $[1,2,4,12-14]$.

We remark that the matching technique used in this paper is different from the classical one. In fact, by using the classical matching technique to obtain a matching solution of a three-point boundary value problem, it needs usually four two-point boundary value problems and among them two two-point boundary value problems need to have unique solutions, the other two two-point boundary value problems need to have at most one solution. However, our matching technique needs only two two-point boundary value problems and each of them needs to have at least one solution. For more about the three-point boundary value problems, we refer the readers to the references [15-19], with matching techniques, and to [20-35], with other techniques.

Throughout this paper, we make the following assumptions:
$\left(\overline{\mathrm{H}}_{1}\right) f\left(x, y_{0}, y_{1}, \ldots, y_{n-1}\right)$ is continuous on $\left[x_{1}, x_{3}\right] \times \mathbb{R}^{n}$;
$\left(\bar{H}_{2}\right)$ If $x \in\left[x_{2}, x_{3}\right]$ and $y_{i} \leq \bar{y}_{i}, i=0,1, \ldots, n-2$, then

$$
f\left(x, y_{0}, y_{1}, \ldots, y_{n-2}, y_{n-1}\right) \leq f\left(x, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-2}, y_{n-1}\right) .
$$

Also if $x \in\left[x_{1}, x_{2}\right]$ and $(-1)^{n+i} y_{i} \leq(-1)^{n+i} \bar{y}_{i}, i=0,1, \ldots, n-2$, then

$$
f\left(x, y_{0}, y_{1}, \ldots, y_{n-2}, y_{n-1}\right) \leq f\left(x, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-2}, y_{n-1}\right) ;
$$

$$
\left(\bar{H}_{3}\right) \text { For any }\left(x, y_{0}, y_{1}, \ldots, y_{n-1}\right),\left(x, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right) \in\left[x_{1}, x_{3}\right] \times \mathbb{R}^{n}
$$

$$
\left|f\left(x, y_{0}, y_{1}, \ldots, y_{n-1}\right)-f\left(x, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right)\right| \leq \sum_{i=0}^{n-1} L_{i}\left|y_{i}-\bar{y}_{i}\right|,
$$

where $L_{i}, i=0,1, \ldots, n-1$, are nonnegative Lipschitz constants;
$\left(\overline{\mathrm{H}}_{4}\right) g_{i}\left(y_{i}, y_{i+1}, \ldots, y_{n-1}\right), i=0,1, \ldots, n-3$, are continuously differentiable on $\mathbb{R}^{n-i}, \frac{\partial g_{i}}{\partial y_{i}} \geq$ $\delta>0, \frac{\partial g_{i}}{\partial y_{j}} \leq 0, i=0,1, \ldots, n-3, j=i+1, i+2, \ldots, n-1$, on \mathbb{R}^{n-i}, and for any bounded set $D_{i} \subset \mathbb{R}^{n-i-1}, i=0,1, \ldots, n-3$, the functions $\frac{\partial g_{i}}{\partial y_{j}}, j=i+1, i+2, \ldots, n-1$, are bounded on $\mathbb{R} \times D_{i} ;$
$\left(\bar{H}_{5}\right)$ The functions $h\left(y_{0}, y_{1}, \ldots, y_{n-1} ; z_{0}, z_{1}, \ldots, z_{n-1}\right), k\left(y_{0}, y_{1}, \ldots, y_{n-1} ; z_{0}, z_{1}, \ldots, z_{n-1}\right)$ are continuously differentiable on $\mathbb{R}^{2 n}$, and for each $i=0,1, \ldots, n-1, \frac{\partial h}{\partial y_{i}} \geq 0, \frac{\partial h}{\partial z_{i}} \geq 0$, $(-1)^{n+i} \frac{\partial k}{\partial y_{i}} \geq 0,(-1)^{n+i} \frac{\partial k}{\partial z_{i}} \geq 0$ on $\mathbb{R}^{2 n}$;
$\left(\bar{H}_{6}\right) \sum_{i=0}^{n-2} \frac{\partial h}{\partial z_{i}} \geq \delta>0, \sum_{i=0}^{n-1}(-1)^{n+i} \frac{\partial k}{\partial z_{i}} \geq \delta>0$ on $\mathbb{R}^{2 n}$;
$\left(\overline{\mathrm{H}}_{6}^{\prime}\right) \sum_{i=0}^{n-1} \frac{\partial h}{\partial z_{i}} \geq \delta>0, \sum_{i=0}^{n-2}(-1)^{n+i} \frac{\partial k}{\partial z_{i}} \geq \delta>0$ on $\mathbb{R}^{2 n}$;
$\left(\overline{\mathrm{H}}_{7}\right) \frac{\partial h}{\partial y_{n-1}}+\sum_{i=0}^{n-1} \frac{\partial h}{\partial z_{i}} \geq \delta>0, \frac{\partial h}{\partial y_{n-2}}+\sum_{i=0}^{n-2} \frac{\partial h}{\partial z_{i}} \geq \delta>0,-\frac{\partial k}{\partial y_{n-1}}+\sum_{i=0}^{n-1}(-1)^{n+i} \frac{\partial k}{\partial z_{i}} \geq \delta>0$ on $\mathbb{R}^{2 n}$;

$$
\left(\overline{\mathrm{H}}_{7}^{\prime}\right) \frac{\partial h}{\partial y_{n-1}}+\sum_{i=0}^{n-1} \frac{\partial h}{\partial z_{i}} \geq \delta>0, \frac{\partial k}{\partial y_{n-2}}+\sum_{i=0}^{n-2}(-1)^{n+i} \frac{\partial k}{\partial z_{i}} \geq \delta>0,-\frac{\partial k}{\partial y_{n-1}}+\sum_{i=0}^{n-1}(-1)^{n+i} \frac{\partial k}{\partial z_{i}} \geq
$$ $\delta>0$ on $\mathbb{R}^{2 n}$.

In the above conditions, δ denotes a constant.

2 Preliminary results

In this section, we introduce some lemmas which will be useful in the proof of our main results.
Consider the following nonlinear two-point boundary value problems for the n th-order differential equation $(n \geq 3)$:

$$
\begin{equation*}
y^{(n)}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right), \quad a \leq x \leq b, \tag{2.1}
\end{equation*}
$$

with nonlinear two-point boundary conditions

$$
\left\{\begin{array}{l}
g_{i}\left(y^{(i)}(a), y^{(i+1)}(a), \ldots, y^{(n-1)}(a)\right)=0, \quad i=0,1, \ldots, n-2 \tag{2.2}\\
h\left(y(a), y^{\prime}(a), \ldots, y^{(n-1)}(a) ; y(b), y^{\prime}(b), \ldots, y^{(n-1)}(b)\right)=0
\end{array}\right.
$$

where $-\infty<a<b<+\infty$.
Let us list the following conditions for convenience.
$\left(\mathrm{H}_{1}\right) f\left(x, y_{0}, y_{1}, \ldots, y_{n-1}\right)$ is continuous on $[a, b] \times \mathbb{R}^{n}$;
$\left(\mathrm{H}_{2}\right)$ for any $\left(x, y_{0}, \ldots, y_{n-2}, y_{n-1}\right),\left(x, \bar{y}_{0}, \ldots, \bar{y}_{n-2}, y_{n-1}\right) \in[a, b] \times \mathbb{R}^{n}$, if $y_{i} \leq \bar{y}_{i}, i=0,1, \ldots$, $n-2$, then

$$
f\left(x, y_{0}, \ldots, y_{n-2}, y_{n-1}\right) \leq f\left(x, \bar{y}_{0}, \ldots, \bar{y}_{n-2}, y_{n-1}\right)
$$

$\left(\mathrm{H}_{3}\right)$ for any $\left(x, y_{0}, y_{1}, \ldots, y_{n-1}\right),\left(x, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right) \in[a, b] \times \mathbb{R}^{n}$,

$$
\left|f\left(x, y_{0}, y_{1}, \ldots, y_{n-1}\right)-f\left(x, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right)\right| \leq \sum_{i=0}^{n-1} L_{i}\left|y_{i}-\bar{y}_{i}\right|,
$$

where $L_{i}, i=0,1, \ldots, n-1$, are nonnegative constants;
$\left(\mathrm{H}_{3}^{\prime}\right)$ for any $\left(x, y_{0}, \ldots, y_{n-2}, y_{n-1}\right),\left(x, y_{0}, \ldots, y_{n-2}, \bar{y}_{n-1}\right) \in[a, b] \times \mathbb{R}^{n}$,

$$
\left|f\left(x, y_{0}, \ldots, y_{n-2}, y_{n-1}\right)-f\left(x, y_{0}, \ldots, y_{n-2}, \bar{y}_{n-1}\right)\right| \leq L_{n-1}\left|y_{n-1}-\bar{y}_{n-1}\right|,
$$

where L_{n-1} is a nonnegative constant;
$\left(\mathrm{H}_{4}\right) g_{i}\left(y_{i}, y_{i+1}, \ldots, y_{n-1}\right), i=0,1, \ldots, n-2$, are continuously differentiable on \mathbb{R}^{n-i} and $h\left(y_{0}, y_{1}, \ldots, y_{n-1} ; z_{0}, z_{1}, \ldots, z_{n-1}\right)$ is continuously differentiable on $\mathbb{R}^{2 n}$;
$\left(\mathrm{H}_{5}\right) \frac{\partial g_{i}}{\partial y_{i}} \geq \delta>0, i=0,1, \ldots, n-2$ on $\mathbb{R}^{n-i}, \frac{\partial g_{i}}{\partial y_{j}} \leq 0, i=0,1, \ldots, n-2, j=i+1, i+2, \ldots, n-1$ on \mathbb{R}^{n-i};
$\left(\mathrm{H}_{5}^{\prime}\right) \frac{\partial g_{i}}{\partial y_{i}} \geq \delta>0, i=0,1, \ldots, n-3$ on $\mathbb{R}^{n-i}, \frac{\partial g_{n-2}}{\partial y_{n-2}} \geq 0$ on $\mathbb{R}^{2}, \frac{\partial g_{i}}{\partial y_{j}} \leq 0, i=0,1, \ldots, n-3$, $j=i+1, i+2, \ldots, n-1$ on $\mathbb{R}^{n-i}, \frac{\partial g_{n-2}}{\partial y_{n-1}} \leq-\delta$ on \mathbb{R}^{2};
$\left(\mathrm{H}_{6}\right) \frac{\partial h}{\partial y_{i}} \geq 0, i=0,1, \ldots, n-1$ on $\mathbb{R}^{2 n}$;
$\left(\mathrm{H}_{7}\right) \frac{\partial h}{\partial z_{i}} \geq 0, i=0,1, \ldots, n-1, \sum_{i=0}^{n-1} \frac{\partial h}{\partial z_{i}} \geq \delta>0$ on $\mathbb{R}^{2 n}$;
$\left(\mathrm{H}_{7}^{\prime}\right) \frac{\partial h}{\partial z_{i}} \geq 0, i=0,1, \ldots, n-1, \sum_{i=0}^{n-2} \frac{\partial h}{\partial z_{i}} \geq \delta>0$ on $\mathbb{R}^{2 n}$;
$\left(\mathrm{H}_{8}\right) \frac{\partial h}{\partial y_{i}} \geq 0, \frac{\partial h}{\partial z_{i}} \geq 0, i=0,1, \ldots, n-1, \frac{\partial h}{\partial y_{n-1}}+\sum_{i=0}^{n-1} \frac{\partial h}{\partial z_{j}} \geq \delta>0$ on $\mathbb{R}^{2 n}$;
$\left(\mathrm{H}_{8}^{\prime}\right) \frac{\partial h}{\partial y_{i}} \geq 0, \frac{\partial h}{\partial z_{i}} \geq 0, i=0,1, \ldots, n-1, \frac{\partial h}{\partial y_{n-2}}+\sum_{i=0}^{n-2} \frac{\partial h}{\partial z_{i}} \geq \delta>0$ on $\mathbb{R}^{2 n}$.
In the above conditions, δ denotes a constant.
Now we recall the results [36] of the existence and uniqueness of solutions for BVP (2.1), (2.2) and a lemma for a differential inequality for differential equation (2.1) of the nth order.

Lemma 2.1 (See [36, Theorem 3.1]) Assume that $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right),\left(\mathrm{H}_{5}\right)$, and $\left(\mathrm{H}_{8}\right)$ hold. Then BVP (2.1), (2.2) has at least one solution.

Lemma 2.2 (See [36, Theorem 3.2]) Assume that $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right),\left(\mathrm{H}_{5}^{\prime}\right)$, and $\left(\mathrm{H}_{8}^{\prime}\right)$ hold. Then BVP (2.1), (2.2) has at least one solution.

Lemma 2.3 (See [36, Theorem 3.3]) Assume that $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right),\left(\mathrm{H}_{5}\right),\left(\mathrm{H}_{6}\right)$, and $\left(\mathrm{H}_{7}\right)$ hold. Then BVP (2.1), (2.2) has exactly one solution.

Lemma 2.4 (See [36, Theorem 3.4]) Assume that $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right),\left(\mathrm{H}_{5}^{\prime}\right),\left(\mathrm{H}_{6}\right)$, and $\left(\mathrm{H}_{7}^{\prime}\right)$ hold. Then BVP (2.1), (2.2) has exactly one solution.

Lemma 2.5 (See [36, Lemma 2.4]) Assume that $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$, and $\left(\mathrm{H}_{3}^{\prime}\right)$ hold. Let $\phi_{1}(x), \phi_{2}(x)$ be solutions of the differential equation (2.1) on some interval $\left[a_{1}, b_{1}\right) \subset[a, b]$ satisfying

$$
\phi_{1}^{(i)}\left(a_{1}\right) \leq \phi_{2}^{(i)}\left(a_{1}\right), \quad i=0,1, \ldots, n-1,
$$

and

$$
\phi_{1}^{(n-2)}\left(a_{1}\right)+\phi_{1}^{(n-1)}\left(a_{1}\right)<\phi_{2}^{(n-2)}\left(a_{1}\right)+\phi_{2}^{(n-1)}\left(a_{1}\right) .
$$

Then $\phi_{1}^{(n-1)}(x) \leq \phi_{2}^{(n-1)}(x)$ for $x \in\left[a_{1}, b_{1}\right)$.

3 Main results

In order to obtain the existence and uniqueness of solutions for BVP (1.1), (1.2) by using the matching technique, we need first to discuss the existence and uniqueness of solutions for the n th-order Lipschitz equation (1.1) with one of the following sets of two-point boundary conditions:

$$
\begin{align*}
& \left\{\begin{array}{l}
g_{i}\left(y^{(i)}\left(x_{2}\right), y^{(i+1)}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right)\right)=0, \quad i=0,1, \ldots, n-3, \\
y^{(n-2)}\left(x_{2}\right)=\mu, \\
h\left(y\left(x_{2}\right), y^{\prime}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right) ; y\left(x_{3}\right), y^{\prime}\left(x_{3}\right), \ldots, y^{(n-1)}\left(x_{3}\right)\right)=0,
\end{array}\right. \tag{3.1}\\
& \left\{\begin{array}{l}
k\left(y\left(x_{2}\right), y^{\prime}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right) ; y\left(x_{1}\right), y^{\prime}\left(x_{1}\right), \ldots, y^{(n-1)}\left(x_{1}\right)\right)=0, \\
g_{i}\left(y^{(i)}\left(x_{2}\right), y^{(i+1)}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right)\right)=0, \quad i=0,1, \ldots, n-3, \\
y^{(n-2)}\left(x_{2}\right)=\mu,
\end{array}\right. \tag{3.2}\\
& \left\{\begin{array}{l}
g_{i}\left(y^{(i)}\left(x_{2}\right), y^{(i+1)}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right)\right)=0, \quad i=0,1, \ldots, n-3, \\
y^{(n-1)}\left(x_{2}\right)=\mu, \\
h\left(y\left(x_{2}\right), y^{\prime}\left(x_{2}\right), \ldots, y^{(n-1)}\left(x_{2}\right) ; y\left(x_{3}\right), y^{\prime}\left(x_{3}\right), \ldots, y^{(n-1)}\left(x_{3}\right)\right)=0,
\end{array}\right. \tag{3.3}
\end{align*}
$$

where $\mu \in \mathbb{R}=(-\infty,+\infty)$.

Let $x=-t$ and $y(x)=(-1)^{n} z(t)$. Then BVP (1.1), (3.2) becomes an equivalent boundary value problem:

$$
\begin{align*}
& z^{(n)}=F\left(t, z, z^{\prime}, \ldots, z^{(n-1)}\right), \tag{1.1'}\\
& \left\{\begin{array}{l}
G_{i}\left(z^{(i)}\left(-x_{2}\right), z^{(i+1)}\left(-x_{2}\right), \ldots, z^{(n-1)}\left(-x_{2}\right)\right)=0, \quad i=0,1, \ldots, n-3, \\
z^{(n-2)}\left(-x_{2}\right)=\mu, \\
H\left(z\left(-x_{2}\right), \ldots, z^{(n-1)}\left(-x_{2}\right) ; z\left(-x_{1}\right), \ldots, z^{(n-1)}\left(-x_{1}\right)\right)=0,
\end{array}\right.
\end{align*}
$$

where

$$
\begin{aligned}
& F\left(t, y_{0}, y_{1}, \ldots, y_{n-1}\right)=f\left(-t,(-1)^{n} y_{0},(-1)^{n+1} y_{1}, \ldots,(-1)^{2 n-1} y_{n-1}\right), \\
& G_{i}\left(y_{i}, y_{i+1}, \ldots, y_{n-1}\right)=g_{i}\left((-1)^{n+i} y_{i},(-1)^{n+i+1} y_{i+1}, \ldots,(-1)^{2 n-1} y_{n-1}\right), \\
& H\left(y_{0}, y_{1}, \ldots, y_{n-1} ; z_{0}, z_{1}, \ldots, z_{n-1}\right) \\
& \quad=k\left((-1)^{n} y_{0},(-1)^{n+1} y_{1}, \ldots,(-1)^{2 n-1} y_{n-1} ;(-1)^{n} z_{0},(-1)^{n+1} z_{1}, \ldots,(-1)^{2 n-1} z_{n-1}\right) .
\end{aligned}
$$

This shows that BVP (1.1), (3.2) on the interval $\left[x_{1}, x_{2}\right]$ can be transformed to the same type as BVP (1.1), (3.1) on the interval $\left[-x_{2},-x_{1}\right]$.

Lemma 3.1 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{7}\right)$ hold. Then each of BVP (1.1), (3.1), $B V P(1.1), ~(3.2)$, and $B V P(1.1), ~(3.3) ~ h a s ~ a t ~ l e a s t ~ o n e ~ s o l u t i o n . ~$

Proof It is easy to check that conditions $\left(\bar{H}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right)$, $\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{7}\right)$ imply conditions $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right),\left(\mathrm{H}_{5}\right)$, and $\left(\mathrm{H}_{8}\right)$ for BVP (1.1), (3.1) as well as conditions $\left(\mathrm{H}_{1}\right)$, $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right),\left(\mathrm{H}_{5}^{\prime}\right)$, and $\left(\mathrm{H}_{8}^{\prime}\right)$ for BVP (1.1), (3.3), respectively. Hence by Lemma 2.1 and 2.2, each of BVP (1.1), (3.1) and BVP (1.1), (3.3) has at least one solution.
Similarly, by Lemma 2.1 BVP (1.1'), (3.2') has at least one solution. Hence BVP (1.1), (3.2) has at least one solution.

Lemma 3.2 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{6}\right)$ hold. Then each of BVP (1.1), (3.1), BVP (1.1), (3.2), and BVP (1.1), (3.3) has exactly one solution.

Proof Similarly to the proof of Lemma 3.1 by Lemma 2.3 and 2.4, the lemma follows.

In order to prove our main results, we introduce some concepts as follows.

Definition 3.1 A set-valued function $T: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is said to be upper semi-continuous at $\mu_{0} \in \mathbb{R}$ if for any open set U with $T\left(\mu_{0}\right) \subset U$, there exists a neighborhood V of μ_{0} such that $\bigcup_{\mu \in V} T(\mu) \subset U$.

Definition 3.2 Let I_{1} and I_{2} be subsets of \mathbb{R}.
(1) If for any $t_{1} \in I_{1}$ and $t_{2} \in I_{2}, t_{1} \leq t_{2}$ holds, then we denote $I_{1} \leq I_{2}$ and say that I_{1} is not greater than I_{2}.
(2) If for any $t_{1} \in I_{1}$ and $t_{2} \in I_{2}, t_{1}<t_{2}$ holds, then we denote $I_{1}<I_{2}$ and say that I_{1} is less than I_{2}.

Definition 3.3

(1) Define a set-valued function $T_{1}: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ by

$$
T_{1}(\mu)=S_{\mu} \quad \text { for any } \mu \in \mathbb{R}
$$

where $S_{\mu}=\left\{y^{(n-1)}\left(x_{2}, \mu\right): y(x, \mu)\right.$ are solutions of BVP (1.1), (3.1) $\}$;
(2) Define a set-valued function $T_{2}: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ by

$$
T_{2}(\mu)=J_{\mu} \quad \text { for any } \mu \in \mathbb{R},
$$

where $J_{\mu}=\left\{y^{(n-1)}\left(x_{2}, \mu\right): y(x, \mu)\right.$ are solutions of BVP (1.1), (3.2) $\}$.

Lemma 3.3

(1) Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$ and $\left(\overline{\mathrm{H}}_{7}\right)$ hold. If $\mu_{1}<\mu_{2}$, then

$$
T_{1}\left(\mu_{1}\right) \geq T_{1}\left(\mu_{2}\right), \quad T_{2}\left(\mu_{1}\right) \leq T_{2}\left(\mu_{2}\right) .
$$

(2) Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$ and $\left(\overline{\mathrm{H}}_{6}\right)$ hold. If $\mu_{1}<\mu_{2}$, then

$$
T_{1}\left(\mu_{1}\right)>T_{1}\left(\mu_{2}\right) .
$$

Proof (1) Let us show first the inequality with respect to T_{1}. To do this, we take any $y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right) \in S_{\mu_{1}}, y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right) \in S_{\mu_{2}}$. Suppose that $y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right) \geq y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right)$ is false, i.e., $y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right)<y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right)$. Then, for each $i=0,1, \ldots, n-3$, from (3.1) we have by the mean value theorem

$$
\begin{aligned}
0 & =g_{i}\left(y_{2}^{(i)}\left(x_{2}, \mu_{2}\right), \ldots, y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right)\right)-g_{i}\left(y_{1}^{(i)}\left(x_{2}, \mu_{1}\right), \ldots, y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right)\right) \\
& =\frac{\partial g_{i}}{\partial y_{i}} \cdot\left(y_{2}^{(i)}\left(x_{2}, \mu_{2}\right)-y_{1}^{(i)}\left(x_{2}, \mu_{1}\right)\right)+\sum_{j=i+1}^{n-1} \frac{\partial g_{i}}{\partial y_{j}} \cdot\left(y_{2}^{(j)}\left(x_{2}, \mu_{2}\right)-y_{1}^{(j)}\left(x_{2}, \mu_{1}\right)\right),
\end{aligned}
$$

and $y_{1}^{(n-2)}\left(x_{2}, \mu_{1}\right)=\mu_{1}<\mu_{2}=y_{2}^{(n-2)}\left(x_{2}, \mu_{2}\right)$. By $\left(\overline{\mathrm{H}}_{4}\right)$ we can inductively show that, for each $i=n-3, \ldots, 1,0, y_{1}^{(i)}\left(x_{2}, \mu_{1}\right) \leq y_{2}^{(i)}\left(x_{2}, \mu_{2}\right)$. Consequently by Lemma 2.5 we have $y_{1}^{(n-1)}\left(x, \mu_{1}\right) \leq y_{2}^{(n-1)}\left(x, \mu_{2}\right)$ for $x_{2} \leq x \leq x_{3}$. Furthermore one can inductively get for each $i=n-2, \ldots, 1,0$ the result $y_{1}^{(i)}\left(x, \mu_{1}\right)<y_{2}^{(i)}\left(x, \mu_{2}\right)$ for $x_{2}<x \leq x_{3}$. Now by $\left(\bar{H}_{5}\right)$ and $\left(\bar{H}_{7}\right)$ we get

$$
\begin{aligned}
& h\left(y_{2}\left(x_{2}, \mu_{2}\right), \ldots, y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right) ; y_{2}\left(x_{3}, \mu_{2}\right), \ldots, y_{2}^{(n-1)}\left(x_{3}, \mu_{2}\right)\right) \\
& \quad \quad-h\left(y_{1}\left(x_{2}, \mu_{1}\right), \ldots, y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right) ; y_{1}\left(x_{3}, \mu_{1}\right), \ldots, y_{1}^{(n-1)}\left(x_{3}, \mu_{1}\right)\right) \\
& \quad=\sum_{i=0}^{n-1} \frac{\partial h}{\partial y_{i}} \cdot\left(y_{2}^{(i)}\left(x_{2}, \mu_{2}\right)-y_{1}^{(i)}\left(x_{2}, \mu_{1}\right)\right)+\sum_{i=0}^{n-1} \frac{\partial h}{\partial z_{i}} \cdot\left(y_{2}^{(i)}\left(x_{3}, \mu_{2}\right)-y_{1}^{(i)}\left(x_{3}, \mu_{1}\right)\right)
\end{aligned}
$$

$$
>0 .
$$

This is a contradiction to (3.1). Thus we conclude that

$$
y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right) \geq y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right),
$$

i.e., $T_{1}\left(\mu_{1}\right) \geq T_{1}\left(\mu_{2}\right)$ for $\mu_{1}<\mu_{2}$.

By similar arguments, we can show the inequality for T_{2}.
(2) Since $\left(\overline{\mathrm{H}}_{5}\right)$ and $\left(\overline{\mathrm{H}}_{6}\right)$ imply $\left(\overline{\mathrm{H}}_{7}\right)$, for any $y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right) \in S_{\mu_{1}}$ and $y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right) \in S_{\mu_{2}}$, we have by (1), $y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right) \geq y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right)$. Suppose $y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right)=y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right)$. Then both $y_{1}\left(x, \mu_{1}\right)$ and $y_{2}\left(x, \mu_{2}\right)$ are solutions of BVP (1.1), (3.3) with $\mu=y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right)=y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right)$. By Lemma 3.2 of the uniqueness, we conclude $y_{1}\left(x, \mu_{1}\right)=y_{2}\left(x, \mu_{2}\right)$ for $x_{2} \leq x \leq x_{3}$, which implies

$$
\mu_{1}=y_{1}^{(n-2)}\left(x_{2}, \mu_{1}\right)=y_{2}^{(n-2)}\left(x_{2}, \mu_{2}\right)=\mu_{2} .
$$

This is a contradiction. Thus $y_{1}^{(n-1)}\left(x_{2}, \mu_{1}\right)>y_{2}^{(n-1)}\left(x_{2}, \mu_{2}\right)$, i.e., $T_{1}\left(\mu_{1}\right)>T_{1}\left(\mu_{2}\right)$ for $\mu_{1}<$ μ_{2}.

Lemma 3.4 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$ and $\left(\overline{\mathrm{H}}_{7}\right)\left(\right.$ or $\left.\left(\overline{\mathrm{H}}_{6}\right)\right)$ hold. Then, for any $\mu \in \mathbb{R}$, both S_{μ} and J_{μ} are compact and connected subsets of \mathbb{R}.

Proof If $\left(\overline{\mathrm{H}}_{i}\right), i=1,2,3,4,5,6$ hold, then by Lemma 3.2, each of BVP (1.1), (3.1) and BVP (1.1), (3.2) has exactly one solution. Consequently both S_{μ} and J_{μ} are single-point sets. Hence the theorem holds.
Now let $\left(\overline{\mathrm{H}}_{i}\right), i=1,2,3,4,5,7$ hold. First, we prove that S_{μ} is an interval. To do this, let us take any $y_{1}^{(n-1)}\left(x_{2}, \mu\right), y_{2}^{(n-1)}\left(x_{2}, \mu\right) \in S_{\mu}$ with $y_{1}^{(n-1)}\left(x_{2}, \mu\right)<y_{2}^{(n-1)}\left(x_{2}, \mu\right)$. We need to show that if $y_{1}^{(n-1)}\left(x_{2}, \mu\right)<y_{0}^{(n-1)}<y_{2}^{(n-1)}\left(x_{2}, \mu\right)$, then $y_{0}^{(n-1)} \in S_{\mu}$. By $\left(\bar{H}_{4}\right)$, it is easy to see inductively that $y_{1}^{(i)}\left(x_{2}, \mu\right) \leq y_{2}^{(i)}\left(x_{2}, \mu\right), i=n-3, \ldots, 1,0$, and for any fixed $y_{0}^{(n-1)} \in$ $\left(y_{1}^{(n-1)}\left(x_{2}, \mu\right), y_{2}^{(n-1)}\left(x_{2}, \mu\right)\right)$ there exist unique $y_{0}^{(i)} \in\left[y_{1}^{(i)}\left(x_{2}, \mu\right), y_{2}^{(i)}\left(x_{2}, \mu\right)\right], i=n-3, \ldots, 1,0$, such that

$$
g_{i}\left(y_{0}^{(i)}, y_{0}^{(i+1)}, \ldots, y_{0}^{(n-3)}, \mu, y_{0}^{(n-1)}\right)=0, \quad i=0,1, \ldots, n-3 .
$$

Now let $y_{0}(x)$ be the unique solution of (1.1) which satisfies the initial conditions $y_{0}^{(i)}\left(x_{2}\right)=$ $y_{0}^{(i)}, i=0,1, \ldots, n-1$, where $y_{0}^{(n-2)}=\mu$. Then by Lemma $2.5, y_{1}^{(n-1)}(x, \mu) \leq y_{0}^{(n-1)}(x)$ for $x_{2} \leq$ $x \leq x_{3}$. Furthermore we have $y_{1}^{(i)}(x, \mu) \leq y_{0}^{(i)}(x)$ for $x_{2} \leq x \leq x_{3}, i=0,1, \ldots, n-2$. Similarly we can show that $y_{0}^{(i)}(x) \leq y_{2}^{(i)}(x, \mu)$ for $x_{2} \leq x \leq x_{3}, i=0,1, \ldots, n-1$. Hence by $\left(\bar{H}_{5}\right)$, we have

$$
\begin{aligned}
& h\left(y_{0}\left(x_{2}\right), y_{0}^{\prime}\left(x_{2}\right), \ldots, y_{0}^{(n-1)}\left(x_{2}\right) ; y_{0}\left(x_{3}\right), y_{0}^{\prime}\left(x_{3}\right), \ldots, y_{0}^{(n-1)}\left(x_{3}\right)\right) \\
& \quad \geq h\left(y_{1}\left(x_{2}, \mu\right), y_{1}^{\prime}\left(x_{2}, \mu\right), \ldots, y_{1}^{(n-1)}\left(x_{2}, \mu\right) ; y_{1}\left(x_{3}, \mu\right), y_{1}^{\prime}\left(x_{3}, \mu\right), \ldots, y_{1}^{(n-1)}\left(x_{3}, \mu\right)\right) \\
& \quad=0
\end{aligned}
$$

and

$$
\begin{aligned}
& h\left(y_{0}\left(x_{2}\right), y_{0}^{\prime}\left(x_{2}\right), \ldots, y_{0}^{(n-1)}\left(x_{2}\right) ; y_{0}\left(x_{3}\right), y_{0}^{\prime}\left(x_{3}\right), \ldots, y_{0}^{(n-1)}\left(x_{3}\right)\right) \\
& \quad \leq h\left(y_{2}\left(x_{2}, \mu\right), y_{2}^{\prime}\left(x_{2}, \mu\right), \ldots, y_{2}^{(n-1)}\left(x_{2}, \mu\right) ; y_{2}\left(x_{3}, \mu\right), y_{2}^{\prime}\left(x_{3}, \mu\right), \ldots, y_{2}^{(n-1)}\left(x_{3}, \mu\right)\right) \\
& \quad=0 .
\end{aligned}
$$

Thus

$$
h\left(y_{0}\left(x_{2}\right), y_{0}^{\prime}\left(x_{2}\right), \ldots, y_{0}^{(n-1)}\left(x_{2}\right) ; y_{0}\left(x_{3}\right), y_{0}^{\prime}\left(x_{3}\right), \ldots, y_{0}^{(n-1)}\left(x_{3}\right)\right)=0 .
$$

Hence $y_{0}(x)$ satisfies the boundary condition (3.1), which implies that $y_{0}(x)$ is the solution of BVP (1.1), (3.1), and then $y_{0}^{(n-1)}=y_{0}^{(n-1)}\left(x_{2}\right) \in S_{\mu}$.
Next, we show that S_{μ} is closed. To do this, for any sequence $\left\{y_{m}^{(n-1)}\right\}_{m=1}^{\infty}$ in S_{μ} with $y_{m}^{(n-1)} \rightarrow y_{0}^{(n-1)}$ as $m \rightarrow \infty$, we need to show $y_{0}^{(n-1)} \in S_{\mu}$. By the definition of S_{μ}, corresponding to $\left\{y_{m}^{(n-1)}\right\}_{m=1}^{\infty}$ there exists a sequence $\left\{y_{m}(x, \mu)\right\}_{m=1}^{\infty}$ of solutions of BVP (1.1), (3.1) such that $y_{m}^{(n-1)}=y_{m}^{(n-1)}\left(x_{2}, \mu\right)$. By $\left(\overline{\mathrm{H}}_{4}\right)$, it is easy to see that, for each $y_{m}^{(n-1)}$, there exist $y_{m}^{(i)}$, $i=0,1, \ldots, n-3$, such that

$$
g_{i}\left(y_{m}^{(i)}, y_{m}^{(i+1)}, \ldots, y_{m}^{(n-3)}, \mu, y_{m}^{(n-1)}\right)=0, \quad i=0,1, \ldots, n-3 .
$$

Furthermore we have, by $\left(\overline{\mathrm{H}}_{4}\right)$,

$$
y_{m}^{(i)}=y_{m}^{(i)}\left(x_{2}, \mu\right), \quad i=0,1, \ldots, n-3, m=1,2, \ldots .
$$

Now let us show that the sequences $\left\{y_{m}^{(i)}\right\}_{m=1}^{\infty}, i=0,1, \ldots, n-3$, are convergent. In fact, when $i=n-3$, for any positive integers $m, p \in \mathbb{N}$ we have

$$
\begin{aligned}
0 & =g_{n-3}\left(y_{m}^{(n-3)}, \mu, y_{m}^{(n-1)}\right)-g_{n-3}\left(y_{m+p}^{(n-3)}, \mu, y_{m+p}^{(n-1)}\right) \\
& =\frac{\partial g_{n-3}}{\partial y_{n-3}} \cdot\left(y_{m}^{(n-3)}-y_{m+p}^{(n-3)}\right)+\frac{\partial g_{n-3}}{\partial y_{n-1}} \cdot\left(y_{m}^{(n-1)}-y_{m+p}^{(n-1)}\right) .
\end{aligned}
$$

Consequently by $\left(\overline{\mathrm{H}}_{4}\right)$, we get

$$
\left|y_{m}^{(n-3)}-y_{m+p}^{(n-3)}\right| \leq \delta^{-1}\left|\frac{\partial g_{n-3}}{\partial y_{n-1}}\right|\left|y_{m}^{(n-1)}-y_{m+p}^{(n-1)}\right| .
$$

Since $\left\{y_{m}^{(n-1)}\right\}_{m=1}^{\infty}$ is a Cauchy sequence, so is the sequence $\left\{y_{m}^{(n-3)}\right\}_{m=1}^{\infty}$. Hence $\left\{y_{m}^{(n-3)}\right\}_{m=1}^{\infty}$ converges to a number $y_{0}^{(n-3)}$. Similarly we can show inductively that, for each $i=n-4, \ldots, 1,0$, the sequence $\left\{y_{m}^{(i)}\right\}_{m=1}^{\infty}$ converges to a number $y_{0}^{(i)}$.

We note that $y_{m}^{(n-2)}=y_{0}^{(n-2)}=\mu, m=1,2, \ldots$. Then by Kamke's standard convergence theorem [37], there exists a solution $y=\hat{y}(x)$ of (1.1) defined on [x_{2}, x_{3}] satisfying initial conditions $\hat{y}^{(i)}\left(x_{2}\right)=y_{0}^{(i)}, i=0,1, \ldots, n-1$, and there exists a subsequence $\left\{y_{m_{j}}(x, \mu)\right\}_{j=1}^{\infty}$ of $\left\{y_{m}(x, \mu)\right\}_{m=1}^{\infty}$ such that, for each $i=0,1, \ldots, n-1$, the sequence $\left\{y_{m_{j}}^{(i)}(x, \mu)\right\}_{j=1}^{\infty}$ uniformly converges to $\hat{y}^{(i)}(x)$ on $\left[x_{2}, x_{3}\right]$. It is easy to see that $y=\hat{y}(x)$ is the solution of BVP (1.1), (3.1). Hence $y_{0}^{(n-1)}=\hat{y}^{(n-1)}\left(x_{2}\right) \in S_{\mu}$.

Finally, we show that S_{μ} is bounded. To do this, we take $\mu_{1}, \mu_{2} \in \mathbb{R}$ with $\mu_{1}<\mu<\mu_{2}$. Then from Lemma 3.3, we have

$$
S_{\mu_{2}} \leq S_{\mu} \leq S_{\mu_{1}} .
$$

This implies the boundedness of S_{μ}.
By a similar argument for BVP $\left(1.1^{\prime}\right)$, (3.2 $)$, we can show that J_{μ} is also a compact and connected subset of \mathbb{R}.

Lemma 3.5 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{7}\right)$ hold. Then there exist sequences $\left\{y_{m}\left(x, \mu_{m}\right)\right\}_{m=1}^{\infty}$ and $\left\{y_{m}\left(x, v_{m}\right)\right\}_{m=1}^{\infty}$ of solutions of $B V P$ (1.1), (3.1) with $\mu=\mu_{m}$
and of BVP (1.1), (3.1) with $\mu=v_{m}$, respectively, for which

$$
\lim _{m \rightarrow \infty} y_{m}^{(n-1)}\left(x_{2}, \mu_{m}\right)=\infty, \quad \lim _{m \rightarrow \infty} y_{m}^{(n-1)}\left(x_{2}, v_{m}\right)=-\infty
$$

Proof Let us take a sequence $\left\{y_{m}^{(n-1)}\right\}_{m=1}^{\infty}$ with $\lim _{m \rightarrow \infty} y_{m}^{(n-1)}=\infty$. Then, by Lemma 3.1, BVP (1.1), (3.3) with $\mu=y_{m}^{(n-1)}$ has a solution, denoted by $y_{m}(x)$. It is easy to see that $y_{m}(x)$ is the solution of BVP (1.1), (3.1) with $\mu=y_{m}^{(n-2)}\left(x_{2}\right)$. Let $\mu_{m}=y_{m}^{(n-2)}\left(x_{2}\right)$ and let $y_{m}\left(x, \mu_{m}\right)=y_{m}(x)$. Then $y_{m}^{(n-1)}\left(x_{2}, \mu_{m}\right) \in S_{\mu_{m}}$ and

$$
\lim _{m \rightarrow \infty} y_{m}^{(n-1)}\left(x_{2}, \mu_{m}\right)=\lim _{m \rightarrow \infty} y_{m}^{(n-1)}=\infty
$$

Similarly one can show that there exists $y_{m}^{(n-1)}\left(x_{2}, v_{m}\right) \in S_{v_{m}}$, for which

$$
\lim _{m \rightarrow \infty} y_{m}^{(n-1)}\left(x_{2}, v_{m}\right)=-\infty
$$

Lemma 3.6 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$ and $\left(\overline{\mathrm{H}}_{7}\right)$ hold. Then
(1) for any $\mu_{0} \in \mathbb{R}$ and $\varepsilon>0$, there exists $\rho>0$ such that if $\left|\mu-\mu_{0}\right|<\rho$, then, for any $y^{(n-1)}\left(x_{2}, \mu\right) \in S_{\mu}$, there exists $y^{(n-1)}\left(x_{2}, \mu_{0}\right) \in S_{\mu_{0}}$ satisfying $\left|y^{(n-1)}\left(x_{2}, \mu\right)-y^{(n-1)}\left(x_{2}, \mu_{0}\right)\right|<\varepsilon ;$
(2) for any $\mu_{0} \in \mathbb{R}$ and $\varepsilon>0$, there exists $\rho>0$ such that if $\left|\mu-\mu_{0}\right|<\rho$, then, for any $z^{(n-1)}\left(x_{2}, \mu\right) \in J_{\mu}$, there exists $z^{(n-1)}\left(x_{2}, \mu_{0}\right) \in J_{\mu_{0}}$ satisfying $\left|z^{(n-1)}\left(x_{2}, \mu\right)-z^{(n-1)}\left(x_{2}, \mu_{0}\right)\right|<\varepsilon$.

Proof Let us prove only (1), since (2) can be shown similarly.
Suppose the conclusion (1) is false. Then there exist $\mu_{0} \in \mathbb{R}$ and $\varepsilon_{0}>0$ such that, for each $\rho=\frac{1}{m}, m=1,2, \ldots$, there exist $\mu_{m} \in\left(\mu_{0}-\frac{1}{m}, \mu_{0}+\frac{1}{m}\right)$ and $y^{(n-1)}\left(x_{2}, \mu_{m}\right) \in S_{\mu_{m}}$ such that, for any $y^{(n-1)}\left(x_{2}, \mu_{0}\right) \in S_{\mu_{0}}$,

$$
\left|y^{(n-1)}\left(x_{2}, \mu_{m}\right)-y^{(n-1)}\left(x_{2}, \mu_{0}\right)\right| \geq \varepsilon_{0} .
$$

Since $\mu_{0}-\frac{1}{m}<\mu_{m}<\mu_{0}+\frac{1}{m}, m=1,2, \ldots$, we have by Lemma 3.3

$$
T_{1}\left(\mu_{0}+1\right) \leq T_{1}\left(\mu_{0}+\frac{1}{m}\right) \leq\left\{y^{(n-1)}\left(x_{2}, \mu_{m}\right)\right\} \leq T_{1}\left(\mu_{0}-\frac{1}{m}\right) \leq T_{1}\left(\mu_{0}-1\right)
$$

Thus $\left\{y^{(n-1)}\left(x_{2}, \mu_{m}\right)\right\}_{m=1}^{\infty}$ is bounded. Without loss of generality, we may assume that $y^{(n-1)}\left(x_{2}, \mu_{m}\right) \rightarrow y_{0}^{(n-1)}$ as $m \rightarrow \infty$. For any positive integers $m, p \in \mathbb{N}$, we have, for each $i=0,1, \ldots, n-3$,

$$
\begin{aligned}
0= & g_{i}\left(y^{(i)}\left(x_{2}, \mu_{m}\right), \ldots, y^{(n-1)}\left(x_{2}, \mu_{m}\right)\right) \\
& -g_{i}\left(y^{(i)}\left(x_{2}, \mu_{m+p}\right), \ldots, y^{(n-1)}\left(x_{2}, \mu_{m+p}\right)\right) \\
= & \frac{\partial g_{i}}{\partial y_{i}} \cdot\left(y^{(i)}\left(x_{2}, \mu_{m}\right)-y^{(i)}\left(x_{2}, \mu_{m+p}\right)\right) \\
& +\sum_{j=i+1}^{n-1} \frac{\partial g_{i}}{\partial y_{j}} \cdot\left(y^{(j)}\left(x_{2}, \mu_{m}\right)-y^{(j)}\left(x_{2}, \mu_{m+p}\right)\right) .
\end{aligned}
$$

Hence, for each $i=0,1, \ldots, n-3$, by $\left(\overline{\mathrm{H}}_{4}\right)$ we have

$$
\left|y^{(i)}\left(x_{2}, \mu_{m}\right)-y^{(i)}\left(x_{2}, \mu_{m+p}\right)\right| \leq \delta^{-1} \sum_{j=i+1}^{n-1}\left|\frac{\partial g_{i}}{\partial y_{j}}\right|\left|y^{(j)}\left(x_{2}, \mu_{m}\right)-y^{(j)}\left(x_{2}, \mu_{m+p}\right)\right| .
$$

Since $\left\{y^{(n-1)}\left(x_{2}, \mu_{m}\right)\right\}_{m=1}^{\infty}$ and $\left\{y^{(n-2)}\left(x_{2}, \mu_{m}\right)\right\}_{m=1}^{\infty}=\left\{\mu_{m}\right\}_{m=1}^{\infty}$ are convergent, $\left\{y^{(n-3)}\left(x_{2}\right.\right.$, $\left.\left.\mu_{m}\right)\right\}_{m=1}^{\infty}$ is a Cauchy sequence, and thus $\left\{y^{(n-3)}\left(x_{2}, \mu_{m}\right)\right\}_{m=1}^{\infty}$ is convergent. Similarly one can show inductively that, for each $i=n-4, \ldots, 1,0,\left\{y^{(i)}\left(x_{2}, \mu_{m}\right)\right\}_{m=1}^{\infty}$ is also convergent. Set $\lim _{m \rightarrow \infty} y^{(i)}\left(x_{2}, \mu_{m}\right)=y_{0}^{(i)}, i=0,1, \ldots, n-1$, where $y_{0}^{(n-2)}=\mu_{0}$. Then by Kamke's convergence theorem, there exists a solution $y=\hat{y}(x)$ of (1.1) defined on $\left[x_{2}, x_{3}\right]$ satisfying the initial conditions $\hat{y}^{(i)}\left(x_{2}\right)=y_{0}^{(i)}, i=0,1, \ldots, n-1$ and there exists a subsequence $\left\{y\left(x, \mu_{m_{j}}\right)\right\}_{j=1}^{\infty}$ of $\left\{y\left(x, \mu_{m}\right)\right\}_{m=1}^{\infty}$ such that, for each $i=0,1, \ldots, n-1$, the sequence $\left\{y^{(i)}\left(x, \mu_{m_{j}}\right)\right\}_{j=1}^{\infty}$ uniformly converges to $\hat{y}^{(i)}(x)$ on $\left[x_{2}, x_{3}\right]$. It is easy to see that $\hat{y}(x)$ is the solution of BVP (1.1), (3.1) with $\mu=\mu_{0}$. Consequently $y_{0}^{(n-1)}=\hat{y}^{(n-1)}\left(x_{2}\right) \in S_{\mu_{0}}$, and hence

$$
\left|y^{(n-1)}\left(x_{2}, \mu_{m}\right)-y_{0}^{(n-1)}\right| \geq \varepsilon_{0},
$$

which is a contradiction to $\lim _{m \rightarrow \infty} y^{(n-1)}\left(x_{2}, \mu_{m}\right)=y_{0}^{(n-1)}$. Thus (1) holds.
Lemma 3.7 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{7}\right)$ hold. Then both T_{1} and T_{2} are upper semi-continuous on \mathbb{R}.

Proof For any $\mu_{0} \in \mathbb{R}$, let us show T_{1} is upper semi-continuous at $\mu=\mu_{0}$.
From Lemma 3.4, $T_{1}\left(\mu_{0}\right)$ is a compact and connected subset of \mathbb{R}. Hence without loss of generality, we may assume that

$$
T_{1}\left(\mu_{0}\right)=\left[y_{1}^{(n-1)}\left(x_{2}, \mu_{0}\right), y_{2}^{(n-1)}\left(x_{2}, \mu_{0}\right)\right] .
$$

Take any open set U with $T_{1}\left(\mu_{0}\right) \subset U$. Then there exists $\varepsilon>0$ such that

$$
\left(y_{1}^{(n-1)}\left(x_{2}, \mu_{0}\right)-\varepsilon, y_{2}^{(n-1)}\left(x_{2}, \mu_{0}\right)+\varepsilon\right) \subset U .
$$

Thus from Lemma 3.6, there exists $\rho>0$ such that if $\left|\mu-\mu_{0}\right|<\rho$, then, for any $y^{(n-1)}\left(x_{2}, \mu\right) \in S_{\mu}$, there exists $y^{(n-1)}\left(x_{2}, \mu_{0}\right) \in S_{\mu_{0}}=T_{1}\left(\mu_{0}\right)$ for which

$$
\left|y^{(n-1)}\left(x_{2}, \mu\right)-y^{(n-1)}\left(x_{2}, \mu_{0}\right)\right|<\varepsilon,
$$

and so $S_{\mu} \subset U$. Hence T_{1} is upper semi-continuous at $\mu=\mu_{0}$.
The upper semi-continuity of T_{2} on \mathbb{R} can be shown similarly.

Theorem 3.1 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{7}\right)$ hold. Then BVP (1.1), (1.2) has at least one solution.

Proof We consider two cases as follows.
Case 1. Suppose there exists $\mu_{0} \in \mathbb{R}$ such that $S_{\mu_{0}} \cap J_{\mu_{0}} \neq \emptyset$. Then BVP (1.1), (3.1) with $\mu=\mu_{0}$ and BVP (1.1), (3.2) with $\mu=\mu_{0}$ have solutions $y\left(x, \mu_{0}\right)$ and $z\left(x, \mu_{0}\right)$, respectively,
such that $y^{(n-1)}\left(x_{2}, \mu_{0}\right)=z^{(n-1)}\left(x_{2}, \mu_{0}\right)$. Since $y^{(n-2)}\left(x_{2}, \mu_{0}\right)=\mu_{0}=z^{(n-2)}\left(x_{2}, \mu_{0}\right)$, by $\left(\bar{H}_{4}\right)$ it is easy to see that $y^{(i)}\left(x_{2}, \mu_{0}\right)=z^{(i)}\left(x_{2}, \mu_{0}\right), i=0,1, \ldots, n-3$. Hence, if we let

$$
u(x):= \begin{cases}y\left(x, \mu_{0}\right), & x \in\left[x_{2}, x_{3}\right], \\ z\left(x, \mu_{0}\right), & x \in\left[x_{1}, x_{2}\right],\end{cases}
$$

then $u(x)$ is a solution of BVP (1.1), (1.2).
Case 2. Suppose for any $\mu \in \mathbb{R}, S_{\mu} \cap J_{\mu}=\emptyset$. Then by Lemma 3.3 and 3.5, there exist μ_{1} and μ_{2} with $\mu_{1}<\mu_{2}$, such that

$$
S_{\mu_{1}}>J_{\mu_{1}}, \quad S_{\mu_{2}}<J_{\mu_{2}}, \quad S_{\mu_{1}}>S_{\mu_{2}}
$$

In fact, let us take any $\mu_{0} \in \mathbb{R}$ and $z^{(n-1)}\left(x_{2}, \mu_{0}\right) \in J_{\mu_{0}}$. Then by Lemma 3.5, there exists some $y_{1}^{(n-1)}\left(x_{2}, v_{1}\right) \in S_{\nu_{1}}$ such that $y_{1}^{(n-1)}\left(x_{2}, v_{1}\right)>z^{(n-1)}\left(x_{2}, \mu_{0}\right)$. Take μ_{1} with $\mu_{1}<\min \left\{v_{1}, \mu_{0}\right\}$. Then by Lemma 3.3, we have

$$
S_{\mu_{1}} \geq\left\{y_{1}^{(n-1)}\left(x_{2}, v_{1}\right)\right\}>\left\{z^{(n-1)}\left(x_{2}, \mu_{0}\right)\right\} \geq J_{\mu_{1}} .
$$

Also by Lemma 3.5, there exists some $y_{2}^{(n-1)}\left(x_{2}, v_{2}\right) \in S_{\nu_{2}}$ such that

$$
y_{2}^{(n-1)}\left(x_{2}, v_{2}\right)<\min \left\{z^{(n-1)}\left(x_{2}, \mu_{1}\right), y_{1}^{(n-1)}\left(x_{2}, v_{1}\right)\right\} .
$$

Again take $\mu_{2}>\max \left\{\mu_{1}, \nu_{2}\right\}$. Then by Lemma 3.3, we have

$$
S_{\mu_{2}} \leq\left\{y_{2}^{(n-1)}\left(x_{2}, \nu_{2}\right)\right\}<\left\{z^{(n-1)}\left(x_{2}, \mu_{1}\right)\right\} \leq J_{\mu_{2}}
$$

and

$$
S_{\mu_{1}} \geq\left\{y_{1}^{(n-1)}\left(x_{2}, v_{1}\right)\right\}>\left\{y_{2}^{(n-1)}\left(x_{2}, v_{2}\right)\right\} \geq S_{\mu_{2}} .
$$

Now we apply a bisection argument as follows. Set $a_{0}=\mu_{1}, b_{0}=\mu_{2}$. Then we have two cases, i.e.,

$$
S_{\frac{a_{0}+b_{0}}{2}}>J_{\frac{a_{0}+b_{0}}{2}} \quad \text { or } \quad S_{\frac{a_{0}+b_{0}}{2}}<J_{\frac{a_{0}+b_{0}}{2}} .
$$

If $S_{\frac{a_{0}+b_{0}}{2}}>J_{\frac{a_{0}+b_{0}}{2}}$, set $a_{1}=\frac{a_{0}+b_{0}}{2}$ and $b_{1}=b_{0}$. If $S_{\frac{a_{0}+b_{0}}{2}}<J_{\frac{a_{0}+b_{0}}{2}}$, set $a_{1}=a_{0}$ and $b_{1}=\frac{a_{0}+b_{0}}{2}$. In summary, there exist $a_{1}, b_{1} \in\left[a_{0}, b_{0}\right]$ such that

$$
a_{1}<b_{1}, \quad b_{1}-a_{1}=\frac{1}{2}\left(b_{0}-a_{0}\right), \quad S_{a_{1}}>J_{a_{1}}, \quad S_{b_{1}}<J_{b_{1}} .
$$

By continuing this bisection process, we can get sequences $\left\{a_{m}\right\}_{m=1}^{\infty}$ and $\left\{b_{m}\right\}_{m=1}^{\infty}$ with $a_{m}, b_{m} \in\left[a_{m-1}, b_{m-1}\right] \subset\left[a_{0}, b_{0}\right], m=1,2, \ldots$, such that

$$
a_{m}<b_{m}, \quad b_{m}-a_{m}=\frac{1}{2^{m}}\left(b_{0}-a_{0}\right), \quad S_{a_{m}}>J_{a_{m}}, \quad S_{b_{m}}<J_{b_{m}} .
$$

Hence by the nested interval theorem, there uniquely exists $\xi \in \mathbb{R}$ such that $\xi \in$ $\bigcap_{m=1}^{\infty}\left[a_{m}, b_{m}\right]$, actually a_{m}, b_{m} squeeze to the common limit ξ.

Suppose $S_{\xi}>J_{\xi}$. Then since both S_{ξ} and J_{ξ} are compact and connected subsets of \mathbb{R} and $S_{\xi} \cap J_{\xi}=\emptyset$, there exist two open interval U_{S} and U_{J} such that $U_{S} \supset S_{\xi}, U_{J} \supset J_{\xi}$ and $U_{S} \cap U_{J}=\emptyset$. Consequently $U_{S}>U_{J}$. Since both T_{1} and T_{2} are upper semi-continuous on \mathbb{R} by Lemma 3.7, there exists $\rho>0$ such that if $|\mu-\xi|<\rho$ then $T_{1}(\mu)=S_{\mu} \subset U_{S}$ and $T_{2}(\mu)=J_{\mu} \subset U_{J}$, and thus $S_{\mu}>J_{\mu}$. On the other hand since $b_{m} \rightarrow \xi$ as $m \rightarrow \infty$, there exists $m_{0} \in \mathbb{N}$ such that $\left|b_{m_{0}}-\xi\right|<\rho$, consequently $S_{b_{m_{0}}}>J_{b_{m_{0}}}$, which is a contradiction.
If $S_{\xi}<J_{\xi}$, then we can similarly obtain a contradiction. Hence the case 2 cannot occur. This completes the proof of the theorem.

Theorem 3.2 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{6}\right)$ hold. Then BVP (1.1), (1.2) has exactly one solution.

Proof Since $\left(\overline{\mathrm{H}}_{5}\right)$ and $\left(\overline{\mathrm{H}}_{6}\right)$ imply $\left(\overline{\mathrm{H}}_{7}\right)$, by Theorem 3.1, BVP (1.1), (1.2) has at least one solution.
Now we need to show the uniqueness. By Theorem 3.1, BVP (1.1), (1.2) has a solution $u(x)$, for which we denote

$$
u(x):= \begin{cases}y\left(x, \mu_{0}\right), & x \in\left[x_{2}, x_{3}\right], \\ z\left(x, \mu_{0}\right), & x \in\left[x_{1}, x_{2}\right] .\end{cases}
$$

Let $v(x)$ be any solution of $\operatorname{BVP}(1.1),(1.2)$, and let $z_{1}(x)=v(x)$ for $x_{1} \leq x \leq x_{2}, y_{1}(x)=v(x)$ for $x_{2} \leq x \leq x_{3}$ and $v^{(n-2)}\left(x_{2}\right)=\mu^{*}$. Then $y_{1}(x)$ and $z_{1}(x)$ are the solutions of BVP (1.1), (3.1) with $\mu=\mu^{*}$ and BVP (1.1), (3.2) with $\mu=\mu^{*}$, respectively.
If $\mu^{*}>\mu_{0}$, then by Lemma 3.3 we have

$$
y^{(n-1)}\left(x_{2}, \mu_{0}\right)>y_{1}^{(n-1)}\left(x_{2}\right)=z_{1}^{(n-1)}\left(x_{2}\right) \geq z^{(n-1)}\left(x_{2}, \mu_{0}\right),
$$

which is a contradiction.
If $\mu^{*}<\mu_{0}$, then by Lemma 3.3 we have

$$
z^{(n-1)}\left(x_{2}, \mu_{0}\right) \geq z_{1}^{(n-1)}\left(x_{2}\right)=y_{1}^{(n-1)}\left(x_{2}\right)>y^{(n-1)}\left(x_{2}, \mu_{0}\right),
$$

which is also a contradiction. Hence $\mu^{*}=\mu_{0}$. Consequently by Lemma 3.2, we get $z_{1}(x)=$ $z\left(x, \mu_{0}\right)$ for $x_{1} \leq x \leq x_{2}$ and $y_{1}(x)=y\left(x, \mu_{0}\right)$ for $x_{2} \leq x \leq x_{3}$. Thus $u(x) \equiv v(x)$ on $\left[x_{1}, x_{3}\right]$. This completes the proof of the theorem.

Remark 3.1 Theorem 3.2 includes the results of $[1,2,4,12-14]$ as particular cases.

It is easy to see that the linear boundary conditions in the next corollary satisfy $\left(\bar{H}_{4}\right)$, $\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{6}\right)$.

Corollary 3.1 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right)$, and $\left(\overline{\mathrm{H}}_{3}\right)$ hold. Suppose further that $a_{i} a_{i+1} \leq 0$, $i=0,1, \ldots, n-2, \sum_{i=0}^{n-1}\left|a_{i}\right|>0 ; b_{i i} b_{i j} \leq 0, i=0,1, \ldots, n-3, j=i+1, i+2, \ldots, n-1,\left|b_{i i}\right|>0, i=$ $0,1, \ldots, n-3 ; c_{i} c_{i+1} \geq 0, i=0,1, \ldots, n-2, \sum_{i=0}^{n-2}\left|c_{i}\right|>0$. Then, for any $\lambda_{i} \in \mathbb{R}, i=0,1, \ldots, n-1$,
the three-point boundary value problem of (1.1) with linear boundary conditions

$$
\left\{\begin{array}{l}
\sum_{i=0}^{n-1} a_{i} y^{(i)}\left(x_{1}\right)=\lambda_{0}, \\
\sum_{j=i}^{n-1} b_{i j} y^{(j)}\left(x_{2}\right)=\lambda_{i+1}, \quad i=0,1, \ldots, n-3, \\
\sum_{i=0}^{n-1} c_{i} y^{(i)}\left(x_{3}\right)=\lambda_{n-1}
\end{array}\right.
$$

has exactly one solution.

By using the transformations $x=-t$ and $y(x)=(-1)^{n} z(t)$, from Theorem 3.1 we can easily obtain the following.

Theorem 3.3 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{7}^{\prime}\right)$ hold. Then BVP (1.1), (1.2) has at least one solution.

Similarly to the proof of Theorem 3.2, from Theorem 3.3 we can get the following.

Theorem 3.4 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right),\left(\overline{\mathrm{H}}_{3}\right),\left(\overline{\mathrm{H}}_{4}\right),\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{6}^{\prime}\right)$ hold. Then BVP (1.1), (1.2) has exactly one solution.

It is easy to see that the linear boundary conditions in the next corollary satisfy $\left(\overline{\mathrm{H}}_{4}\right)$, $\left(\overline{\mathrm{H}}_{5}\right)$, and $\left(\overline{\mathrm{H}}_{6}^{\prime}\right)$.

Corollary 3.2 Suppose that $\left(\overline{\mathrm{H}}_{1}\right),\left(\overline{\mathrm{H}}_{2}\right)$, and $\left(\overline{\mathrm{H}}_{3}\right)$ hold. Suppose further that $a_{i} a_{i+1} \leq 0$, $i=0,1, \ldots, n-2, \sum_{i=0}^{n-2}\left|a_{i}\right|>0 ; b_{i i} b_{i j} \leq 0, i=0,1, \ldots, n-3, j=i+1, i+2, \ldots, n-1,\left|b_{i i}\right|>0, i=$ $0,1, \ldots, n-3 ; c_{i} c_{i+1} \geq 0, i=0,1, \ldots, n-2, \sum_{i=0}^{n-1}\left|c_{i}\right|>0$. Then, for any $\lambda_{i} \in \mathbb{R}, i=0,1, \ldots, n-1$, the three-point boundary value problems of (1.1) with linear boundary conditions

$$
\left\{\begin{array}{l}
\sum_{i=0}^{n-1} a_{i} y^{(i)}\left(x_{1}\right)=\lambda_{0}, \\
\sum_{j=i}^{n-1} b_{i j} y^{(j)}\left(x_{2}\right)=\lambda_{i+1}, \quad i=0,1, \ldots, n-3, \\
\sum_{i=0}^{n-1} c_{i} y^{(i)}\left(x_{3}\right)=\lambda_{n-1}
\end{array}\right.
$$

has exactly one solution.

Finally, as an application, we give an example to demonstrate our results.

Example 3.1 Consider a third-order three-point boundary value problem

$$
\begin{align*}
& y^{\prime \prime \prime}=(\sin x) \frac{y^{3}}{1+y^{2}}+(\cos x) \arctan y^{\prime}+\left|y^{\prime \prime}\right|+1, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, \tag{3.4}\\
& \left\{\begin{array}{l}
a_{0} y\left(-\frac{\pi}{2}\right)+a_{1} y^{\prime}\left(-\frac{\pi}{2}\right)+a_{2} y^{\prime \prime}\left(-\frac{\pi}{2}\right)=\lambda_{0}, \\
b_{0} y(0)+b_{1} y^{\prime}(0)+b_{2} y^{\prime \prime}(0)=\lambda_{1}, \\
c_{0} y\left(\frac{\pi}{2}\right)+c_{1} y^{\prime}\left(\frac{\pi}{2}\right)+c_{2} y^{\prime \prime}\left(\frac{\pi}{2}\right)=\lambda_{2},
\end{array}\right. \tag{3.5}
\end{align*}
$$

where $a_{i}, b_{i}, c_{i}, \lambda_{i} \in \mathbb{R}, i=0,1,2$, are constants.
Let

$$
f(x, y, z, w)=(\sin x) \frac{y^{3}}{1+y^{2}}+(\cos x) \arctan z+|w|+1 \quad \text { on }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times \mathbb{R}^{3}
$$

Then it is easy to check that the assumptions $\left(\bar{H}_{1}\right),\left(\bar{H}_{2}\right)$, and $\left(\bar{H}_{3}\right)$ are satisfied. Hence from either Corollary 3.1 or Corollary 3.2, BVP (3.4), (3.5) has exactly one solution under either of the following conditions:
(i) $\quad a_{0} a_{1} \leq 0, a_{1} a_{2} \leq 0,\left|a_{0}\right|+\left|a_{1}\right|+\left|a_{1}\right|>0$;
(ii) $b_{0} b_{1} \leq 0, b_{0} b_{2} \leq 0, b_{0} \neq 0$;
(iii) $c_{0} c_{1} \geq 0, c_{1} c_{2} \geq 0,\left|c_{0}\right|+\left|c_{1}\right|>0$,
or the following conditions:
(i') $\quad a_{0} a_{1} \leq 0, a_{1} a_{2} \leq 0,\left|a_{0}\right|+\left|a_{1}\right|>0$;
(ii') $b_{0} b_{1} \leq 0, b_{0} b_{2} \leq 0, b_{0} \neq 0$;
(iii') $c_{0} c_{1} \geq 0, c_{1} c_{2} \geq 0,\left|c_{0}\right|+\left|c_{1}\right|+\left|c_{2}\right|>0$.
We note that the results of $[1,2,4,12-14]$ cannot guarantee that the above third-order three-point boundary value problem has a unique solution, unless $b_{1}=0$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Beihua University, JiLin, 132013, People's Republic of China. ${ }^{2}$ Department of Mathematics, Yeungnam University, Kyongsan, 712-749, Korea.

Received: 26 June 2014 Accepted: 3 November 2014 Published online: 22 November 2014

References

1. Agarwal, RP: On boundary value problems for $y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$. Bull. Inst. Math. Acad. Sin. 12, 153-157 (1984)
2. Barr, D, Sherman, T: Existence and uniqueness of solution of three-point boundary value problems. J. Differ. Equ. 13, 197-212 (1973)
3. Clark, S, Henderson, J: Optimal interval lengths for nonlocal boundary value problems associated with third order Lipschitz equations. J. Math. Anal. Appl. 322, 468-476 (2006)
4. Das, KM, Lalli, BS: Boundary value problems for $y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$. J. Math. Anal. Appl. 81, 300-307 (1981)
5. Eloe, PW, Henderson, J: Optimal intervals for third order Lipschitz equations. Differ. Integral Equ. 2, 397-404 (1989)
6. Eloe, PW, Henderson, J: Optimal intervals for uniqueness of solutions for nonlocal boundary value problems. Commun. Appl. Nonlinear Anal. 18, 89-97 (2011)
7. Gupta, CP, Lakshmikantham, V: Existence and uniqueness theorems for a third-order three-point boundary value problem. Nonlinear Anal. 16, 949-957 (1991)
8. Hankerson, D, Henderson, J: Optimality for boundary value problems for Lipschitz solutions. J. Differ. Equ. 77, 392-404 (1989)
9. Henderson, J: Best interval lengths for third order Lipschitz equations. SIAM J. Math. Anal. 18, 293-305 (1987)
10. Henderson, J: Boundary value problems for nth order Lipschitz equations. J. Math. Anal. Appl. 134, 196-210 (1988)
11. Jackson, L: Existence and uniqueness of solutions of boundary value problems for Lipschitz equations. J. Differ. Equ. 32, 76-90 (1979)
12. Moorti, VRG, Garner, JB: Existence-uniqueness theorems for three-point boundary value problems for n th-order nonlinear differential equations. J. Differ. Equ. 29, 205-213 (1978)
13. Pei, M, Chang, SK: Nonlinear three-point boundary value problems for nth-order nonlinear differential equations. Acta Math. Sin. 48, 763-772 (2005)
14. Piao, W, Shi, X: Existence and uniqueness of two-point and three-point boundary value problems for third order nonlinear differential equations. Chin. Sci. Bull. 36, 358-361 (1991)
15. Henderson, J, Taunton, RD: Solution of boundary value problems by matching methods. Appl. Anal. 49, 253-266 (1993)
16. Henderson, J, Liu, X: BVP's with odd differences of gaps in boundary conditions for nth order ODE's by matching solutions. Comput. Math. Appl. 62, 3722-3728 (2011)
17. Rao, DRKS, Murty, KN, Rao, AS: On three-point boundary value problems associated with third order differential equations. Nonlinear Anal. 5, 669-673 (1981)
18. Rao, DRKS, Murty, KN, Rao, AS: Three-point boundary value problems for nth order differential equations. J. Math. Phys. Sci. 18, 323-327 (1984)
19. Shi, Y, Pei, M: Two-point and three-point boundary value problems for n th-order nonlinear differential equations. Appl. Anal. 85, 1421-1432 (2006)
20. Aftabizadeh, A, Gupta, CP: Existence and uniqueness theorem for three-point boundary value problems. SIAM J. Math. Anal. 20, 716-726 (1989)
21. Anderson, DR, Davis, JM: Multiple solutions and eigenvalues for third-order right focal boundary value problems. J. Math. Anal. Appl. 267, 135-157 (2002)
22. Boucherif, A, Al-Malki, N: Nonlinear three-point third-order boundary value problems. Appl. Math. Comput. 190, 1168-1177 (2007)
23. Graef, JR, Henderson, J, Wong, PJY, Yang, B: Three solutions of an nth order three-point focal type boundary value problem. Nonlinear Anal. 69, 3386-3404 (2008)
24. Graef, JR, Webb, JRL: Third order boundary value problems with nonlocal boundary conditions. Nonlinear Anal. 71, 1542-1551 (2009)
25. Infante, G, Pietramal, P: A third order boundary value problem subject to nonlinear boundary conditions. Math. Bohem. 135, 113-121 (2010)
26. O'Regan, D: Topological transversality: application to third order boundary value problems. SIAM J. Math. Anal. 18, 630-641 (1987)
27. Palamides, AP, Smyrlis, G: Positive solutions to a singular third-order three-point boundary value problem with indefinitely signed Green's function. Nonlinear Anal. 68, 2104-2118 (2008)
28. Rachůnková, I: On some three-point problems for third order differential equations. Math. Bohem. 117, 98-110 (1992)
29. Sun, Y: Positive solutions for third-order three-point nonhomogeneous boundary value problems. Appl. Math. Lett. 22, 45-51 (2009)
30. Sun, JP, Zhao, J: Positive solution for a third-order three-point boundary value problem with sign-changing Green's function. Commun. Appl. Anal. 16, 219-228 (2012)
31. Webb, JRL, Infante, G: Non-local boundary value problems of arbitrary order. J. Lond. Math. Soc. (2) 79, 238-258 (2009)
32. Webb, JRL: Nonlocal conjugate type boundary value problems of higher order. Nonlinear Anal. 71, 1933-1940 (2009)
33. Wong, PJY: Multiple fixed-sign solutions for a system of generalized right focal problems with deviating arguments. J. Math. Anal. Appl. 323, 100-118 (2006)
34. Yang, B: Positive solutions of a third-order three-point boundary value problem. Electron. J. Differ. Equ. 2008, 99 (2008)
35. Yao, Q: Positive solutions of singular third-order three-point boundary value problems. J. Math. Anal. Appl. 354, 207-212 (2009)
36. Pei, M, Chang, SK: Existence and uniqueness of solutions for n th-order nonlinear two-point boundary value problems. Appl. Math. Comput. 219, 11005-11017 (2013)
37. Hartman, P: Ordinary Differential Equations. Wiley, New York (1964)
doi:10.1186/s13661-014-0239-7
Cite this article as: Pei and Chang: Solvability of n th-order Lipschitz equations with nonlinear three-point boundary conditions. Boundary Value Problems 2014 2014:239.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online

- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

