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Abstract
In this paper we study the coupled Drinfeld-Sokolov-Satsuma-Hirota system, which
was developed as one example of nonlinear equations possessing Lax pairs of a
special form. Also this system was found as a special case of the four-reduction of the
Kadomtsev-Petviashivilli hierarchy. We obtain exact solutions of the system by using
Lie symmetry analysis along with the simplest equation and Jacobi elliptic equation
methods. Also, symmetry reductions are obtained based on the optimal system of
one-dimensional subalgebras. In addition, the conservation laws are derived using
two approaches: the new conservation theorem due to Ibragimov and the multiplier
method.

Keywords: coupled Drinfeld-Sokolov-Satsuma-Hirota system; Lie symmetry
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1 Introduction
In recent years many nonlinear evolution equations (NLEEs) have been used to model
many real world problems in various fields of science and engineering. Thus, finding exact
explicit solutions of NLEEs is a very important endeavor. It is also true that finding solu-
tions of NLEEs is a difficult task, and only in few special cases one can write down the ex-
plicit solutions. However, despite of this fact, variousmethods of solvingNLEEs have been
proposed in the literature recently. Someof themost importantmethods found in the liter-
ature include the ansatz method [, ], theWeierstrass elliptic function expansionmethod
[], the Darboux transformation [], Hirota’s bilinear method [], the (G′/G)-expansion
method [], the Jacobi elliptic function expansion method [, ], the inverse scattering
transform method [], the homogeneous balance method [], the Bäcklund transforma-
tion [], the F-expansion method [], the exp-function method [], the multiple exp-
function method [], the variable separation approach [], the sine-cosine method [],
the tri-function method [, ], and the Lie symmetry method [–].
In this paper we study the coupled Drinfeld-Sokolov-Satsuma-Hirota (DSSH) system

ut – uux + uxxx – vx = ,

vt – vxxx + uvx = .
()
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This system was introduced independently by Drinfeld and Sokolov [], and by Satsuma
andHirota []. The coupledDSSH system [] was given as one of numerous examples of
nonlinear equations possessing Lax pairs of a special form.Also, the coupledDSSH system
[] was found as a special case of the four-reduction of the KP hierarchy, and its explicit
one-soliton solution was constructed. Gürses and Karasu [] found a recursion operator
and a bi-Hamiltonian structure for (). Wazwaz [] used three distinct methods, namely
the Cole-Hopf transformation, Hirota’s bilinear and the exp-function methods, and ob-
tained solitons, multiple soliton solutions, multiple singular soliton solutions, and plane
periodic solutions. Zheng [] used the (G′/G)-expansion method and obtained traveling
wave solutions of ().
In this paper we firstly perform symmetry reductions of () using Lie group analysis [–

], which are based on the optimal systems of one-dimensional subalgebras. The simplest
equation method [] and the Jacobi elliptic function method [] are later employed to
obtain some exact solutions of (). In addition to this, conservation laws are derived for
() using the new conservation theorem [] and the multiplier method [].
It is well known that the conservation laws play a very important role in the solution pro-

cess of differential equations. Also, one can safely say that the existence of a large number
of conservation laws of a system of partial differential equations is a strong indication of
its integrability []. Recently, conservation laws have been used to find exact solutions of
certain partial differential equations [, ].

2 Symmetry analysis of (1)
The symmetry group of the coupled DSSH system () will be generated by the vector field
of the form

X = ξ (t,x,u, v)
∂

∂t
+ ξ (t,x,u, v)

∂

∂x
+ η(t,x,u, v)

∂

∂u
+ η(t,x,u, v)

∂

∂v
.

The application of the third prolongation pr()X to () results in an overdetermined system
of linear partial differential equations. The general solution of these equations with the aid
of Maple is given by

ξ (t,x,u, v) = C + tC,

ξ (t,x,u, v) = C + xC,

η(t,x,u, v) = –Cu,

η(t,x,u, v) = C – vC,

where Ci, i = , . . . , , are arbitrary constants. The above general solution contains four ar-
bitrary constants, and hence the infinitesimal symmetries of () form the four-dimensional
Lie algebra spanned by the following linearly independent operators:

X =
∂

∂t
, X =

∂

∂x
, X =

∂

∂v
, X = t

∂

∂t
+ x

∂

∂x
– u

∂

∂u
– v

∂

∂v
.

2.1 Optimal system of one-dimensional subalgebras
In this subsectionwe present the optimal systemof one-dimensional subalgebras for equa-
tion () to obtain the optimal system of group-invariant solutions. The method which we
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Table 1 Commutator table of the Lie algebra of equation (1)

X1 X2 X3 X4
X1 0 0 0 3X2
X2 0 0 0 X2
X3 0 0 0 –2X3
X4 –3X2 –X2 2X3 0

Table 2 Adjoint table of the Lie algebra of equation (1)

Ad X1 X2 X3 X4
X1 X1 X2 X3 –3εX1 + X4
X2 X1 X2 X3 –εX2 + X4
X3 X1 X2 X3 4εX3 + X4
X4 3eεX1 eεX2 e–4εX3 X4

use here for obtaining the optimal system of one-dimensional subalgebras is given in [].
The adjoint transformations are given by

Ad
(
exp(εXi)

)
Xj = Xj – ε[Xi,Xj] +



ε

[
Xi, [Xi,Xj]

]
– · · · .

The commutator table of the Lie point symmetries of equation () and the adjoint repre-
sentations of the symmetry group of () on its Lie algebra are given in Table  and Table ,
respectively. Table  and Table  are then used to construct the optimal system of one-
dimensional subalgebras for equation ().
From Tables  and  and following [], one can obtain an optimal system of one-

dimensional subalgebras given by {X,bX + cX + dX}, where b, c,d = ,±.

2.2 Symmetry reductions of (1)
In this subsection we use the optimal system of one-dimensional subalgebras calculated
above to obtain symmetry reductions.
Case . X

The operator X gives rise to the group-invariant solution

u = t–

 F(z), v = t–


G(z), ()

where z = xt–/ is an invariant of the symmetry X. Substitution of () into () results in
the system of ordinary differential equations (ODEs), where F and G satisfy

G(z) + G′′′ (z) – F(z)G′ (z) + zG′(z) = ,

F(z) – F ′′′ (z) + zF(z) + F(z)F ′ (z) + G(z) = .

Case . bX + cX + dX; b, c,d = ,±
The symmetry bX + cX + dX gives rise to the group-invariant solution

u = F(z), v =G(z) + td/b, ()

http://www.boundaryvalueproblems.com/content/2014/1/248
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where z = (bx – ct)/b is an invariant of the symmetry bX + cX + dX. The insertion of ()
into () results in the system of ODEs

bF(z)F ′(z) + cF ′(z) – bF ′′′(z) + bG′(z) = ,

cG′(z) – bF(z)G′(z) + bG′′′(z) – d = .

3 Exact solutions of (1) using the simplest equationmethod
Taking the linear combination of the translation symmetries, viz. X + λX, and solving
the corresponding Lagrange system for the symmetry X + λX, one obtains an invariant
z = x – λt and the group-invariant solution of the form

u = F(z), v =G(z), ()

where the functions F and G satisfy

F ′′′(z) – λF ′(z) – F(z)F ′(z) – G′(z) = , (a)

F(z)G′(z) – G′′′(z) – λG′(z) = . (b)

Now we use the simplest equation method [, ] to solve system (a)-(b); and as a
result, we obtain the exact solutions of our coupledDSSH system (). Bernoulli and Riccati
equations will be used as the simplest equations.
Let us consider the solutions of (a)-(b) in the form

F(z) =
M∑

i=

Ai
(
H(z)

)i, G(z) =
N∑

i=

Bi
(
H(z)

)i, ()

where H(z) satisfies the Bernoulli or Riccati equation, M and N are positive integers that
can be determined by a balancing procedure andAi’s and Bi’s are parameters to be deter-
mined.

3.1 Solutions of (1) using the Bernoulli equation as the simplest equation
The balancing procedure gives M =  and N = , and hence the solutions of (a)-(b) are
of the form

F(z) =A +AH +AH, (a)

G(z) = B +BH +BH +BH +BH. (b)

Substituting (a)-(b) into (a)-(b) and making use of the Bernoulli equation [] and
then equating the coefficients of the functions Hi to zero, we obtain an algebraic system
of equations in terms ofAi (i = , , ) and Bi (i = , , , , ). Solving the resultant system
of algebraic equations with the aid of Maple, one possible set of values of Ai and Bi is as
follows:

λ =


a, A =




a, A = ab, A = b,

http://www.boundaryvalueproblems.com/content/2014/1/248
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Figure 1 Profile of (8a)-(8b).

B = –


ab, B = –




ab, B = –ba, B = –b.

As a result, a solution of () is

u(t,x) =A +Aa
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

+Aa
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

, (a)

v(t,x) = B +Ba
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

+Ba
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

+Ba
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

+Ba
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

, (b)

where z = x – λt. The profile of solution (a)-(b) is given in Figure .

3.2 Solutions of (1) using the Riccati equation as the simplest equation
In this case the balancing procedure also gives the same values ofM andN , i.e.,M =  and
N = . Thus the solutions of (a)-(b) are of the form

F(z) =A +AH +AH, (a)

G(z) = B +BH +BH +BH +BH. (b)

Substituting (a)-(b) into (a)-(b) andmaking use of the Riccati equation [], we obtain
an algebraic system of equations in terms of Ai and Bi. Solving the resultant system, one
possible set of values is as follows:

λ = –




(
ac –A


a

)
, A =

,ac + A


,a
,
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A = ab, A = a,

B = –
A(ac +A

 )
a

, B = –



A
 –



ac,

B = –aA, B = –a.

Hence solutions of () are

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

, (a)

v(t,x) = B +B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

(b)

and

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ

sinh( θz
 )

}

+A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ

sinh( θz
 )

}

, (a)

v(t,x) = B +B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ

sinh( θz
 )

}

+B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ

sinh( θz
 )

}

+B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ

sinh( θz
 )

}

+B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ

sinh( θz
 )

}

, (b)

where z = x – λt.

3.3 Solutions of (1) in terms of Jacobi elliptic functions
We now present exact solutions of the coupled DSSH system () that are expressed in
Jacobi elliptic functions. The cosine-amplitude function cn(z|ω) and the sine-amplitude
function sn(z|ω) satisfy the first-order differential equations

H ′(z) = –
{(
 –H(z)

)(
 –ω +ωH(z)

)} 
 ()

http://www.boundaryvalueproblems.com/content/2014/1/248
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Figure 2 Profile of cniodal waves (14a)-(14b).

and

H ′(z) =
{(
 –H(z)

)(
 –ωH(z)

)} 
 , ()

respectively [, ].
Treating the above first-order ODEs as our simplest equations and then proceeding as

before, we obtain the cnoidal and snoidal wave solutions that are given by

u(t,x) = A +A cn(z|ω) +A cn(z|ω), (a)

v(t,x) = B + B cn(z|ω) + B cn(z|ω) + B cn(z|ω) + B cn(z|ω), (b)

where

λ = k – ω + , A = k, A = –ω, A = ,

B = , B = kω – ω + ω, B = , B = –ω,

k is any root of k + (–ω + )k + ω – ω + ω = 

and

u(t,x) = A +A sn(z|ω) +A sn(z|ω),
v(t,x) = B + B sn(z|ω) + B sn(z|ω) + B sn(z|ω) + B sn(z|ω),

where

λ = k + ω + , A = k(ν + ω + ), A = , A = ω,

B = , B = –kω – ω – ω, B = , B = –ω,

k is any root of k + (ω + )k + ω + ω +  = ,

and z = x – νt. The profile of solution (a)-(b) is given in Figure .

4 Conservation laws
In this section we construct conservation laws for the coupledDrinfeld-Sokolov-Satsuma-
Hirota system (). The new conservation theoremdue to Ibragimov [] and themultiplier

http://www.boundaryvalueproblems.com/content/2014/1/248
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method [] will be used. For the notations used in this section, the reader is referred to
[].

4.1 Construction of conservation laws using the new conservation theorem
In this subsection we construct conservation laws for () by applying the new conservation
theorem [].
The coupled DSSH system together with its adjoint equation is given by

Eα ≡ ut – uux + uxxx – vx = ,

Eα ≡ vt – vxxx + uvx = ,
()

E∗
α ≡ –pt + upx – pxxx + qvx = ,

E∗
α ≡ –qt – uqx + qxxx + px – qux = .

()

One can easily verify that the third-order Lagrangian for the system of equations () and
() is given by

L = p(ut – uux + uxxx – vx) + q(vt – vxxx + uvx). ()

We recall that the coupled DSSH system admits the following four Lie point symmetries:

X =
∂

∂t
, X =

∂

∂x
, X =

∂

∂v
, X = t

∂

∂t
+ x

∂

∂x
– u

∂

∂u
– v

∂

∂v
.

Thus we have the following four cases:
(i) For the Lie point symmetry X = ∂t , the corresponding Lie characteristic functions

areW  = –ut andW  = –vt . Thus, by using Ibragimov’s theorem [], the components of
the conserved vector are given by

Tt
 = –puxu + puxxx – pvx + quvx – qvxxx,

Tx
 = puut – putxx + pvt – quvt + qvtxx – utpxx + pxutx + vtqxx – qxvtx.

(ii) The Lie point symmetry X = ∂x has the Lie characteristic functions that are given
by W  = –ux and W  = –vx. Hence, by the application of Ibragimov’s theorem [], the
conserved vector (Tt

,Tx
 ) is given by

Tt
 = –pux – qvx,

Tx
 = put + qvt – uxpxx + pxuxx + vxqxx – qxvxx.

(iii) The symmetry generatorX = ∂v has the Lie characteristic functions given byW  = 
andW  = , and hence in this case one can obtain the conserved vectorwhose components
are

Tt
 = q,

Tx
 = –p + uq – qxx.

http://www.boundaryvalueproblems.com/content/2014/1/248
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(iv) Finally, we consider the symmetry generator X = –t∂t – x∂x + u∂u + v∂v, which
has the Lie characteristic functions W  = u + tut + xux and W  = v + tvt + xvx. By
invoking Ibragimov’s theorem [], the components of the conserved vector are given by

Tt
 = tpuux + xpux – tpuxxx + tpvx – tquvx + xqvx + tqvxxx + pu + qv,

Tx
 = upxx – tpuut + puxx – xput + tputxx – tpvt + tquvt – vqxx – qvxx

– xqvt – tqvtxx – up – pv + quv + tutpxx – tpxutx – pxux + xuxpxx

– xpxuxx – tvtqxx + tqxvtx + qxvx – xvxqxx + xqxvxx.

4.2 Construction of conservation laws using the multiplier method
Here we use the multiplier method [] to construct conservation laws for the coupled
DSSH system (). The second-order multipliers � = �(t,x,u, v,ux, vx,uxx, vxx) and � =
�(t,x,u, v,ux, vx,uxx, vxx) are given by

� =


(
u – uxx + v

)
C +Ctu +Cu +



Cx,

� = Cu +Ct +C,

where Ci, i = , . . . , , are arbitrary constants. Corresponding to the above multipliers, we
obtain the following three local conserved vectors of ():

Tt
 =




{
tu + xu + tv

}
,

Tx
 =




{
tuxxu – tu – xu – xv – tux – tvxx – ux + xuxx

}
;

Tt
 =




{
–uxxu + uv + u

}
,

Tx
 =




{
–vxxu + uxxv + uxxu + uutx – uv – u – v – utux + uxvx – uxx

}
;

and

Tt
 =



{
u + v

}
,

Tx
 =



{
uxxu – u – ux – vxx

}
.

Remark It should be noted that higher-order conservation laws of () can be computed
by increasing the order of the multipliers.

5 Concluding remarks
In this paper firstly we obtained the solutions of the Drinfeld-Sokolov-Satsuma-Hirota
equation by employing Lie group analysis together with the simplest and Jacobi elliptic
equation methods. Also symmetry reductions were obtained based on the optimal sys-
tems of one-dimensional subalgebras. The exact solutions obtained were traveling wave
solutions, cnoidal and snoidal wave solutions. Furthermore, the conservation laws for the

http://www.boundaryvalueproblems.com/content/2014/1/248
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underlying equation were derived by using two different approaches, namely the new con-
servation theorem and the multiplier method. The importance of the conservation laws
was explained in the introduction.
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