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Abstract
In this paper, we deal with the existence and multiplicity of solutions for perturbed
Schrödinger equation with electromagnetic fields and critical nonlinearity in R

N :
–ε2�Au(x) + V(x)u(x) = |u|2∗–2u + h(x, |u|2)u for all x ∈R

N , where ∇Au(x) := (∇ + iA(x))u,
V(x) is a nonnegative potential. By using Lions’ second concentration compactness
principle and concentration compactness principle at infinity to prove that the (PS)c
condition holds locally and by variational method, we show that this equation has at
least one solution provided that ε < E , for anym ∈N, it hasm pairs of solutions if
ε < Em, where E and Em are sufficiently small positive numbers.
MSC: 35J60; 35B33

Keywords: perturbed Schrödinger equation; critical nonlinearity; magnetic fields;
variational methods

1 Introduction
In this paper, we are concerned with the existence of nontrivial solutions to the following
perturbed Schrödinger equation with electromagnetic fields and critical nonlinearity in
R

N :

–ε�Au(x) +V (x)u(x) = |u|∗–u + h
(
x, |u|)u for x ∈R

N , (.)

where ∇Au(x) := (∇ + iA(x))u. Here, i is the imaginary unit, ∗ := N/(N – ) denotes the
Sobolev critical exponent and N ≥ , V (x) and h(x,u) are functions satisfying some con-
ditions.
This paper is motivated by some works concerning the nonlinear Schrödinger equation

i�
∂ψ

∂t
= –

�


m
(∇ + iA(x)

)
ψ +W (x)ψ

–K(x)|ψ |∗–ψ – h
(
x, |ψ |)ψ for x ∈R

N , (.)

where � is Plank constant,A(x) = (A(x),A(x), . . . ,AN (x)) :RN →R
N is a real vector (mag-

netic) potential with magnetic field B = curlA and W (x) : RN → R
N is a scalar electric

potential.
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In physics, we are interested in standing wave solutions, i.e., solutions of type (.) when
� is sufficiently small, when E is a real number and u(x) is a complex-value function which
satisfies

–
(∇ + iA(x)

)u(x) + λV (x)u(x) = λK(x)|u|∗–u + λh
(
x, |u|)u, x ∈ R

N , (.)

where λ– = �


m and V (x) =W (x) –E. The transition from quantummechanics to classical
mechanics can be formally performed by letting � → . Thus the existence of solutions
for � small, semi-classical solutions, has important physical interest.
It is well known that the linear Schrödinger equation is a basic tool of quantum me-

chanics, and it provides a description of the dynamics of a particle in a non-relativistic
setting. The nonlinear Schrödinger equation arises in different physical theories, e.g., the
description of Bose-Einstein condensates and nonlinear optics, see [] and the references
cited there. Both the linear and the nonlinear Schrödinger equations have been widely
considered in the literature. The main purpose of this paper is to study the existence and
multiplicity of solutions of perturbed Schrödinger equations with electromagnetic fields
and critical nonlinearity (.).
Problem (.) with A(x) ≡  has an extensive literature. Different approaches have been

taken to attack this problem under various hypotheses on the potential and the nonlinear-
ity. See, for example, [–] and the references therein. Observe that in all these papers the
nonlinearities are assumed to be subcritical. In [], using a Lyapunov-Schmidt reduction,
Floer andWeinstein established the existence of single andmultiple spike solutions. Their
method and results were later generalized byOh [] to the higher-dimensional case. Kang
and Wei [] established the existence of positive solutions with any prescribed number
of spikes, clustering around a given local maximum point of the potential function. In ac-
cordance with the Sobolev critical nonlinearities, there have been many papers devoted
to studying the existence of solutions to elliptic boundary-valued problems on bounded
domains after the pioneering work by Brezis and Nirenberg []. Ding and Lin [] first
studied the existence of semi-classical solutions to the problem on the whole space with
critical nonlinearities and established the existence of positive solutions as well as of those
that change sign exactly once. They also obtained multiplicity of solutions when the non-
linearity is odd.
When A(x) �≡ , there are also many works dealing with the magnetic case. The first one

seems to be [] where the existence of standing waves was obtained for � >  fixed and
for special classes of magnetic fields. If A and W are periodic functions, the existence of
various types of solutions for fixed � >  was proved in [] by applying minimax argu-
ments. Concerning semi-classical bound states, it was proved in [] that for � >  small
and admits a least energy solution which concentrates near the global minimum of W .
A multiplicity result for solutions was obtained in [] by using a topological argument.
There it was also proved that the magnetic potential A only contributes to the phase fac-
tor of the solitary solutions for � >  sufficiently small. In [] single-bump bound states
were obtained by using perturbation methods. These concentrate near a non-degenerate
critical point of W as � → . For the critical growth case, Wang [] studied the electro-
magnetic Schrödinger equations

–
(∇ + iA(x)

)u(x) + λV (x)u(x) = K(x)|u|∗–u for x ∈R
N . (.)

http://www.boundaryvalueproblems.com/content/2014/1/240
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By using the linking theorem twice to the corresponding functional, they established the
existence results. Chabrowski and Szulkin [] considered problem (.) under assump-
tion that V (x) changes sign; by using a min-max type argument based on a topological
linking, they obtained a solution in the Sobolev space which was defined in the paper. As-
sume K(x)≡ , Han [] studied problem (.) and established the existence of nontrivial
solutions in the critical case by means of variational method. For more results, we refer
the reader to [, –] and the references therein.
In the present paper, we consider the existence of solutions for problem (.) under the

condition infx∈RN V (x) =  and critical nonlinearity. It seems that Byeon and Wang []
were the first to study energy level and the asymptotic behavior of positive solutions to
Schrödinger equations under the condition infx∈RN V (x) = . In [], Cao and Tang ex-
tended the results of Byeon and Wang []. However, to the best knowledge, it seems that
there are few works on the existence of solutions to be the problems on R

N involving crit-
ical nonlinearities with electromagnetic fields. We mainly follow the idea of [, ]. Let us
point out that although the idea was used before for other problems, the adaptation of the
procedure to our problem is not trivial at all. Because of the appearance of electromag-
netic potential A(x), we must consider our problem for complex-valued functions, and so
we need more delicate estimates. Furthermore, we use Lions’ second concentration com-
pactness principle and concentration compactness principle at infinity to prove that the
(PS)c condition holds, which is different from methods used in [, ].

2 Main results
Let λ = ε–. Equation (.) reads then as

–
(∇ + iA(x)

)u(x) + λV (x)u(x) = λ|u|∗–u + λh
(
x, |u|)u for x ∈R

N . (.)

We make the following assumptions on A(x), V (x) and h throughout this paper:
(V) V (x) ∈ C(RN ,R); V (x) = minx∈RN V = , and there is b >  such that the set

Vb = {x ∈R
N : V (x) < b} has finite Lebesgue measure;

(A) Aj(x) ∈ C(RN ,R) (j = , , . . . ,N ) and A(x) = ;
(H) (h) h ∈ C(RN × [, +∞),R) and h(x, t) = o() uniformly in x as t → ;

(h) there are C >  and q ∈ (, ∗) such that |h(x, t)| ≤ C( + t
q–
 );

(h) there are a > , p >  andμ >  such thatH(x, t)≥ at
p
 and μ

H(x, t)≤ h(x, t)t
for all (x, t), where H(x, t) =

∫ t
 h(x, s)ds.

Set

∇Au =
(∇ + iA(x)

)
u

and

H
A
(
R

N)
=

{
u ∈ L

(
R

N)
:∇Au ∈ L

(
R

N)}
.

Hence H
A(RN ) is the Hilbert space under the scalar product

〈u, v〉 = Re
∫

RN

((∇u + iA(x)u
)(∇v + iA(x)v

)
+ uv

)
dx,

http://www.boundaryvalueproblems.com/content/2014/1/240
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the norm induced by the product (·, ·) is

‖u‖H
A(R

N ) =
(∫

RN

(|∇Au| + |u|)dx
) 



=
(∫

RN

(∣∣∇u + iA(x)u
∣
∣ + |u|)dx

) 


=
(∫

RN

(|∇u| + (∣∣iA(x)
∣∣ + 

)|u|)dx – Re
∫

RN
iA(x)u∇udx

) 

.

Let

E :=
{
u ∈H

A
(
R

N)
:
∫

RN
λV (x)|u| dx <∞

}
,

which is a Hilbert space equipped with the norm

‖u‖λ =
∫

RN

(|∇Au| + λV (x)|u|)dx.

Remark . We have the following diamagnetic inequality (see [] for example):

∣
∣∇Au(x)

∣
∣ ≥ ∣

∣∇∣
∣u(x)

∣
∣
∣
∣ for u ∈H

A
(
R

N)
.

Indeed, since A is real-valued,

∣∣∇|u|(x)∣∣ =
∣
∣∣
∣Re

(
∇u

u
|u|

)∣
∣∣
∣ =

∣
∣∣
∣Re(∇u + iAu)

u
|u|

∣
∣∣
∣ ≤ |∇u + iAu|

(the bar denotes complex conjugation) this fact means that if u ∈ H
A(RN ), then |u| ∈

H(RN ), and therefore u ∈ Lp(RN ) for any p ∈ [, ∗].

Remark . The spaces H
A(RN ) and the spaces H(RN ) are not comparable; more pre-

cisely, in generalH
A(RN )�H(RN ) andH(RN )�H

A(RN ). However, it is proved byArioli
and Szulkin [] that if K is a bounded domain with regular boundary, then H

A(RN )
and H(RN ) are equivalent, where H

A(K) = {u ∈ L(K) : ∇u ∈ L(K)} with the norm
‖u‖H

A(K ) = (
∫
K (|∇Au| + |u|)dx)  .

Let

Eλ :=
{
u ∈H

A
(
R

N)
:
∫

RN
V (x)|u| dx < ∞

}

with the norms

‖u‖λ =
∫

RN

(|∇Au| + λV (x)|u|)dx.

Thus, it is easy to see that the norm ‖ · ‖E is equivalent to the one ‖ · ‖λ for each λ > .
From Remark ., for each s ∈ [, ∗], there is cs >  (independent of λ) such that if λ > ,

http://www.boundaryvalueproblems.com/content/2014/1/240
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then

(∫

RN
|u|s

) 
s
≤ cs

(∫

RN

∣
∣∇|u|∣∣

) 
 ≤ cs

(∫

RN
|∇Au|

) 
 ≤ cs‖u‖λ. (.)

Consider the functional

Jλ(u) :=



∫

RN

(|∇Au| + λV (x)|u|)dx – λ

∗

∫

RN
|u|∗

dx

–
λ



∫

RN
H

(
x, |u|)dx

=


‖u‖λ –

λ

∗

∫

RN
|u|∗

dx –
λ



∫

RN
H

(
x, |u|)dx.

Under the assumptions [], Jλ ∈ C(Eλ,R) and its critical points are solutions of (.).

Theorem . Let (V), (A) and (H) be satisfied. Thus:
() For any σ > , there is �σ >  such that problem (.) has at least one solution uλ for

each λ ≥ �σ satisfying  < Jλ(uλ)≤ σλ–N
 .

() Assume additionally that h(x, t) is odd in t; for anym ∈N and σ > , there is
�mσ >  such that problem (.) has at least m pairs of solutions uλ with
 < Jλ(uλ) ≤ σλ–N

 whenever λ ≥ �mσ .

Remark . We should point out that Theorem . is different from the previous results
of [, ] in three main directions:

(i) A(x) �≡ . There exist many functions h(x, t) satisfying condition (H), for example,
h(x, t) = P(x)|t|p–t, where P(x) is a positive and bounded function.

(ii) Other potentials V (x) guaranteeing compactness of the embedding from
Eλ ↪→ Lp(RN ) can also be used in this paper. For example, () V (x) ∈ C(RN ,R) and
lim inf|x|→∞ V (x) > V (x) = minx∈RN V = ; () V (x) ∈ C(RN ,R) with periodic
function (or bounded function) and V (x) = minx∈RN V (x) = .

(iii) We use Lions’ second concentration compactness principle and concentration
compactness principle at infinity to prove that the (PS) condition holds, which is
different from methods used in [, ].

3 (PS)c Condition
Recall that we say that a sequence (un) is a (PS) sequence at level c ((PS)c-sequence, for
short) if 
λ(un)→ c and 
′

λ(un) → . 
λ is said to satisfy the (PS)c condition if any (PS)c-
sequence contains a convergent subsequence.

Lemma . Let (V), (A) and (H) be satisfied. Then there exists constant M(c) which is
independent of λ ≥  such that c≥  and

lim sup
n→∞

‖un‖λ ≤ M(c).

Proof Let {un} be a sequence in E such that

c + o() = J(un) =


‖un‖λ –

λ

∗

∫

RN
|un|∗

dx –
λ



∫

RN
H

(
x, |un|

)
dx, (.)

http://www.boundaryvalueproblems.com/content/2014/1/240
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o()‖un‖ =
〈
J ′(un), v

〉

= Re

{∫

RN

(∇Aun · ∇Av + λV (x)unv
)
dx

– λ

∫

RN
|un|∗–unvdx – λ

∫

RN
h
(
x, |un|

)
unvdx

}
. (.)

By (.) and (.) we have

Jλ(un) –

μ
J ′λ(un)un =

(


–


μ

)∫

RN

(|∇Aun| + λV (x)|un|
)
dx

+
(

μ

–

∗

)
λ

∫

RN
|un|∗

dx

+ λ

∫

RN

(

μ
h
(
x, |un|

)|un| – 

H

(
x, |un|

)
)
dx. (.)

On the other hand, condition (h) implies that


μ
h
(
x, |un|

)|un| – 

H

(
x, |un|

) ≥ .

Thus, it follows from (.) that

(


–


μ

)
‖un‖λ ≤ c + o() + εn‖un‖λ,

hence for n large enough, we have

‖un‖λ ≤ μ
μ – 

c.

Thus ‖un‖λ is bounded as n → ∞. Taking the limit in (.) shows that c ≥ . This com-
pletes the proof of Lemma .. �

The main result in this section is the following compactness result.

Lemma . Suppose that (V), (A) and (H) hold. For any λ ≥ , Jλ satisfies the (PS)c con-
dition, for all c ∈ (,αλ

–N
 ), where α = ( 

μ
– 

∗ )S
N
 ; that is, any (PS)c-sequence (un) ⊂ Eλ

has a strongly convergent subsequence in Eλ.

Proof Let {un} be a (PS)c sequence, by Lemma ., {un} is bounded in H
A(RN ). Hence, by

diamagnetic inequality, {|un|} is bounded in H
A(RN ). Then, for some subsequence, there

is u ∈H
A(RN ) such that un ⇀ u in H

A(RN ). We claim that

∫

RN
|un|∗

dx→
∫

RN
|u|∗

dx. (.)

In order to prove this claim, we suppose that

∣∣∇|un|
∣∣ ⇀

∣∣∇|u|∣∣ + σ and |un|∗
⇀ |u|∗

+ ν
(
weak∗ sense of measures

)
.

http://www.boundaryvalueproblems.com/content/2014/1/240
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Using the concentration compactness principle due to Lions (cf. [, Lemma .]), we ob-
tain a countable index set I , sequences {xi} ⊂R

N , {σi}, {νi} ⊂ (,∞) such that

ν =
∑

i∈I
δxiνi, σ ≥

∑

i∈I
δxiσi and σi ≥ Sν/∗

i (.)

for all i ∈ I , where δxi are Dirac measures at xi and σi, νi are constants.
Now, let xi be a singular point of the measures σ and ν . We define a function φ(x) ∈

C∞
 (RN , [, ]) such that φ(x) =  in B(xi, ε), φ(x) =  inRN \B(xi, ε) and |∇φ| ≤ /ε inRN .

Since {unφ} is bounded inH
A(RN ) and φ takes values in R, a direct calculation shows that

〈
J ′λ(un),unφ

〉 → 

and

∇A(unφ) = iun∇φ + φ∇Aun.

Therefore,
∫

RN
|∇Aun|φ dx +

∫

RN
λV (x)|un|φ dx

= –Re

(∫

RN
iun∇Aun∇φ dx

)
+ λ

∫

RN
h
(
x, |un|

)|un|φ dx

+ λ

∫

RN
|un|∗

φ dx + on(). (.)

By Hölder’s inequality, it is not difficult to prove that

lim sup
n→∞

∣
∣∣
∣Re

(∫

RN
iun∇Aun∇φ dx

)∣
∣∣
∣ = .

In this way, it follows that

∫

RN
|∇Aun|φ dx ≤ λ

∫

RN
h
(
x, |un|

)|un|φ dx + λ

∫

RN
|un|∗

φ dx + on().

Consequently, using the fact that un → u in Lsloc(R
N ),  ≤ s < ∗ and φ has compact sup-

port, we can let n→ ∞ in the last inequality to obtain

∫

RN
φ dσ ≤ λ

∫

RN
φ dν.

Letting ε → , we obtain σi ≤ λνi. Combining this with (.), we obtain νi ≥ λ–Sν

∗
i . This

result implies that

(I) νi =  or (II) νi ≥
(
λ–S

)N
 .

To obtain the possible concentration of mass at infinity, we will use the concentra-
tion compactness principle at infinity []. Similarly, we define a cut-off function φR ∈

http://www.boundaryvalueproblems.com/content/2014/1/240
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C∞
 (RN , [, ]) such that φR(x) =  on |x| < R and φR(x) =  on |x| > R + . Note that

{unφR} is bounded in H
A(RN ) and φ takes values in R. A direct calculation shows that

〈J ′λ(un),unφR〉 → , this fact implies that

∫

RN
|∇Aun|φR dx +

∫

RN
λV (x)|un|φR dx

= –Re

(∫

RN
iun∇Aun∇φR dx

)
+ λ

∫

RN
h
(
x, |un|

)|un|φR dx

+ λ

∫

RN
|un|∗

φR dx + on(). (.)

It is easy to prove that

– lim
R→∞ lim

n→∞ Re

(∫

RN
iun∇Aun∇φR dx

)
= .

Letting R → ∞, we obtain σ∞ ≤ λν∞. Thus ν∞ ≥ λ–Sν

∗∞ . This result implies that

(III) ν∞ =  or (IV) ν∞ ≥ (
λ–S

)N
 .

Next, we claim that (II) and (IV) cannot occur. If case (IV) holds for some i ∈ I , then by
condition (H) we have

c = lim
n→∞

(
Jλ(un) –


μ

〈
J ′λ(un),un

〉
)

≥
(


–


μ

)∫

RN

(|∇Aun| + λV (x)|un|
)
dx +

(

μ

–

∗

)
λ

∫

RN
|un|∗

dx

+ λ

∫

RN

(

μ
h
(
x, |un|

)|un| – 

H

(
x, |un|

))
dx

≥
(

μ

–

∗

)
λ

∫

RN
|un|∗

dx ≥
(

μ

–

∗

)
λ

∫

RN
|un|∗

φR dx

=
(

μ

–

∗

)
λν∞ ≥ αλ

–N
 as R→ ∞,

where α = ( 
μ
– 

∗ )S
N
 . This is impossible. Consequently, νi =  for all i ∈ I . Similarly, if

case (II) holds for some i ∈ I , then by condition (H) we have

c = lim
n→∞

(
Jλ(un) –


μ

〈
J ′λ(un),un

〉
)

≥
(

μ

–

∗

)
λ

∫

RN
|un|∗

dx ≥
(

μ

–

∗

)
λ

∫

RN
|un|∗

φ dx

=
(

μ

–

∗

)
λν ≥ αλ

–N
 as ε → ,

which leads to a contradiction. Thus, we must have that (II) cannot occur for each i. Thus
limit (.) holds.

http://www.boundaryvalueproblems.com/content/2014/1/240
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Thus, from the Brezis-Lieb lemma [], we have

o()‖un‖λ =
〈
J ′λ(un),un

〉
= ‖un‖λ – λ

∫

RN
|un|∗

dx – λ

∫

RN
H

(
x, |un|

)
dx

= ‖un – u‖λ + ‖u‖λ – λ

∫

RN
|u|∗

dx – λ

∫

RN
H

(
x, |u|)dx

= ‖un – u‖λ + o()‖u‖λ,

here we use J ′λ(u) = . Thus we prove that {un} strongly converges to u in H
A(RN ). This

completes the proof of Lemma .. �

4 Proof of Theorem 2.1
In the following, we always consider λ ≥ . By assumptions (V), (A) and (H), one can see
that Jλ(u) has mountain pass geometry.

Lemma . Assume that (V), (A) and (H) hold. There exist αλ,ρλ >  such that Jλ(u) >  if
u ∈ Bρλ

\ {} and Jλ(u) ≥ αλ if u ∈ ∂Bρλ
, where Bρλ

= {u ∈ E : ‖u‖λ ≤ ρλ}.

Proof By condition (H), for δ ≤ (λcs)–, there is Cδ >  such that


∗

∫

RN
|u|∗

dx +



∫

RN
H

(
x, |u|)dx ≤ δ|u| +Cδ|u|∗

∗ .

So, from (A) and (V) it follows that

Jλ(u) ≥ 

‖u‖λ – λδ|u| – λCδ|u|∗

∗

≥ 


‖u‖λ – λCδ|u|∗
∗ .

By (.) and ∗ > , we know that the conclusion of Lemma . holds. This completes the
proof of Lemma .. �

Lemma . Under the assumption of Lemma ., for any finite-dimensional subspace F ⊂
Eλ,

Jλ(u) → –∞ as u ∈ F ,‖u‖ → ∞.

Proof Using conditions (A), (V) and (H), we can get

Jλ(u) ≤ 

‖u‖λ – λa|u|pp

for all u ∈ E since all norms in a finite-dimensional space are equivalent and p > . This
completes the proof of Lemma .. �

Since Jλ(u) does not satisfy the (PS)c condition for all c > , in the following we will find
a special finite-dimensional subspace by which we construct sufficiently small minimax
levels.

http://www.boundaryvalueproblems.com/content/2014/1/240
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The assumption (V) implies that there is x ∈ R
N such that V (x) = minx∈RN V (x) = .

Without loss of generality we assume from now on that x = .
Observe that by (h)

λ

∗

∫

RN
K(x)|u|∗

dx +
λ



∫

RN
H

(
x, |u|)dx ≥ aλ

∫

RN
|u|p dx.

Define the function Iλ ∈ C(Eλ,R) by

Iλ(u) :=



∫

RN

(|∇Au| + λV (x)|u|)dx – aλ
∫

RN
|u|p dx.

Then Jλ(u) ≤ Iλ(u) for all u ∈ E, and it suffices to construct small minimax levels for Iλ.
Note that

inf

{∫

RN
|∇φ| dx : φ ∈ C∞


(
R

N)
, |φ| = 

}
= .

For any δ > , one can choose φδ ∈ C∞
 (RN ) with |φδ| =  and suppφδ ⊂ Brδ () so that

|∇φδ| < δ. Set

fλ = φδ

(
λ


 x

)
, (.)

then

supp fλ ⊂ B
λ
– 
 rδ

().

Thus, for t ≥ , we have

Iλ(tfλ) =
t



∫

RN

(|∇Afλ| + λV (x)|fλ|
)
dx – tpaλ

∫

RN
|fλ|p dx

= λ–N


(
t



∫

RN

(|∇Aφδ| +V
(
λ– 

 x
)|φδ|

)
dx – tpa

∫

RN
|φδ|p dx

)

= λ–N
 �λ(tφδ),

where �λ ∈ C(Eλ,R) defined by

�λ(u) :=



∫

RN

(|∇Au| +V
(
λ– 

 x
)|u|)dx – a

∫

RN
|u|p dx.

Obviously,

max
t≥

�λ(tφδ) =
p – 

p(pa)


p–

[∫

RN

(|∇Aφδ| +V
(
λ– 

 x
)|φδ|

)
dx

] p
p–

.

On the one hand, since V () =  and note that suppφδ ⊂ Brδ (), there is �δ >  such that

V
(
λ– 

 x
) ≤ δ

|φδ|
for all |x| ≤ rδ and λ ≥ �δ .
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On the other hand, by Hölder’s inequality, we have
∫

RN
|∇Aφδ| dx ≤

∫

RN

(
|∇φδ| + 

∣∣A
(
λ– 

 x
)
φδ

∣∣)dx. (.)

Since A(x) is continuous on R
N and A() = , there exists �δ >  such that

∣∣A
(
λ– 

 x
)∣∣ ≤

√
δ

|φδ|
for all |x| ≤ rδ and λ ≥ �δ . (.)

Without loss of generality, we take �δ := {�δ ,�δ}. So, by (.) and (.) we can get

max
t≥

�λ(tφδ)≤ p – 

p(pa)


p–
(δ)

p
p– . (.)

Therefore, for all λ ≥ �δ ,

max
t≥

Jλ(tφδ) ≤ p – 

p(pa)


p–
(δ)

p
p– λ–N

 . (.)

Thus we have the following lemma.

Lemma . Under the assumption of Lemma ., for any σ > , there exists �σ >  such
that for each λ ≥ �σ , there is f̂λ ∈ Eλ with ‖f̂λ‖ > ρλ, Jλ(f̂λ)≤  and

max
t∈[,]

Jλ(tf̂λ) ≤ σλ–N
 . (.)

Proof Choose δ >  so small that

p – 

p(pa)


p–
(δ)

p
p– ≤ σ ,

and let fλ ∈ E be the function defined by (.). Taking �σ = �δ . Let t̂λ >  be such that
t̂λ‖fλ‖λ > ρλ and Jλ(tfλ) ≤  for all t ≥ t̂λ. By (.), let f̂λ = t̂λfλ; we know that the conclusion
of Lemma . holds. �

For anym∗ ∈ N , one can choosem∗ functions φi
δ ∈ C∞

 (RN ) such that suppφi
δ ∩suppφk

δ =
∅, i �= k, |φi

δ|p =  and |∇φi
δ| < δ. Let rm∗

δ >  be such that suppφi
δ ⊂ Bi

rδ () for i = , , . . . ,m∗.
Set

f iλ(x) = φi
δ

(
λ


 x

)
for j = , , . . . ,m∗

and

Hm∗
λδ = span

{
f λ , f


λ , . . . , f

m∗
λ

}
.

Observe that for each u =
∑m∗

i= cif iλ ∈Hm∗
λδ ,

∫

RN
|∇Au| dx =

m∗∑

i=

|ci|
∫

RN

∣∣∇Af iλ
∣∣ dx,
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∫

RN
V (x)|u| dx =

m∗∑

i=

|ci|
∫

RN
V (x)

∣∣f iλ
∣∣ dx,


∗

∫

RN
|u|∗

dx =

∗

m∗∑

i=

|ci|∗
∫

RN
|u|∗

dx

and




∫

RN
H

(
x, |u|)dx = 



m∗∑

i=

∫

RN
H

(
x,

∣∣cif iλ
∣∣)dx.

Thus

Jλ(u) =
m∗∑

i=

Jλ
(
cif iλ

)
,

and as before

Jλ
(
cif iλ

) ≤ λ–N
 �

(|ci|f iλ
)
.

Set

βδ := max
{∣∣φi

δ

∣∣
 : j = , , . . . ,m∗}

and choose �m∗δ >  so that

V
(
λ–N

 x
) ≤ δ

βδ

for all |x| ≤ rm
∗

δ and λ ≥ �m∗δ .

As before, we can obtain the following:

max
u∈Hm∗

λδ

Jλ(u) ≤ m∗(p – )

p(pa)


p–
(δ)

p
p– λ–N

 (.)

for all λ ≥ �m∗δ .
Using this estimate we have the following.

Lemma . Under the assumption of Lemma ., for any m∗ ∈ N and σ > , there ex-
ists �m∗σ >  such that for each λ ≥ �m∗σ , there exists an m∗-dimensional subspace Fλm∗

satisfying

max
u∈Fλδ

Jλ(u) ≤ σλ–N
 .

Proof Choose δ >  so small that

m∗(p – )

p(pa)


p–
(δ)

p
p– ≤ σ

and take Fλδ =Hm∗
λδ . By (.), we know that the conclusion of Lemma . holds. �
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We now establish the existence and multiplicity results.

Proof of Theorem . Using Lemma ., we choose �σ >  and define for λ ≥ �σ the
minimax value

cλ := inf
γ∈�λ

max
t∈[,]

Jλ(tf̂λ),

where

�λ :=
{
γ ∈ C

(
[, ],E

)
: γ () =  and γ () = f̂λ

}
.

By Lemma ., we have αλ ≤ cλ ≤ σλ–N
 . In virtue of Lemma ., we know that Jλ satisfies

the (PS)cλ condition, there is uλ ∈ E such that J ′λ(uλ) =  and Jλ(uλ) = cλ, hence the existence
is proved.
Denote the set of all symmetric (in the sense that –Z = Z) and closed subsets of E by �

for each Z ∈ �. Let gen(Z) be the Krasnoselski genus and

i(Z) := min
h∈�m∗

gen
(
h(Z)∩ ∂Bρλ

)
,

where �m∗ is the set of all odd homeomorphisms h ∈ C(E,E) and ρλ is the number from
Lemma .. Then i is a version of Benci’s pseudo-index []. Let

cλi := inf
i(Z)≥i

sup
u∈Z

Jλ(u),  ≤ i≤ m∗.

Since Jλ(u) ≥ αλ for all u ∈ ∂B+
ρλ and since i(Fλm∗ ) = dimFλm∗ =m∗,

αλ ≤ cλ ≤ · · · ≤ cλm∗ ≤ sup
u∈Hλm∗

Jλ(u) ≤ σλ–N
 .

It follows from Lemma . that Jλ satisfies the (PS)cλ condition at all levels ci. By the usual
critical point theory, all ci are critical levels and Jλ has at leastm∗ pairs of nontrivial critical
points. �
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